EF 152 Exam #3, Spring 2016 Page 1 of 6

Size: px
Start display at page:

Download "EF 152 Exam #3, Spring 2016 Page 1 of 6"

Transcription

1 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop writing, remain seated, and pass your exam to te enter aisle. Do not stand up or leave until all exams ave been olleted. Working after time is alled results in an automati 0 point dedution. Guidelines Assume 3 signifiant figures for all given numbers unless oterwise stated Sow all of your work no work, no redit Write your final answer in te box provided ermal Expansion Linear l l 0 Linear, Stresses E Volumetri V V 0 Ideal Gas Law pv nr R = 8.34 J/(mol-K) Avogadro s Number: 6.0x0 3 Standard Pressure and emp 73K.00 atm (0.3kPa) st Law of ermodynamis U internal energy W work done by termal system eat flow into termal system U W A B AB Marosopi Definitions m mass M molar mass n number of moles N total number of moleules N A Avogadro s Number k Boltzmann onstant = J/ K m n M N n k N A R N A Conversions al = 4.86 J L = 000 m 3 m 3 = 000 L Work of ermal Systems W V V Effiieny General W Otto Cyle r ompression ratio r Carnot Cyle pdv Isobari (onstant pressure) W pv B V A np Isoori (onstant volume) W 0 nv Isotermal (onstant temp) V W nr ln V W Adiabati ( = 0) W p AV A pbvb pv V p onstant onstant onstant Heat eat speifi eat κ termal ondutivity R termal resistane Heat Capaity m ermal Condutivity t Refrigerators General K oeffiient of performane H eat urrent P power input W K W Water Properties L f = 79.6 al/g = al/(g- C) = 4.86J/(g- C) L v = 540 al/g ρ = g/m 3 = kg/l L f = Latent eat of fusion = 000 kg/m 3 = 6.4 lb/ft 3 L v = Latent eat of vaporization H P EER = 3.43 K Carnot K Carnot A L A R ermal Resistane L R ermal Resistane, Series R eff R R ermal Resistane, Parallel R eff A A A R A R

2 EF 5 Exam #3, Spring 06 Page of 6 [is page intentionally left blank]

3 EF 5 Exam #3, Spring 06 Page 3 of 6. ( pts) Wi of te following is FALSE? A. e van der Walls equation an be used to alulate te relationsip between state variables wen a gas is non-ideal based on gas-speifi empirial onstants. B. e transfer of eat by radiation is proportional to (emperature) 4 C. e maximum possible COP of a refrigerator is te Carnot effiieny. D. An irreversible proess as more eat effiieny tan a reversible proess. E. e oeffiient of performane of a refrigerator an be greater tan.. ( pts) Under onditions of a fixed temperature and amount of gas, Boyle s law requires I. P V = P V II. PV = onstant III. (P V ) = (P V ) A. I only B. I and II C. III D. none of te above 3. ( pts) Wi as iger termal resistane (m C/W) A. Air B. Glass C. Copper 4. ( pts) Wi of te following yles best desribes an internal ombustion engine. A. Adibiati ompression, Heating at onstant volume, Adiabati expansion, ooling at onstant volume B. Adibiati ompression, Heating at onstant pressure, Adiabati expansion, ooling at onstant volume C. Adiabati ompression, Heating at onstant temperature, Adiabati expansion, ooling at onstant temperature D. Adibiati ompression, Heating at onstant pressure, Adiabati expansion, ooling at onstant pressure 5. (4 pts) A refrigerator absorbs 5 kj of energy from a old reservoir and rejets 8 kj to a ot reservoir. Find te oeffiient of performane of te refrigerator.

4 EF 5 Exam #3, Spring 06 Page 4 of 6 6. ( pts) An oxygen olding tank as a volume of 30,000 L, an absolute pressure of 50kPa and a temperature of 300 K. A ylinder ontains kg of ompressed Oxygen (moleular mass of O =3g/mol). If te gas in te ylinder is added to te olding tank, wat is te new pressure in te olding tank at 300 K? Assume an ideal gas. 7. (6 pts) A piee of eated metal alloy as a mass of 35 g, density of 6.8 g/m 3, a speifi eat of 0. al/(g K) and a oeffiient of volume expansion 3.3x0-5 / C. Wat amount of ie at 0 C is required to make te metal ontrat by 0.06 m 3 wile just melting all of te ie?

