Question 1. Cold air standard assumptions:

Size: px
Start display at page:

Download "Question 1. Cold air standard assumptions:"

Transcription

1 Qestn (a A 4-stke 8-yde 3. lte tb-aged spak gntn ang engne as a mpessn at 0, and s n at 6000 pm. e a dawn nt te engne bee mpessn as a tempeate 5 C, and a pesse kpa. e tempeate te a at te end te expansn stke s 800 C. Emplyng an Ott yle analyss, and assmng ld a standad assmptns, detemne: ( te gest tempeate aeed dng te yle, [5 maks] ( te pwe tpt te engne. [3 maks] Cld a standad assmptns: k R R a p kJ/kg J/mle.K 87J/kg.K C A smple deal Baytn yle wt a as te wkng ld as a pesse at 6. e a entes te mpess at 300 K, and te tbne at 400 K. Antng te aatn spe eats wt tempeate, detemne: ( te spe entalpy te a at te mpess ext, [0 maks] ( te at mpess wk t tbne wk (bak wk at. [ maks] Page 8 ME08 Appled emdynams Exam - May 006.d

2 Qestn (a A 700 MW steam pwe plant emplyng te Rankne yle peates between 0 kpa and 7.5 MPa pesse. e satated wate-steam mxte as a qalty 0.80 n ext m te tbne. Detemne: ( te mass lw ate steam tg te yle, [4 maks] ( te ate eat tanse t te wate and steam n te ble, [6 maks] ( te temal eeny te yle. [ maks] A 4-stke 4-yde desel engne was tested at a speed 3000 pm. e analyss te dy exast pdts by lme was nd t be.5 % CO, 0.3 % CO, 5.0 % O, and 83. % N. ee was n nbnt ydgen abn n te exast. Detemne: ( te a/el at te mxte, [ maks] ( te peentages abn and ydgen n te el by mass. [6 maks] Relate atm mass (M(O 6, M(N 4, M(C, M(H Page 8 ME08 Appled emdynams Exam - May 006.d

3 Qestn 3 (a A mxte ang a lmet mpstn 0% H, 3.3% O, and 66.7% N s ntaned n a eat essel lme 30 ltes at a pesse ba, and a tempeate 5 C. Wen te mxte s explded by a spak, detemne: ( te lmet mpstn te pdts, [0 maks] ( te adabat lame tempeate (.e. te nal tempeate te pdts, assmng sentp mbstn, and n pdt dssatn. [4 maks] Relate atm mass (M(O 6, M(N 4, M(H. Intenal Enegy Cmbstn H at 5 C s 40 kj/mle. ake ales as : H O N H O (kj/mle.k A blk lats emplys a ap mpessn egeatn yle eat pmp eatng dng te wnte mnts. e maxmm eatng eqement te ente blk s 50 kw. e eat pmp emplys egeant R-34a peatng between 0.4 MPa and.0 MPa. e egeant entes te mpess wt a tempeate 0 C, and leaes te mpess wt a tempeate 60 C. e egeant leaes te ndense as a sb-led lqd wt a tempeate 38 C. Detemne: ( te mass lw ate te egeant, [7 maks] ( te net ate wk dne n te egeant n te mpess, [7 maks] ( te eent pemane te eat pmp. [ maks] Page 3 8 ME08 Appled emdynams Exam - May 006.d

4 Qestn 4 (a A entes te mpess a 0 kw deal-gas egeatn yle at 80 K and 70 kpa and te tbne at 30 K and 80 kpa. Assmng aable spe eats a, detemne: ( te mass lw ate a tg te egeat, [0 maks] ( te net pwe npt, [ maks] A dble glazed wndw aea m s made p tw 7 mm tk layes glass (k glass 0.70 W/m C, wt an a gap spang 4 m between te plate glass layes (k a 0.0 W/m C. e nte a tempeate s 5 C, te exte a tempeate s 0 C, and te nete eat tanse eent s 5 W/m K eat tanse m te wam nte a t te nne glass ae, and m te te glass ae t te ld a tsde. Wat s te net ate eat ndted tg te dble glazed wndw? [0 maks] ( Sw tat te steady state ate eat ndtn q& tg a llw spee nne ads and tempeate and espetely, te ads and tempeate and espetely, and temal ndtty k s gen by k q& 4π ( [8 maks] Page 4 8 ME08 Appled emdynams Exam - May 006.d

