III-A. Fourier Series Expansion

Size: px
Start display at page:

Download "III-A. Fourier Series Expansion"

Transcription

1 Summer 28 Signals & Sysems S.F. Hsieh III-A. Fourier Series Expansion Inroducion. Divide and conquer Signals can be decomposed as linear combinaions of: (a) shifed impulses: (sifing propery) Why? x() x()δ( )d impulses are orhogonal(disjoin) in ime, leads o convoluion inegral for he LTI sysem oupu signal. (b) complex exponenials: (Fourier series/ransform) Why? periodic: x() X k e jkω X k e jk 2π T synhesis equaion : weighed sums of harmonically relaed sinusoids X k x()e jkω d analysis equaion T T aperiodic: x() X(jω)e jω dω Inverse Fourier ransform 2π : weighed inegrals of sinusoids ha are no all harmonically relaed X(jω) x()e jω d, Fourier ransform Complex exponenials are orhogonal(disjoin) in frequency, Human hearing sysem acs like a specrum analyzer, Daa compression/signal analysis; Sensiiviy of human percepion is frequency-dependen! Complex exponenials are eigen-signals for he LTI sysems. Muliplicaion in specrum is much easier han convoluion in ime..2 Human hearing Human hearing sysem acs like a specrum analyzer. Cochlea is a urn spiral srucure; 35 mm in lengh, 4 nerve fibers connecing o he brain, each nerve fiber has 5 hair cells. III-A -

2 2 Complex exponenials are eigenfuncions of LTI sysems Superposiion of inpu complex exponenials leads o superposiion of oupu complex exponenials wih appropriae complex weighing( H(s)/H(z): ransfer funcion; H(ω)/H(e jω ): frequency response).. Coninuous-ime(CT) Fourier ransform: e jω LTI: h() y() H(ω) e jω y() e jω h() h() e jω h()e jω( ) d e jω h()e jω d } {{ } H(ω) H(ω) e jω H(ω) is no a funcion of. We call {e ω, H(ω)} as he eigenpair of he LTI sysem; e jω is he eigen-funcion/-vecor and H(ω) is is associaed eigenvalue. We call H(ω) he frequency response of he LTI sysem; i is equal o he Fourier ransform of he impulse response. 2. Similarly, discree-ime Fourier ransform(dtft): e jωn LTI: h[n] y[n] H(Ω) e jωn y[n] e jωn h[n] h[n] e jωn h[k]e jω(n k) e jωn H(Ω) e jωn h[k]e jωk } {{ } H(Ω) H(Ω) is he sysem s eigenvalue associaed wih he eigenfuncion e jωn. I is equal o he DT Fourier ransform of he impulse response. We call H(Ω) he frequency response of he LTI sysem. 3. Sum of complex exponenials: From he superposiion propery of an LTI sysem, suppose he inpu is wrien as a sum of eigenfuncions: x() k: a ke jωk. The oupu y() from an LTI sysem wih impulse response h() is y() x() h() h() x() : h() k a k e jω k( ) d : III-A - 2 h()x( )d

3 k k a k e jω k : H(ω k )a k e jω k h()e jω k d k: b k e jω k where b k H(ω k )a k and he complex-valued H(ω k ) : h()e jω k d. linear combinaion of linear combinaion of complex exponenials LTI: h()/h(ω) he same (re-weighed) complex exponenials Similarly, for discree-ime signals and sysems, x[n] k a k e jω kn LTI: h[n]/h(ω) y[n] k a k H(Ω k )e jω kn 3 CT Fourier Series for Periodic Signals Every periodic signal (period /f 2π/ω ) can be expressed as (Fourier series expansion) x() X ke +jkω, synhesis equaion X k + x()e jkω d, analysis equaion. {e jkω, k, ±, ±2,..., } forms a se of Complee OrhoNormal bases. [pf] Inner produc of wo basis funcions e jkω and e jlω (m n) is e jkω If l k, hen 2. X k X k e j X k is complex-valued. If x() is real-valued, x() x (), [ ] e jlω d e j(k l)ω d e j(k l)ω j(k l)ω [ ] e j(k l)2πf (f ) j(k l)2π (orhogonaliy) e jkω e jlω d d (normaliy). (a) X k X k, because X k x ()e +jkω d x()e j( k)ω d X k. (b) Ampliude specrum X n : even-funcion, X k X k. (c) Phase specrum X k : odd-funcion, X k X k, and he phase always falls ino ( π, +π). See Dirichle condiions in Lahi, p 66, for exisence and convergence of he Fourier series. III-A - 3