5 EF 5 Exam #3, Spring 06 Page 5 of 6 8. (4 points).5 moles of an ideal gas is at 7 C. e gas is isoorially (at onstant volume) ooled to a pressure times smaller tan te initial pressure. e gas is ten expanded at onstant pressure so tat in te final state te temperature oinides wit te initial temperature, 7 C. Calulate te work done by te gas. Pressure P P 3 Volume State Vol P V i P V i P 3 V f P 9. (6 pts) Determine te effiieny of te Ramanator Cyle, sown below. Assume air and an ideal gas ( =.4, p =7R/, v =5R/). e work input from 4 to is 5940 Joules and te work output from to 3 is 568 Joules. e eat added, H, is 9890 Joules. p (kpa) V (m 3 ) x0 8x0 State Vol (m^3) P (kpa) (K)

6 EF 5 Exam #3, Spring 06 Page 6 of 6 0. (6 pts) Dr. Bennett s Donut Sop is 3 m ig, 6 m long, and 6 m wide. e storefront is 3 m ig by 6 m wide wit a termal resistane of 0.50 m - C/W. e oter tree walls ave a termal resistane of.50 m - C/W. e roof as a termal resistane of.75 m - C/W. Ignoring te effet of te floor and doors and any leakage, determine te eletrial power required to run an air onditioner wit an EER rating of 0 wen it is 35 C outside and 0 C inside. 3 m 6 m. (4 pts) A eat engine is used to blow up a balloon at a onstant absolute pressure of atm. e engine extrats 4 kj from a ot reservoir at 0 C. e volume of te balloon inreases by 5 L, and eat is exausted to a old reservoir at a temperature. If te effiieny of te eat engine is 60% of te effiieny of a Carnot engine working between te same reservoirs, find te temperature.

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50

EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 EF 152 Exam 3 - Fall, 2018 Page 1 Version: A Copy 50 Name: Section: Seat Assignment: Specify your EXAM ID on the right. Use 000 if you do not know your exam ID. 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

More information

THE SECOND LAW OF THERMODYNAMICS

THE SECOND LAW OF THERMODYNAMICS HE SECOND LAW OF HERMODYNAMICS 9 EXERCISES Setions 9. and 9.3 e Seond Law of ermodynamis and Its Appliations 3. INERPRE is problem requires us to alulate te effiieny of reversible eat engines tat operate

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Peltier Heat Pump 0076 Instrution manual 05/7 TL/JS Transport ase Semati view 3 Stirrer unit 4 Connetor for stirrer unit 5 Connetor for power supply 6 Stirring rod old side 7 Peltier

More information

Maximum work for Carnot-like heat engines with infinite heat source

Maximum work for Carnot-like heat engines with infinite heat source Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei

More information

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ Outline Introduing entropy e meaning of entropy Reversibility Disorder Information Seleted

More information

Announcements. Exam 4 - Review of important concepts

Announcements. Exam 4 - Review of important concepts Announcements 1. Exam 4 starts Friday! a. Available in esting Center from Friday, Dec 7 (opening time), up to Monday, Dec 10 at 4:00 pm. i. Late fee if you start your exam after 4 pm b. Covers C. 9-1 (up

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Capter 6 Te Seond Law of Termodynamis In te last two apters of tis book we applied te first law of termodynamis to losed and open systems onsidering bot quasistati and non-quasi-stati proesses. A question

More information

THERMODYNAMICS Lecture 15: Heat exchangers

THERMODYNAMICS Lecture 15: Heat exchangers HERMODYNAMICS Leture 5: Heat exangers Pierwsza strona Introdution to Heat Exangers Wat Are Heat Exangers? Heat exangers are units designed to transfer eat from a ot flowing stream to a old flowing stream

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

A amplitude. k stiffness m mass δ phase angle x 0 initial displacement v 0 initial velocity T period f frequency. A amplitude. ω angular frequency