5 Qestn 5 (a Wate lws tg a 0 m g ppe ppe (k s 400 W/m.K wt a mass lw ate 5 kg/s and a tempeate 80 C. e ppe as a be 5 m, a wall tkness mm, and s eed wt a m tk laye temal nslatn (k 0. W/m.K. e tempeate and te netn eat tanse eent n te tsde ae 5 C and W/m.K espetely. Detemne: ( te netn eat tanse eent eat tanse m te wate t te ppe ppe, [ maks] ( te eall eat-tanse eent U, [6 maks] ( te net ate eat lss m te wate t te tsde ennment. [4 maks] Hnt: Use N d (Re d / (P /3. Re d ρd/µ, P µ p /k e mean spe eat, mean temal ndtty and te mean ssty wate n te temal bnday laye s 400J/kg.K, W/m.K, and 3.55 x 0-4 kg/m.s espetely. An l eate n an engne test ell nssts a ppe -axal ydal lw eat exange (nne damete 3 m, wall tkness mm. Wate lws tg te nne ppe yde wt a mass lw ate kg/s, enteng te eat exange wt an ntal tempeate 95 C, and leang wt a tempeate 80 C. Ol lws tg te annls dened by te nne yde and te te yde, enteng te eat exange wt a tempeate 0 C, and leang wt a tempeate 70 C. Detemne: ( te eat exange eeteness, [4 maks] ( te mass lw ate l, [4 maks] ( te ttal lengt te -axal tbng. [0 maks] e netn eat tanse eent m wate t ppe s 4000 W/m.K, and m ppe t l s 000 W/m.K. e mean spe eat wate s 400 J/kg.K, and te mean spe eat te l s 675 J/kg.K. Intenal Examne: D R. D. Lkett Extenal Examne: Pess M. Imegn Page 5 8 ME08 Appled emdynams Exam - May 006.d

6 Fmla Seet Dentn Qalty y g s s s g Fst Law emdynams U Q W Fst Law Appled t Cemally Reatng Systems Q W U U U n U ( n U ( P P j Rj Rj j Steady Flw Enegy Eqatn q w Q& W& ext m& ext ext gz ext ext ext gz nlet ext nlet m& gz nlet nlet nlet nlet gz nlet Regeat COP egeat qn W q& n W& e emal Eeny a Heat Engne η t w q net n e mpstn atmspe a s % O, 79 % N by mle and by lme Page 6 8 ME08 Appled emdynams Exam - May 006.d

7 Fe s Law Heat Cndtn dq J n k A dt Retangla -dnates (ne dmensn J x dq d k A dt dx Cydal -dnates (adal detn J dq dq d k A dt πl dt d Speal pla -dnates (adal detn J dq dq d k A dt 4π dt d Steady-state ate eat tanse tg a mlt-laye wall q& U ( ( ( R x x R... R n n... A k A k A A n Steady-state ate eat tanse tg a mlt-laye ydal sell q& U l ( ( ( R R... R n n... π πk πk π n Page 7 8 ME08 Appled emdynams Exam - May 006.d

8 Page 8 8 ME08 Appled emdynams Exam - May 006.d Steady-state ate eat tanse tg a -axal ydal eat exange Ideal Gas Law PV nr PVmR R J/mle.K Isentp mpessn an deal gas Spe ntenal enegy a emal spees at tempeate Spe entalpy a emal spees at tempeate l kl l UA m m q π π π & & & k k k k V V p V p V ( ( 98.5 ( ( 98.5 d U ( ( 98.5 ( ( 98.5 d H p p

