EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445

Size: px
Start display at page:

Download "EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445"

Transcription

1 EELE445-4 Lecure 8 Eample o Fourier Series or a riangle rom he Fourier ransorm Homework password is: 4445

2 3 4

3 EELE445-4 Lecure 8 LI Sysems and Filers 5 LI Sysem 6 3

4 Linear ime-invarian Sysem Deiniion o a Linear Sysem: or L y [], he linear dierenial equaion L[ a + bz ] al[ ] + al[ z ] sysem operaor : ime Invarian : he delayed oupu y by he same amoun as he inpu, he shape o he oupu waveorm is independan o when he inpu waveorm is applied o he sysem.. is delayed 7 LI Sysem y Ry τ lim Ry τ lim P F y τ h τ dτ y y τ dτ ime avg or h u u du [ R τ ] PSD o he oupu specrum y power auocor h v v dv d 8 4

5 5 LI Sysem oupu Power and Volage Specrum [ ] H X y h y H P P R F P y y y τ 9 Couch, Digial and Analog Communicaion Sysems, Sevenh Ediion 7 Pearson Educaion, Inc. All righs reserved Figure 7 Convoluion o a recangle and an eponenial. λ λ λ d w w w w w 3

6 Power Auocorrelaion: R power Power Signal hrough a Filer: 6

7 7 Periodic Signal hrough a Filer: ime Average Auocorrelaion a periodic signal or o o o o o o o o k k k o k d R d k k Lim d k Lim d Lim R τ τ τ τ τ τ 3 Periodic Signal hrough a Filer: ime Average Auocorrelaion 4

8 Periodic Signal hrough a Filer ime Average Auocorrelaion hrough a LI Sysem 5 EELE445-4 Lecure 9 LI Sysems and Filers 6 8

9 Filers-Applicaions Conrol he Modulaion Signal Bandwidh E. Null bandwidh o recangular pulse Limis ransmission Bandwidh or Specrum Conservaion Opimize he SNR a he receiver inpu Waveorm Shaping: y*h Mached deecion 7 Ideal Filer Response X h, H y Y H H Linear phase: θ ω θ τ d ω 8 9

10 Ideal Filer-Magniude, Phase/Delay ω θ π θ ω π π j j j e G e j H j H For a ranser uncion Hs, a real requencies, wih sjω, Where Gω and θω are he gain and phase componens. 9 Ideal Filer-Magniude, Phase, Delay Pd d d π τ θ ω ω θ π θ τ ω ω θ π θ Phase Linear Group Delay ime delay Phase or

11 Ideal Filer-Magniude, Phase/Delay Boh Pd and τ d are uncions o requency Phase delay Pd is he absolue delay and is o lile signiicance Group Delay τ d is used as he crierion o evaluae phase nonlineariy. Group Delay is consan or all requencies in an ideal iler. Ideal Filer-Magniude, Phase/Delay Linear phase variaion wih requency over a band o requencies implies a consan Group Delay no phase disorion in ha band o requencies In order o preserve he inegriy o a pulse, i is mandaory ha he Group Delay o he sysem be consan up o he maimum requency componen o he pulse. his implies equal ime delay or all requencies o ineres.

12 hp://en.wikipedia.org/wiki/buerworh_iler Linear analog elecronic ilers Buerworh iler Chebyshev iler Ellipic Cauer iler Bessel iler Gaussian iler Opimum "L" Legendre iler 3 Filer Eample, ime Domain: Hs Hs V Vy : + RC s h RC e RC τ e τ 4

13 Filer Eample, Frequency Domain: Le sjπjω H ω H an ω R C an θω + + j ω ω o j o θ an o ω o : RC o : π R C ω ω o 5 Filer Eample: he Group delay o he RC low pass is: dτ d ω ω τ d ω dω ω + ω τ d + 6 3

14 Figure 5 Characerisics o an RC low-pass iler. Couch, Digial and Analog Communicaion Sysems, Sevenh Ediion 7 Pearson Educaion, Inc. All righs reserved Figure 6 Disorion caused by an RC low-pass iler. Couch, Digial and Analog Communicaion Sysems, Sevenh Ediion 7 Pearson Educaion, Inc. All righs reserved

15 EELE445-3 Lecure Filers con d and Noise 9 Figure 6 Disorion caused by an RC low-pass iler. Couch, Digial and Analog Communicaion Sysems, Sevenh Ediion 7 Pearson Educaion, Inc. All righs reserved

16 Figure 6 Disorion caused by an RC low-pass iler. Couch, Digial and Analog Communicaion Sysems, Sevenh Ediion 7 Pearson Educaion, Inc. All righs reserved A RC Filer Disorion Problem: Assume we wan he ampliude Lineariy <% and he group delay variaion lineariy <5% Find he usable bandwidh o he s order Buerworh iler i he 3dB bandwidh is MHz 3 6