A amplitude. k stiffness m mass δ phase angle x 0 initial displacement v 0 initial velocity T period f frequency. A amplitude. ω angular frequency EF 152 Final Exam, Fall, 2011 Page 1 of 10 EF 152 Final Exam, Fall, 2011 Page 2 of 10 The equation sheets may be removed when the test begins Guidelines: Assume 3 significant figures for all given numbers

More information

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts 3 nd International Termal Condutivity Conferene 0 t International Termal Expansion Symposium April 7 May 1, 014 Purdue University, West Lafayette, Indiana, USA Role of Termal Condutivity for Termoeletris

More information

EF 152 Final Exam - Fall, 2016 Page 1 Copy 169

EF 152 Final Exam - Fall, 2016 Page 1 Copy 169 EF 152 Final Exam - Fall, 2016 Page 1 Copy 169 The equation sheets may be removed when the test begins Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 3 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht

8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht 1 Last Name First Name CIRCLE YOUR LECTURE BELOW: 8:3 am 11:3 am :3 pm Prof. Memon Prof. Naik Prof. Luht EXAM # 3 INSTRUCTIONS 1. This is a losed book examination. An equation sheet and all needed property

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #4: Due at 500 pm Monday 8 July,. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) o a very good approximation, ammonia obeys the Bertholet equation

More information

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action.

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action. 31 1 Earlier Leture In te earlier leture, we ave seen a Pulse Tube (PT) ryoooler in wi te meanial displaer is removed and an osillating gas flow in te tin walled tube produes ooling. Tis gas tube is alled

More information

Supporting information

Supporting information Eletroni Supplementary Material (ESI) for Journal of Materials Cemistry A. Tis journal is Te Royal Soiety of Cemistry 017 Supporting information Simultaneous improvement of power fator and termal ondutivity

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction

Review for Exam #2. Specific Heat, Thermal Conductivity, and Thermal Diffusivity. Conduction Review for Exam # Speifi Heat, Thermal Condutivity, and Thermal Diffusivity Speifi heat ( p ) A measure of how muh energy is required to raise the temperature of an objet Thermal ondutivity (k) A measure

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees Phys10 - First Major 071 Zero Version Q1. Two identical sinusoidal traveling waves are sent along the same string in the same direction. What should be the phase difference between the two waves so that

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees First major ( 043 ) 1) The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t) = y m sin( kx ωt ϕ ). At time t = 0 the point at x = 0 has a displacement of zero and is moving

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Model Prediction of Heat Losses from Sirosmelt Pilot Plant

Model Prediction of Heat Losses from Sirosmelt Pilot Plant 00 mm 855 mm 855 mm Model Predition of Heat Losses from Sirosmelt Pilot Plant Yuua Pan 1 and Miael A Somerville 1 1 CSIRO Mineral Resoures Flagsip, Private Bag 10, Clayton Sout, VIC 169, Australia Keywords:

More information

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013

More information

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor Purdue University Purdue e-pubs International Compressor Engineering Conferene Shool of Mehanial Engineering 010 Simulation and Development of Trans-ritial CO Rolling Piston Compressor Yunfeng Chang Xi'an

More information

Performance of an irreversible Diesel cycle under variable stroke length and compression ratio

Performance of an irreversible Diesel cycle under variable stroke length and compression ratio Marsland Press Journal of Amerian Siene 00;6():58-6 Performane of an irreversible iesel yle under variable stroke length and ompression ratio epartment of Agriulture Mahine Mehanis, Shahrekord University,

More information

EF 152 Exam 3 - Spring 2017 Page 1 Copy 515

EF 152 Exam 3 - Spring 2017 Page 1 Copy 515 EF 152 Exam 3 - Spring 2017 Page 1 Copy 515 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Chapter 3 Thermoelectric Coolers

Chapter 3 Thermoelectric Coolers 3- Capter 3 ermoelectric Coolers Contents Capter 3 ermoelectric Coolers... 3- Contents... 3-3. deal Equations... 3-3. Maximum Parameters... 3-7 3.3 Normalized Parameters... 3-8 Example 3. ermoelectric

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Homework Set 4. gas B open end