4 3. Physical meanings of Fourier Series expansion: (a) x() is wrien as a linear combinaion of hese orhonormal bases, {e jkω, k, ±, ±2,...}. (b) The Fourier series coefficien, X k, is i. he projecion of x() on he orhonormal basis e jkω. ii. he ime-average of x()e jkω. iii. measures he specral conen of x() a he k h harmonic. (c) Generalized Fourier series expansion can use any oher orhonormal bases, no necessarily complex exponenials. 4. Role of he phase(iming) specrum in shaping a periodic signal (a) Human hearing is less phase-sensiive! There is almos no difference in hearing x() cos(4π) + cos(6π) and ˆx() cos(4π + θ ) + cos(6π + θ 2 ). (b) Human vision(image) is phase-sensiive!(oppenheim s Signals & sysems, 2ed., p 426-7) 5. Gibbs phenomenon: To approximae a rain of recangular pulses x() by a runcaed rigonomeric Fourier series ˆx() of only he firs n harmonics, he difference beween x() and ˆx() becomes smaller as n increases. However, even for large n, ˆx() exhibis an oscillaory behavior and an overshoo of 9% in he viciniy of he disconinuiy a he firs peak of oscillaion, which is called he Gibbs phenomenon. (See Lahi, Fig 6.7, p 68) 4 Properies of CT Fourier Series. Linear: If x() X k and y() Y k, hen x() + y() X k + Y k. 2. Time Delay: ˆx() x( ) X k e jkω X k. X k x( )e jkω d x(u)e jkω (u+) du e jkω x()e jkω d e jkω X k If a signal is shifed in ime, he magniudes of is Fourier series coefficiens remain unchanged, X k X k and a linear phase shif will be inroduced, X k X k jkω. For example, consider x() A cos(ω + θ ) + A 2 cos(2ω + θ 2 ) wih X k A k /2, X k θ k, k, 2. Now ˆx() x( ) A cos(ω ω + θ ) + A 2 cos(2ω 2ω + θ 2 ). We can see he phase shifs are ω and 2ω for he s and 2nd harmonics, respecively. Higher order harmonics(higher frequency) will experience larger phase-shif for a consan ime delay. 3. Time reversal: x( ) X k. 4. Time scaling: x(α) X ke jk(αω ). If x() is periodic wih period and fundamenal frequency ω 2π/, hen x(α) is periodic wih period T/α and fundamenal frequency αω, and he Fourier series coefficiens remain he same. 5. Muliplicaion: x() y() X k Y k l X k Y k l. 6. Differeniaion: d d x() jkω X k. 7. Inegraion: x()d X k jkω. III-A - 4

5 8. Symmery properies: (a) x () X k. (b) x() : real X k X k : conjugae symmeric. If x() is real, hen X k X k and X k X k. (c) If x() is even, hen X k is real; [Pf] Given x() x( ), hen X k x()e jkω d le : ( ) x( )e T jkω d x()e jkω d Xk (d) If x() is odd, hen X n is imaginary; (e) If x( ± /2) x()(halfwave symmery: wo halves of one period are ani-symmeric), +A T 2 A hen X 2k, k 9. Parseval s heorem: Same average power over ime and specrum, because x() is wrien as a sum of orhogonal componens: P x() 2 d, average power in ime X k 2, average power in specrum [Pf] P x() 2 d x()x ()d X k e jkω Xl T e jlω d k l X k Xl T ej(k l)ω d noe e j(k l)ω if l k k l X k Xk T d X k 2 k n Ex. If z() x() + y() and x() y(), i.e., x()y()d, hen P z P x + P y. 5 Trigonomeric F.S. expansion for a real periodic signal x() X + A k cos kω + B k sin kω k k C k cos(kω + θ k ) k X x()d, dc-value A k 2 x() cos(kω )d III-A - 5