17 A LPF Disorion Problem: Consrains: H H a H τ d τ d φ τ d ε a. ε φ.5 % Volage ampliude error 5% delay variaion o 6 : τ : π o H : + j o τ d : o π + o 33 Ampliude Error: ε a a A LPF Disorion Problem: H a : ε H φ p..95 a + o o Phase Error: : o τ d p τ d p + o a : o.98 o p :.95 o a.3 5 Hz p.94 5 Hz 34 7

18 A LPF Disorion Problem: So he ampliude error will limi he usable bandwidh o 3 KHz V/V H Filer Magniude Response Hz 35 A LPF Disorion Problem: Degrees 9 arg H 8 π Filer Phase Response Hz 36 8

19 A LPF Disorion Problem: usec.59 τ.d Filer Group Delay Response Hz 37 A LPF Disorion Problem: Filer Ampliude and Phase Error..3 5 Error ε.a ε.φ Hz Ampliude Error Group Delay Error 38 9

20 W noise 39 Filer Noise Equivalen Bandwidh We oen equae he -3dB bandwidh o a real Filer o he bandwidh o an ideal iler ha would Pass he same noise power. W 3dB -3dB Whie Noise Filer Noise Equivalen Bandwidh Real Filer 3 db S n Ideal Filer W Find W For Equal Powers From Filers S n is a Whie Noise Power Densiy N o Was/Hz

21 P Filer Noise Equivalen Bandwidh S n H d N o H d P S n Π W eq d W eq W eq N o d N o W eq W eq H d Buerworh lowpass ilers H + o n Where n is he iler order number o poles Noe ha n is he RC lowpass

22 Buerworh lowpass ilers Buerworh lowpass ilers Passband n 6 db per ocive n db per decade

23 Buerworh lowpass ilers EQUIVELEN NOISE BANDWIH FOR BUERWORH FILERS B Noise_Power_From_Real_Filer_Wih_3db_Bandwidh_o_ Noise_Power_From_Ideal_Filer_Wih_Bandwidh_o_ n :.. 6 iler orders rom o 6 n d + B n : Π, d Firs order iler wih a 3dB bandwidh o passes 57% more noise power when compared wih an ideal iler wih a bandwidh o. A 3rd order iler only passes 4.7% more noise power when compared wih an ideal iler. noe ha: n B n d π π.57 3

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1 Lecure 4 Goals: Be able o deermine bandwidh o digial signals Be able o conver a signal rom baseband o passband and back IV-1 Bandwidh o Digial Daa Signals A digial daa signal is modeled as a random process

More information

Characteristics of Linear System

Characteristics of Linear System Characerisics o Linear Sysem h g h : Impulse response F G : Frequency ranser uncion Represenaion o Sysem in ime an requency. Low-pass iler g h G F he requency ranser uncion is he Fourier ransorm o he impulse

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you:

EELE Lecture 3,4 EE445 - Outcomes. Physically Realizable Waveforms. EELE445 Montana State University. In this lecture you: EELE445 Monana Sae Universiy Lecure 3,4 EE445 - Oucomes EELE445-4 Lecure 3,4 Poer, Energy, ime average operaor secion. In his lecure you: be able o use he ime average operaor [] for finie ime duraion signals

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Lecture #6: Continuous-Time Signals

Lecture #6: Continuous-Time Signals EEL5: Discree-Time Signals and Sysems Lecure #6: Coninuous-Time Signals Lecure #6: Coninuous-Time Signals. Inroducion In his lecure, we discussed he ollowing opics:. Mahemaical represenaion and ransormaions

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

Communication Systems, 5e

Communication Systems, 5e Communicaion Sysems, 5e Chaper : Signals and Specra A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper : Signals and Specra Line specra and ourier series Fourier ransorms Time and requency

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Lecture 8. Digital Communications Part III. Digital Demodulation

Lecture 8. Digital Communications Part III. Digital Demodulation Lecure 8. Digial Communicaions Par III. Digial Demodulaion Binary Deecion M-ary Deecion Lin Dai (Ciy Universiy of Hong Kong) EE38 Principles of Communicaions Lecure 8 Analog Signal Source SOURCE A-D Conversion

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

EE 435 Lecture 42. Phased Locked Loops and VCOs

EE 435 Lecture 42. Phased Locked Loops and VCOs EE 435 Lecure 42 d Locked Loops and VCOs Basis PLL Archiecure Loop Filer (LF) Volage Conrolled Oscillaor (VCO) Frequency Divider N Applicaions include: Frequency Demodulaion Frequency Synhesis Clock Synchronizaion

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS Balu Sanhanam SPCOM Laboraory Deparmen of E.E.C.E. Universiy of New Meico Moivaion CPM has power/bandwidh efficiency and used in he wireless sysem infrasrucure.