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Solutions to Homework #9

Solutions to Homework #9 9- Soltions to Homewok #9 9-5 he fo pocesses of an ai-standad cycle ae descibed. he cycle is to be shown on - and -s diagams, and e net wok pt and e emal efficiency ae to be detemed. Assmptions he ai-standad

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water . In a counter flow double pipe eat excanger, oil is cooled fro 85 to 55 by water entering at 5. Te ass flow rate of oil is 9,800 kg/ and specific eat f oil is 000 J/kg K. Te ass flow rate of water is

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

Thermodynamics Introduction and Basic Concepts

Thermodynamics Introduction and Basic Concepts Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics

More information

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104. Chapter 1: 0, 3, 35, 1, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 10. 1-0 The filament of a 150 W incandescent lamp is 5 cm long and has a diameter of 0.5 mm. The heat flux on the surface of the filament,

More information

Heat exchanger. Heat exchanger

Heat exchanger. Heat exchanger s are deves n w eat s transferred between tw fluds at dfferent teperatures wtut any xng f fluds. type. Dret eat transfer type 2. Strage type 3. Dret ntat type ttps://www.faebk./0000085304058/vdes/96230780490756/.

More information

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850) emal-fluids I Capte 7 Steady eat conduction D. Pimal Fenando pimal@eng.fsu.edu P: (850 40-633 Steady eat conduction Hee we conside one dimensional steady eat conduction. We conside eat tansfe in a plane

More information

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 3: Steady Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand the concept

More information

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

1 st VS 2 nd Laws of Thermodynamics

1 st VS 2 nd Laws of Thermodynamics t VS nd Law f hemdynamic he fit Law Enegy cneatin Quantity pint f iew - In tem f Enegy Enegy cannt be ceated detyed, but it alway cnee - If nt, it ilate t law f themdynamic Enegy input Enegy utput Enegy

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature.

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature. AME 5053 Intermediate Thermodynamics Examination Prof J M Powers 30 September 0 0 Calorically perfect ideal air at 300 K, 00 kpa, 000 m/s, is brought to rest isentropically Determine its final temperature

More information

4. The material balances for isothermal ideal reactor models

4. The material balances for isothermal ideal reactor models Summay Geneal mateal balane f eatng system Bath eat Cntnuus-flw eats: CST (Cntnuus Sted Tank eat) P (Plug lw eat) Steady state f CST and P Desgn tasks : utlet (fnal nvesn), gven vlume f eat x vlume f eat,

More information

GCSE: Volumes and Surface Area

GCSE: Volumes and Surface Area GCSE: Volumes and Suface Aea D J Fost (jfost@tiffin.kingston.sc.uk) www.dfostmats.com GCSE Revision Pack Refeence:, 1, 1, 1, 1i, 1ii, 18 Last modified: 1 st August 01 GCSE Specification. Know and use fomulae

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

Combustion Chamber. (0.1 MPa)

Combustion Chamber. (0.1 MPa) ME 354 Tutial #10 Winte 001 Reacting Mixtues Pblem 1: Detemine the mle actins the pducts cmbustin when ctane, C 8 18, is buned with 00% theetical ai. Als, detemine the dew-pint tempeatue the pducts i the

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 Name: Section: Seat Assignment: Specify your EXAM ID on the right. Use 000 if you do not know your exam ID. 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

More information

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK Thermdynamics EAS 204 Spring 2004 Class Mnth Day Chapter Tpic Reading Due 1 January 12 M Intrductin 2 14 W Chapter 1 Cncepts Chapter 1 19 M MLK Hliday n class 3 21 W Chapter 2 Prperties Chapter 2 PS1 4

More information

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz. 374 Exergy Analysis The value of the exergy of the system depends only on its initial and final state, which is set by the conditions of the environment The term T 0 P S is always positive, and it does