Homework Set 4. gas B open end Homework Set 4 (1). A steady-state Arnold ell is used to determine the diffusivity of toluene (speies A) in air (speies B) at 298 K and 1 atm. If the diffusivity is DAB = 0.0844 m 2 /s = 8.44 x 10-6 m

More information

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND Jisong He 1, W.J. Vlasblom 2 and S. A. Miedema 3 ABSTRACT Te literature studies sow tat until now, te existing investigations

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

PHYSICS 212 FINAL EXAM 21 March 2003

PHYSICS 212 FINAL EXAM 21 March 2003 PHYSIS INAL EXAM Marh 00 Eam is losed book, losed notes. Use only the provided formula sheet. Write all work and answers in eam booklets. The baks of pages will not be graded unless you so ruest on the

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. Use each of the terms below to complete the passage. Each term may be used more than once.

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. Use each of the terms below to complete the passage. Each term may be used more than once. Gases Section 14.1 The Gas Laws In your textbook, read about the basic concepts of the three gas laws. Use each of the terms below to complete the passage. Each term may be used more than once. pressure

More information

Thermal interaction between free convection and forced convection along a vertical conducting wall

Thermal interaction between free convection and forced convection along a vertical conducting wall Termal interation between free onvetion and fored onvetion along a vertial onduting wall J.-J. Su, I. Pop Heat and Mass Transfer 35 (1999) 33±38 Ó Springer-Verlag 1999 Abstrat A teoretial study is presented

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

Homework 1. Problem 1 Browse the 331 website to answer: When you should use data symbols on a graph. (Hint check out lab reports...

Homework 1. Problem 1 Browse the 331 website to answer: When you should use data symbols on a graph. (Hint check out lab reports... Homework 1 Problem 1 Browse te 331 website to answer: Wen you sould use data symbols on a grap. (Hint ceck out lab reports...) Solution 1 Use data symbols to sow data points unless tere is so muc data

More information

Chapter 18 Heat and the First Law of Thermodynamics

Chapter 18 Heat and the First Law of Thermodynamics Chapter 18 Heat and the First Law of Thermodynamics Heat is the transfer of energy due to the difference in temperature. The internal energy is the total energy of the object in its centerofmass reference

More information

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM Print your name and section clearly on all nine pages. (If you do not know your section number, write your TA s name.) Show all

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Thermodynamics. Inaugural University of Michigan Science Olympiad Invitational Tournament. Test length: Minutes

Thermodynamics. Inaugural University of Michigan Science Olympiad Invitational Tournament. Test length: Minutes Inaugural University of Michigan Science Olympiad Invitational Tournament Thermodynamics Test length: 20-25 Minutes Team number: School name: Student names: Instructions: Show work for all problems. Partial

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of lassial thermodynamis Fundamental Laws, roperties and roesses () First Law - Energy Balane hermodynami funtions of state Internal energy, heat and work ypes of paths (isobari, isohori, isothermal,

More information

Experimental Investigation on the Effect of Fluid Flow Rate on the Performance of a Parallel Flow Heat Exchanger

Experimental Investigation on the Effect of Fluid Flow Rate on the Performance of a Parallel Flow Heat Exchanger International Journal of Innovative Resear in Advaned Engineering (IJIRAE) ISSN: 2349-2163 Issue 6, Volume 2 (June 215) www.ijirae.om Experimental Investigation on te Effet of Fluid Flow Rate on te Performane

More information

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light Class Test (0-) Sujet Code :Applied Physis (70/707/70) Total Marks :5 Sem. :Seond Model Answer Q Attempt any FOUR of the following 8 a State the properties of photon Ans:.Photon is eletrially neutral.