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri.

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri. UNIVERSIY OF RENO DEPARMEN OF INFORMAION AND COMMUNICAION ECHNOLOGY 385 Povo reno Ialy Via Sommarive 4 hp://www.di.unin.i MEASUREMENS OF RANSIEN PHENOMENA WIH DIGIAL OSCILLOSCOPES Anonio Moschia Fabrizio

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1 Receivers, Anennas, and Signals Professor David H. Saelin 6.66 Fall 00 Slide A Subjec Conen A Human Processor Transducer Radio Opical, Infrared Acousic, oher Elecromagneic Environmen B C Human Processor

More information

Communication System Analysis

Communication System Analysis Communicaion Sysem Analysis Communicaion Sysems A naïve, absurd communicaion sysem 12/29/10 M. J. Robers - All Righs Reserved 2 Communicaion Sysems A beer communicaion sysem using elecromagneic waves o

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

Phase Noise in CMOS Differential LC Oscillators

Phase Noise in CMOS Differential LC Oscillators Phase Noise in CMOS Differenial LC Oscillaors Ali Hajimiri Thomas H. Lee Sanford Universiy, Sanford, CA 94305 Ouline Inroducion and Definiions Tank Volage Noise Sources Effec of Tail Curren Source Measuremen

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

arxiv: v1 [physics.data-an] 14 Dec 2015

arxiv: v1 [physics.data-an] 14 Dec 2015 1/ noise rom he nonlinear ransormaions o he variables Bronislovas Kaulakys, Miglius Alaburda, and Julius Ruseckas Insiue o Theoreical Physics and Asronomy, Vilnius Universiy, A. Gošauo 1, 118 Vilnius,

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

nonlinear system Signals & systems Output signals Input signals Dynamic system

nonlinear system Signals & systems Output signals Input signals Dynamic system nonlinear ssem Signals & ssems Inpu signals Dnamic ssem Oupu signals nonlinear ssems b meiling chen 009 nonlinear ssem Signal Classiicaion Coninuous signal Discree signal nonlinear ssems b meiling chen

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

High Speed Communication Circuits and Systems Lecture 12 Noise in Voltage Controlled Oscillators

High Speed Communication Circuits and Systems Lecture 12 Noise in Voltage Controlled Oscillators High Speed Communicaion Circuis and Sysems Lecure Noise in Volage Conrolled Oscillaors Michael H. Perro March, 004 Copyrigh 004 by Michael H. Perro All righs reserved. M.H. Perro VCO Noise in Wireless

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Chapter 2. Sampling. 2.1 Sampling. Impulse Sampling 2-1

Chapter 2. Sampling. 2.1 Sampling. Impulse Sampling 2-1 2- Chaper 2 Sampling 2. Sampling In his chaper, we sudy he represenaion o a coninuous-ime signal by is samples. his is provided in erms o he sampling heorem. Consider hree coninuous-ime signals x (), x

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Chapter 1 Random Process

Chapter 1 Random Process Chaper Random Process.0 Probabiliies is considered an imporan background or analysis and design o communicaions sysems. Inroducion Physical phenomenon Deerminisic model : No uncerainy abou is imedependen

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Signals and Systems Review. 8/25/15 M. J. Roberts - All Rights Reserved 1

Signals and Systems Review. 8/25/15 M. J. Roberts - All Rights Reserved 1 Signals and Sysems Review 8/25/15 M. J. Robers - All Righs Reserved 1 g Coninuous-Time Sinusoids ( ) = Acos( 2π / T 0 +θ ) = Acos( 2π f 0 +θ ) = Acos( ω 0 +θ ) Ampliude Period Phase Shif Cyclic Radian

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser Convoluion Lecure #6 C.3 8 Deiniion When we compue he ollowing inegral or τ and τ we say ha he we are convoluing wih g d his says: ae τ, lip i convolve in ime -τ, hen displace i in ime by seconds -τ, and

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digial Communicaions Professor Ha Nguyen Sepember 6 EE456 Digial Communicaions Inroducion o Basic Digial Passband Modulaion Baseband ransmission is conduced a low frequencies. Passband ransmission

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Answers to Exercises in Chapter 7 - Correlation Functions

Answers to Exercises in Chapter 7 - Correlation Functions M J Robers - //8 Answers o Exercises in Chaper 7 - Correlaion Funcions 7- (from Papoulis and Pillai) The random variable C is uniform in he inerval (,T ) Find R, ()= u( C), ()= C (Use R (, )= R,, < or

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Power of Random Processes 1/40

Power of Random Processes 1/40 Power of Random Processes 40 Power of a Random Process Recall : For deerminisic signals insananeous power is For a random signal, is a random variable for each ime. hus here is no single # o associae wih