More information

ENGINEERING OF NUCLEAR REACTORS

ENGINEERING OF NUCLEAR REACTORS 22.312 ENGINEERING OF NUCLEAR REACTORS Monday, December 17 th, 2007, 9:00am-12:00 pm FINAL EXAM SOLUTIONS Problem 1 (45%) Analysis of Decay Heat Removal during a Severe Accident i) The energy balance for

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees Phys10 - First Major 071 Zero Version Q1. Two identical sinusoidal traveling waves are sent along the same string in the same direction. What should be the phase difference between the two waves so that

More information

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K Practice rblems fr Cnvective Heat Transfer 1. Water at 0 C flws ver a flat late 1m 1m at 10 C with a free stream velcity f 4 m/s. Determine the thickness f bndary layers, lcal and average vale f drag cefficient

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Ciil ngeerg Applied Mechanics McGill Uniersity, Mntreal, Quebec Canada CI 90 THRMODYNAMICS HAT TRANSFR Assignment #4 SOLUTIONS. A 68-kg man whse aerage bdy temperature is 9 C drks L f cld

More information

MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS. Date: 15 January 2016 Time: 10:00 12:00

MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS. Date: 15 January 2016 Time: 10:00 12:00 School of Engineering & Computing Session 2015-16 Paisley Campus Trimester 1 MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS Date: 15 January 2016 Time: 10:00 12:00 Attempt FOUR QUESTIONS IN TOTAL

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

2-18. (a) For mercury, (b) For water,

2-18. (a) For mercury, (b) For water, -8-5 CD EES Bt a gage and a manmeter are attaced t a gas t measure its pressure. Fr a specified reading f gage pressure, te difference between te fluid levels f te tw arms f te manmeter is t be determined

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997 UNIVERSITY OF WATERLOO DEPARTMENT OF ELECTRICAL ENGINEERING ECE 309 Thermodynamics and Heat Transfer Final Examination Spring 1997 M.M. Yovanovich August 5, 1997 9:00 A.M.-12:00 Noon NOTE: 1. Open book

More information

EF 152 Exam #3, Spring 2016 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop

More information

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19. HERMODYNAMICS ES Answer Key. (a) 9. (a) 7. (c) 5. (a). (d). (b) 0. (d) 8. (d) 6. (c) 4. (b). (d). (c) 9. (b) 7. (c) 5. (c) 4. (d). (a) 0. (b) 8. (b) 6. (b) 5. (b). (d). (a) 9. (a) 7. (b) 6. (a) 4. (d).

More information

Announcements. Exam 4 - Review of important concepts

Announcements. Exam 4 - Review of important concepts Announcements 1. Exam 4 starts Friday! a. Available in esting Center from Friday, Dec 7 (opening time), up to Monday, Dec 10 at 4:00 pm. i. Late fee if you start your exam after 4 pm b. Covers C. 9-1 (up

More information

20 m neon m propane. g 20. Problems with solutions:

20 m neon m propane. g 20. Problems with solutions: Problems with solutions:. A -m tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T7K; P00KPa; M air 9; M

More information

SCWR Research in Korea. Yoon Y. Bae KAERI

SCWR Research in Korea. Yoon Y. Bae KAERI SCWR Research in Korea Yoon Y. ae KAERI Organization President Dr. In-Soon Chnag Advanced Reactor Development Dr. Jong-Kyun Park Nuclear Engineering & Research Dr. M. H. Chang Mechanical Engineering &

More information

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1.