6 B k 2 x() sin(kω )d C k A 2 k + B2 k, θ k an ( B k /A k ). {cos kω, sin kω, k, ±, ±2,...} also forms an orhogonal basis. In paricular, cos kω sin kω, which is useful in quadraure muliplexing(qm) and QAM of communicaion sysems. 2. x() X }{{} + 2 X cos(ω + /X ) + 2 X 2 cos(2ω + /X 2 ) + 2 X 3 cos(3ω + /X 3 ) + }{{}}{{}}{{} dc fundamenal 2nd harmonic 3rd harmonic [Pf] x() X + X + [X ] k e jkω + X k e jkω k [ X ] k e j X k e j(kω) + X k e j X k e j(kω ) k : if x() is real, hen X k X k and X k X k X + X k [e ] j(kω + X k ) + e j(kω + X k ) X + k 2 X k cos(kω + X k ) k 3. Average of real-valued signal: P x x() 2 d X k 2 X Exponenial Fourier specra(2-sided) and rigonomeric specra(-sided) For a real-valued periodic signal: [ 2 X k 2 or X 2 + ] A 2 k 2 + B2 k k k X k D k 2 C ke jθ k, and D k 2 C ke jθ k 6 Examples of CT Fourier Series 6. Impulse rain [Lahi, Ex 6.7] Given an impulse rain: x() m X k T T/2 T/2 δ() e jkω d T δ( mt ). The Fourier series coefficiens of he impulse rain are idenical! Can you explain is physical meaning graphically? III-A - 6

7 6.2 A recangular pulse rain ( mt 2 A ) m k: [ ] A sinc(kf )e jπkf e j2πkf A x() 2. F.S. coefficiens: X k T x()e jkω d Ae jkω d A e jkω jkω A e jk2πf jk2πf A e jkπf [e jkπf e jkπf ] jk2πf rick A e jkπf [ 2j sin kπf ] jk2πf A e jkπf sin kπf kπf A sinc(kf )e jπkf where sinc(z) sin πz πz. Sinc(z) is also defined in Lahi s book as sinc(z) sin z z. sinc(z) Ampliude and phase specra: X k A sinc(kf ) X k πkf (±2lπ), so ha he phase falls wihin ±π 3. Inverse relaionship beween Time and Frequency: (a) As he pulse widh reduces, he specra becomes wider, because he mainlobe has a null a /. Local emporal behavior is inversely relaed wih he global specral shape. (b) As he period increases, he line specra becomes denser, because he specral spacing is /. Global emporal behavior is inversely relaed wih he local specral shape. (c) The phase specra has a slope of /2, which will be shown laer ha consan delay in ime resuls in linear phase shif. III-A - 7

8 (d) Plos of specra: / f f f 7 Fourier series and LTI sysems. Frequency response H(ω) is he eigenvalue corresponding o he e jω -eigenvecor: i.e., linear combinaion of linear combinaion of complex exponenials LTI: h()/h(ω) he same (re-weighed) complex exponenials x() k a k e jkω n LTI: h()/h(ω) y() k a k H(kω )e jkω where ω 2π T, T is he fundamenal period, and H(ω) h()e jω d. Similarly, for discree-ime signals and sysems, x[n] k a k e jkω n LTI: h[n]/h(ω) y[n] k a k H(kΩ )e jkω n where Ω 2π N, N is he fundamenal period, and H(Ω) n h[n]e jωn. 2. Frequency response and differeniaion equaion: Consider an LTI sysem d dy() + ay() bx(). hen is frequency response is H(ω) b a+jω. (Pf) If x() e jω, he oupu mus be y() H(ω)e jω. Thus, he differeniaion equaion becomes d [ H(ω)e jω ] + ah(ω)e jω be jω d and we have (jω) H(ω) e jω + ah(ω)e jω be jω Afer cancelling ou e jω, we ge H(ω) b a+jω. (Noe, a similar approach using he Laplace ransform echnique is more general and useful o find he ransfer funcion.) III-A - 8

9 3. Filering: For a real-valued periodic signal x() X }{{} + 2 X cos(ω + X ) + 2 X }{{} 2 cos(2ω + X 2 ) + 2 X }{{} 3 cos(3ω + X 3 ) + }{{} dc fundamenal 2nd harmonic 3rd harmonic LTI: H(ω) H(ω) e j H(ω) ( ) y() H() X + 2 H(ω ) X cos ω + X + H(ω ) ( ) +2 H(2ω ) X 2 cos 2ω + X 2 + H(2ω ) ( ) +2 H(3ω ) X 3 cos 3ω X 3 + H(3ω ) + 4. In summary, mah bases: {e jnω } X n : projecion How? Fourier Series x() X n e jnω X n x()e jnω d Why? (a) hearing (b) LTI: eigenfuncion Wha ime specra e jω LTI:h() H(ω) e jω III-A - 9