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology Risk and Saey in Engineering Pro. Dr. Michael Havbro Faber ETH Zurich, Swizerland Conens o Today's Lecure Inroducion o ime varian reliabiliy analysis The Poisson process The ormal process Assessmen o he

More information

SOUND AND VIBRATION SIGNAL ANALYSIS USING IMPROVED SHORT-TIME FOURIER REPRESENTATION. June-Yule Lee

SOUND AND VIBRATION SIGNAL ANALYSIS USING IMPROVED SHORT-TIME FOURIER REPRESENTATION. June-Yule Lee Inernaional Journal o Auomoive and Mechanical Engineering IJAME ISSN: 9-8649 Prin; ISSN: 80-606 Online; Volume 7 pp. 8-89 January-June 03 Universii Malaysia Pahang DOI: hp://d.doi.org/0.58/ijame.7.0..0066

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

Estimation of complex motions in video signals. Erhardt Barth. Institute for Neuro- and Bioinformatics University of Lübeck, Germany

Estimation of complex motions in video signals. Erhardt Barth. Institute for Neuro- and Bioinformatics University of Lübeck, Germany Esimaion o complex moions in video signals Erhard Barh Insiue or Neuro- and Bioinormaics Universiy o Lübec, Germany Nonlinear analysis o mulidimensional signals: LOCOMOTOR LOcal adapive esimaion o COmplex

More information

EECE.3620 Signal and System I

EECE.3620 Signal and System I EECE.360 Signal and Sysem I Hengyong Yu, PhD Associae Professor Deparmen of Elecrical and Compuer Engineering Universiy of Massachuses owell EECE.360 Signal and Sysem I Ch.9.4. Geomeric Evaluaion of he

More information

Problem Formulation in Communication Systems

Problem Formulation in Communication Systems Problem Formulaion in Communicaion Sysems Sooyong Choi School of Elecrical and Elecronic Engineering Yonsei Universiy Inroducion Problem formulaion in communicaion sysems Simple daa ransmission sysem :

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Coninuous-Time Fourier Transform Definiion Examples Properies Relaion o Fourier Series Sepember 5, 08 Quiz Thursday, Ocober 4, from 3pm o 5pm. No lecure on Ocober 4. The exam is

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

F This leads to an unstable mode which is not observable at the output thus cannot be controlled by feeding back.

F This leads to an unstable mode which is not observable at the output thus cannot be controlled by feeding back. Lecure 8 Las ime: Semi-free configuraion design This is equivalen o: Noe ns, ener he sysem a he same place. is fixed. We design C (and perhaps B. We mus sabilize if i is given as unsable. Cs ( H( s = +

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

B Signals and Systems I Solutions to Midterm Test 2. xt ()

B Signals and Systems I Solutions to Midterm Test 2. xt () 34-33B Signals and Sysems I Soluions o Miderm es 34-33B Signals and Sysems I Soluions o Miderm es ednesday Marh 7, 7:PM-9:PM Examiner: Prof. Benoi Boule Deparmen of Elerial and Compuer Engineering MGill

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 Tuorial Shee #2 discree vs. coninuous uncions, periodiciy, sampling We will encouner wo classes o signals in his class, coninuous-signals and discree-signals. The disinc mahemaical properies o each,

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamenals of Power Elecronics Second ediion Rober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder Chaper 1: Inroducion 1.1. Inroducion o power processing 1.2. Some applicaions of power elecronics

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Deparmen of Elecrical Engineering and Compuer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please wrie answers on blank

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

Phase and Frequency Modulation

Phase and Frequency Modulation Angle Modulaion Phase and Frequency Modulaion Consider a signal of he form x c = A c cos 2π f c + φ θ i ( ) where A c and f c are consans. The envelope is a consan so he message canno be in he envelope.

More information

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO Goals of he course Lecure : Advanced Digial Conrol To beer undersand discree-ime sysems To beer undersand compuer-conrolled sysems u k u( ) u( ) Hold u k D-A Process Compuer y( ) A-D y ( ) Sampler y k

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations Overview Embedding A/D Conversion in SoC applicaions Marin Anderson Dep. of Elecrical and Informaion Technology Lund Universiy, Sweden Fundamenal limiaions: Sampling and Quanizaion Pracical limiaions:

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information

A First Course in Digital Communications

A First Course in Digital Communications A Firs Course in Digial Communicaions Ha H. Nguyen and E. Shwedyk February 9 A Firs Course in Digial Communicaions /58 Block Diagram of Binary Communicaion Sysems m { b k } bk = s b = s k m ˆ { bˆ } k

More information

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation Principle and Analysis of a Novel Linear Synchronous Moor wih Half-Wave Recified Self Exciaion Jun OYAMA, Tsuyoshi HIGUCHI, Takashi ABE, Shoaro KUBOTA and Tadashi HIRAYAMA Deparmen of Elecrical and Elecronic

More information