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1. PROBLEM 8.3 KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions. FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean surface,

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Termodynamics Lecture Series Ideal Ranke Cycle Te Practical Cycle Applied Sciences Education Researc Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@otmail.com ttp://www5.uitm.edu.my/faculties/fsg/drjj1.tml

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Chapter 20 Solutions

Chapter 20 Solutions Chapter 20 Solutions 20.1 Taking m = 1.00 kg, we have U g = mgh = (1.00 kg)(9.80 m/s 2 )(50.0 m) = 490 J But U g = Q = mc T = (1.00 kg)(4186 J/kg C) T = 490 J so T = 0.117 C T f = T i + T = (10.0 + 0.117)

More information

The Second Law implies:

The Second Law implies: e Send Law ilie: ) Heat Engine η W in H H L H L H, H H ) Ablute eerature H H L L Sale, L L W ) Fr a yle H H L L H 4) Fr an Ideal Ga Cyle H H L L L δ reerible ree d Claiu Inequality δ eerible Cyle fr a

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

PROBLEM ρ v (kg/m 3 ) ANALYSIS: The critical heat flux can be estimated by Eq with C = 0.

PROBLEM ρ v (kg/m 3 ) ANALYSIS: The critical heat flux can be estimated by Eq with C = 0. PROBLEM 10.10 KNOWN: Fluids at 1 atm: mercury, ethanol, R-14a. FIND: Critical heat flux; compare with value for water also at 1 atm. ASSUMPTIONS: (1) Steady-state conditions, () Nucleate pool boiling.

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics ecture Series Reference: Chap 0 Halliday & Resnick Fundamental of Physics 6 th edition Kinetic Theory of Gases Microscopic Thermodynamics Applied Sciences Education Research Group (ASERG)

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are . A team poer plant operate on a imple ideal Ranke cycle beteen te peciied preure limit. e termal eiciency o te cycle, te ma lo rate o te team, and te temperature rie o te coolg ater are to be determed.

More information

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI)

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI) HCB- Editin 12.1 Slutins Chapter 12 Prbles GIVEN: Fllwing table fr water: T (C p (kpa v ( /kg Phase 60 (1.25 (2 ( 175 (4 Saturated vapr 00 00 (5 (6 100 10 (7 (8 (9 (10 0.001097 Saturated vapr 1000 10 (11

More information

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page).

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page). ENGR -503 Name: Final Exam, Sem. 03C ID N.: /6/003 3:30 5:30 p.m. Rm N.: 7B Fill in yur name and ID N. in the space abve. There shuld be pages (including this page and the last page which is a frmula page).

More information

Nonequilibrium Thermodynamics of open driven systems

Nonequilibrium Thermodynamics of open driven systems 1 Boynam Otal Imagng Center (BIOPIC) 2 Beng Internatonal Center for Matematal Resear (BICMR) Peng Unversty, Cna Nonequlbrum ermoynams of oen rven systems Hao Ge A sngle boemal reaton yle B + AP 1 C + ADP

More information

1. Basic state values of matter

1. Basic state values of matter 1. Basic state values of matter Example 1.1 The pressure inside a boiler is p p = 115.10 5 Pa and p v = 9.44.10 4 Pa inside a condenser. Calculate the absolute pressure inside the boiler and condenser

More information

Derivation of the Differential Forms of the Conservation Laws Momentum

Derivation of the Differential Forms of the Conservation Laws Momentum Deatn f the Dffeental Fms f the Cnseatn Las Mmentm Aach t Deng the Dffeental Fms f the Cnseatn Las. Wte t the la f a sstem f atcles DNss D ηd Dt Dt. Rete the la n tems f a cntl lme sng the R.T.T. and Lebn

More information

Relationship to Thermodynamics. Chapter One Section 1.3

Relationship to Thermodynamics. Chapter One Section 1.3 Relationship to Thermodynamics Chapter One Section 1.3 Alternative Formulations Alternative Formulations Time Basis: CONSERVATION OF ENERGY (FIRST LAW OF THERMODYNAMICS) An important tool in heat transfer

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

Physics Courseware Electromagnetism

Physics Courseware Electromagnetism Pysics Cousewae lectomagnetism lectic field Poblem.- a) Find te electic field at point P poduced by te wie sown in te figue. Conside tat te wie as a unifom linea cage distibution of λ.5µ C / m b) Find