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

6.003: Signals and Systems. Fourier Representations

6.003: Signals and Systems. Fourier Representations 6.003: Signals and Sysems Fourier Represenaions Ocober 27, 20 Fourier Represenaions Fourier series represen signals in erms of sinusoids. leads o a new represenaion for sysems as filers. Fourier Series

More information

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series Chaper 2 : Fourier Series.0 Inroducion Fourier Series : represenaion of periodic signals as weighed sums of harmonically relaed frequencies. If a signal x() is periodic signal, hen x() can be represened

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

6.003: Signals and Systems. Relations among Fourier Representations

6.003: Signals and Systems. Relations among Fourier Representations 6.003: Signals and Sysems Relaions among Fourier Represenaions April 22, 200 Mid-erm Examinaion #3 W ednesday, April 28, 7:30-9:30pm. No reciaions on he day of he exam. Coverage: Lecures 20 Reciaions 20

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Sysems Relaions among Fourier Represenaions November 5, 20 Mid-erm Examinaion #3 Wednesday, November 6, 7:30-9:30pm, No reciaions on he day of he exam. Coverage: Lecures 8 Reciaions

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

EECS20n, Solution to Midterm 2, 11/17/00

EECS20n, Solution to Midterm 2, 11/17/00 EECS20n, Soluion o Miderm 2, /7/00. 0 poins Wrie he following in Caresian coordinaes (i.e. in he form x + jy) (a) 2 poins j 3 j 2 + j += j ++j +=2 (b) 2 poins ( j)/( + j) = j (c) 2 poins cos π/4+jsin π/4

More information

A complex discrete (or digital) signal x(n) is defined in a

A complex discrete (or digital) signal x(n) is defined in a Chaper Complex Signals A number of signal processing applicaions make use of complex signals. Some examples include he characerizaion of he Fourier ransform, blood velociy esimaions, and modulaion of signals

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Coninuous-Time Fourier Transform Definiion Examples Properies Relaion o Fourier Series Sepember 5, 08 Quiz Thursday, Ocober 4, from 3pm o 5pm. No lecure on Ocober 4. The exam is

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Solutions - Midterm Exam

Solutions - Midterm Exam DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERITY OF NEW MEXICO ECE-34: ignals and ysems ummer 203 PROBLEM (5 PT) Given he following LTI sysem: oluions - Miderm Exam a) kech he impulse response

More information

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson Number 1 quesion: Why deal wih imaginary and complex numbers a all? One answer is ha, as an analyical echnique, hey make our lives easier. Consider passing a cosine hrough an LTI filer wih impulse response

More information

ME 452 Fourier Series and Fourier Transform

ME 452 Fourier Series and Fourier Transform ME 452 Fourier Series and Fourier ransform Fourier series From Joseph Fourier in 87 as a resul of his sudy on he flow of hea. If f() is almos any periodic funcion i can be wrien as an infinie sum of sines

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

Hilbert Inner Product Space (2B) Young Won Lim 2/23/12

Hilbert Inner Product Space (2B) Young Won Lim 2/23/12 Hilber nner Produc Space (2B) Copyrigh (c) 2009-2011 Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version 1.2 or any laer

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

The Fourier Transform.

The Fourier Transform. The Fourier Transform. Consider an energy signal x(). Is energy is = E x( ) d 2 x() x () T Such signal is neiher finie ime nor periodic. This means ha we canno define a "specrum" for i using Fourier series.

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt Specral Analysis Asignalx may be represened as a funcion of ime as x() or as a funcion of frequency X(f). This is due o relaionships developed by a French mahemaician, physicis, and Egypologis, Joseph

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. ND_NW_EE_Signal & Sysems_4068 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkaa Pana Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRICAL ENGINEERING

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise: Mah 225-4 Week 3 April 9-3 EP 7.6 - convoluions; 6.-6.2 - eigenvalues, eigenvecors and diagonalizabiliy; 7. - sysems of differenial equaions. Mon Apr 9 EP 7.6 Convoluions and Laplace ransforms. Announcemens:

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Previous basis funcions: 1, x, cosx, sinx, exp(jw). New basis funcion for he LT => complex exponenial funcions LT provides a broader characerisics of CT signals and CT LTI sysems

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves Wavele Mehods for Time Series Analysis Par I: Inroducion o Waveles and Wavele Transforms waveles are analysis ools for ime series and images as a subjec, waveles are relaively new (983 o presen) a synhesis

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

THE DISCRETE WAVELET TRANSFORM

THE DISCRETE WAVELET TRANSFORM . 4 THE DISCRETE WAVELET TRANSFORM 4 1 Chaper 4: THE DISCRETE WAVELET TRANSFORM 4 2 4.1 INTRODUCTION TO DISCRETE WAVELET THEORY The bes way o inroduce waveles is hrough heir comparison o Fourier ransforms,

More information

KEEE313(03) Signals and Systems. Chang-Su Kim

KEEE313(03) Signals and Systems. Chang-Su Kim KEEE313(03) Signals and Sysems Chang-Su Kim Course Informaion Course homepage hp://mcl.korea.ac.kr Lecurer Chang-Su Kim Office: Engineering Bldg, Rm 508 E-mail: changsukim@korea.ac.kr Tuor 허육 (yukheo@mcl.korea.ac.kr)

More information

Communication System Analysis

Communication System Analysis Communicaion Sysem Analysis Communicaion Sysems A naïve, absurd communicaion sysem 12/29/10 M. J. Robers - All Righs Reserved 2 Communicaion Sysems A beer communicaion sysem using elecromagneic waves o

More information

EECE.3620 Signal and System I

EECE.3620 Signal and System I EECE.360 Signal and Sysem I Hengyong Yu, PhD Associae Professor Deparmen of Elecrical and Compuer Engineering Universiy of Massachuses owell EECE.360 Signal and Sysem I Ch.9.4. Geomeric Evaluaion of he

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions. Signals And Sysems Exam#. Given x() and y() below: x() y() 4 4 (A) Give he expression of x() in erms of sep funcions. (%) x () = q() q( ) + q( 4) (B) Plo x(.5). (%) x() g() = x( ) h() = g(. 5) = x(. 5)

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems.

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems. 9/9/99 (T.F. Weiss) Lecure #: Inroducion o signals Moivaion: To describe signals, boh man-made and naurally occurring. Ouline: Classificaion ofsignals Building-block signals complex exponenials, impulses

More information

Communication Systems, 5e

Communication Systems, 5e Communicaion Sysems, 5e Chaper : Signals and Specra A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper : Signals and Specra Line specra and ourier series Fourier ransorms Time and requency

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems EE 33 Linear Signals & Sysems (Fall 08) Soluion Se for Homework #8 on Coninuous-Time Signals & Sysems By: Mr. Houshang Salimian & Prof. Brian L. Evans Here are several useful properies of he Dirac dela

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Power of Random Processes 1/40

Power of Random Processes 1/40 Power of Random Processes 40 Power of a Random Process Recall : For deerminisic signals insananeous power is For a random signal, is a random variable for each ime. hus here is no single # o associae wih

More information

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser Convoluion Lecure #6 C.3 8 Deiniion When we compue he ollowing inegral or τ and τ we say ha he we are convoluing wih g d his says: ae τ, lip i convolve in ime -τ, hen displace i in ime by seconds -τ, and

More information

4/9/2012. Signals and Systems KX5BQY EE235. Today s menu. System properties

4/9/2012. Signals and Systems   KX5BQY EE235. Today s menu. System properties Signals and Sysems hp://www.youube.com/v/iv6fo KX5BQY EE35 oday s menu Good weeend? Sysem properies iy Superposiion! Sysem properies iy: A Sysem is if i mees he following wo crieria: If { x( )} y( ) and

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

ELC 4351: Digital Signal Processing

ELC 4351: Digital Signal Processing ELC 4351: Digital Signal Processing Liang Dong Electrical and Computer Engineering Baylor University liang dong@baylor.edu October 18, 2016 Liang Dong (Baylor University) Frequency-domain Analysis of LTI

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Serial : 4LS1_A_EC_Signal & Systems_230918

Serial : 4LS1_A_EC_Signal & Systems_230918 Serial : LS_A_EC_Signal & Syem_8 CLASS TEST (GATE) Delhi oida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar Kolkaa Pana Web: E-mail: info@madeeay.in Ph: -56 CLASS TEST 8- ELECTROICS EGIEERIG Subjec

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information