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

THE GUILD OF RAILWAY RINGERS

THE GUILD OF RAILWAY RINGERS THE GUILD OF RAILWAY RINGERS WH EELTAPPER SUMME R 2 008 AGM TO WEST YORKSHIRE (LEE DS) FRIDAY 4TH - SUNDAY 6TH J ULY 2008 T AGM G w wk 4-6 J w W Yk, L. F g - p g pg 2. S: I w: T p L 09:22 / 09:37, g Bm

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees First major ( 043 ) 1) The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t) = y m sin( kx ωt ϕ ). At time t = 0 the point at x = 0 has a displacement of zero and is moving

More information

Energy can be interchanged in various ways (ΔU = q + W). But nothing about why unnatural processes do not occur E.g. allowed by the 1 st

Energy can be interchanged in various ways (ΔU = q + W). But nothing about why unnatural processes do not occur E.g. allowed by the 1 st 9//00 e Seond law o eodynas Enegy an be nteanged n vaous ways ( + W. But notng about wy unnatual oesses do not ou E.g. allowed by te st law: Metal od @ oo te an suddenly beoe ot on end, as long as otal

More information

Fundamentals of Thermodynamics. Chapter 8. Exergy

Fundamentals of Thermodynamics. Chapter 8. Exergy Fundamentals of Thermodynamics Chapter 8 Exergy Exergy Availability, available energy Anergy Unavailable energy Irreversible energy, reversible work, and irreversibility Exergy analysis : Pure Thermodynamics

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER ES201 - Examinatin 2 Winter 2003-2004 Adams and Richards NAME BOX NUMBER Please Circle One : Richards (Perid 4) ES201-01 Adams (Perid 4) ES201-02 Adams (Perid 6) ES201-03 Prblem 1 ( 12 ) Prblem 2 ( 24

More information

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi Eecses Fequency espnse EE 0, Fall 0, F. Najabad Eecse : Fnd the d-band an and the lwe cut- equency the aple belw. µ n (W/ 4 A/, t 0.5, λ 0, 0 µf, and µf Bth capacts ae lw- capacts. F. Najabad, EE0, Fall

More information

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r LINEAR MOMENTUM Imagne beng on a skateboad, at est that can move wthout cton on a smooth suace You catch a heavy, slow-movng ball that has been thown to you you begn to move Altenatvely you catch a lght,

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Convection and conduction and lumped models

Convection and conduction and lumped models MIT Hea ranfer Dynamc mdel 4.3./SG nvecn and cndcn and lmped mdel. Hea cnvecn If we have a rface wh he emperare and a rrndng fld wh he emperare a where a hgher han we have a hea flw a Φ h [W] () where

More information

Class CLM Lighting and Heating Control

Class CLM Lighting and Heating Control s lass M ighting and Heating ontrol Page 9 Amp ontactors M a x. A m p R a tin g oil Table Mechanically held contactors Noncombination type without enclosure U listed file #E768 SA certified file #R6 4

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

1. We use the first law of thermodynamics to find the change in internal energy: U = Q W = J ( J) = J.

1. We use the first law of thermodynamics to find the change in internal energy: U = Q W = J ( J) = J. CHAPTER 15 1. We use the first law of thermodynamics to find the change in internal energy: U = Q W = 3.42 1 3 J ( 1.6 1 3 J) = 1.8 1 3 J. 2. (a) The internal energy of an ideal gas depends only on the

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action.

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action. 31 1 Earlier Leture In te earlier leture, we ave seen a Pulse Tube (PT) ryoooler in wi te meanial displaer is removed and an osillating gas flow in te tin walled tube produes ooling. Tis gas tube is alled

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

CHAPTER 1 Basic Considerations

CHAPTER 1 Basic Considerations CHAPTER Basic Considerations FE-type Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa

More information

To receive full credit all work must be clearly provided. Please use units in all answers.

To receive full credit all work must be clearly provided. Please use units in all answers. Exam is Open Textbook, Open Class Notes, Computers can be used (Computer limited to class notes, lectures, homework, book material, calculator, conversion utilities, etc. No searching for similar problems

More information