More information

International Journal of Advance Engineering and Research Development PERFORMANCE EVALUATION OF COMPOUND MULTILAYER INSULATION (77K-300K)

International Journal of Advance Engineering and Research Development PERFORMANCE EVALUATION OF COMPOUND MULTILAYER INSULATION (77K-300K) Sientifi Journal of Impat Fator (SJIF): 5.71 International Journal of Advane Engineering and Resear Development Volume 5, Issue 0, February -018 e-issn (O): 348-4470 p-issn (P): 348-6406 PERFORMANCE EVALUATION

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

The Laws of Thermodynamics

The Laws of Thermodynamics 1 Te Laws of Termodynamics CLICKER QUESTIONS Question J.01 Description: Relating termodynamic processes to PV curves: isobar. Question A quantity of ideal gas undergoes a termodynamic process. Wic curve

More information

Constants and Conversions: g = 9.81 m/s 2 = 32.2 ft/s 2 ρ water = 1000 kg/m 3 C water = 1 cal/g-k 1 cal = J 1 L = 1.

Constants and Conversions: g = 9.81 m/s 2 = 32.2 ft/s 2 ρ water = 1000 kg/m 3 C water = 1 cal/g-k 1 cal = J 1 L = 1. EF 152 Final Exam - Fall 2006, Page 1 of 7, Name: Section: Exam Overview: a) The exam consists of 12 questions worth 8 points each (you get 4 points for putting your name and correctly identifying your

More information

ELECTROCHEMISTRY Lecture/Lession Plan -1

ELECTROCHEMISTRY Lecture/Lession Plan -1 Chapter 4 ELECTROCHEMISTRY Leture/Lession Plan -1 ELECTROCHEMISTRY 4.1 Conept of eletrohemistry Eletrohemistry is a branh of hemistry where we will study how hemial energy an be transformed into eletrial

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Determination of heat transfer intensity between free streaming water film and rigid surface using thermography

Determination of heat transfer intensity between free streaming water film and rigid surface using thermography Determination of eat transfer intensity between free ing water film and rigid surfae using termograpy Faulty of meanial engineering and naval ariteture University of Zagreb, Croatia Abstrat by S. Švaić,

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Homework Assignment on Fluid Statics

Homework Assignment on Fluid Statics AMEE 0 Introduction to Fluid Mecanics Instructor: Marios M. Fyrillas Email: m.fyrillas@fit.ac.cy Homework Assignment on Fluid Statics --------------------------------------------------------------------------------------------------------------

More information

PHY Final Exam Problem 1 (20 points)

PHY Final Exam Problem 1 (20 points) PHY 126-07 Final Exam Problem 1 (20 points) A small ball of mass 2.00 kg is suspended by two wires, wire 1 and wire 2. If two wires make 90 o and wire 2 makes θ=30 o with respect to the vertical, find

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Last Name: First Name ID

Last Name: First Name ID Last Name: First Name ID This is a set of practice problems for the final exam. It is not meant to represent every topic and is not meant to be equivalent to a 2-hour exam. These problems have not been

More information

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes Simulation of ybrid Potovoltai-Termal olletor (PV-T) Systems for domesti Heating and ooling ase Study: Island of odes N. HISTANDONIS G.A VOKAS. SKITTIDES Department of Meanial Engineering - Management

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

SI units, is given by: y = cos (46t - 12x). The frequency of the wave, in SI units, is closest to: A) 46 B) 100 C) 140 D) 23 E) 69

SI units, is given by: y = cos (46t - 12x). The frequency of the wave, in SI units, is closest to: A) 46 B) 100 C) 140 D) 23 E) 69 Exam Name Email Perm# Tel # Remember to write all work in yoru Bluebook as well as put the answer on your Scantron MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China.

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China. Carnot's teorem and Szilárd engine Liangsuo Su 1,2, Xiaokang Liu 1, Suyi Huang 1, Siping Jin 1,2,3 1 Sool of energy and power engineering, Huazong University of Siene & enology. Wuan, Cina. 2 Innovation

More information

International Academy Invitational Tournament Keep the Heat Test Team Name. Team Number. Predicted Water Temp C

International Academy Invitational Tournament Keep the Heat Test Team Name. Team Number. Predicted Water Temp C International Academy Invitational Tournament Keep the Heat Test 2-4-2012 Team Name Team Number Predicted Water Temp C Circle the all of the correct answer to the below questions. One or more of the answers

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

ME Thermodynamics I

ME Thermodynamics I HW-03 (25 points) i) Given: for writing Given, Find, Basic equations Rigid tank containing nitrogen gas in two sections initially separated by a membrane. Find: Initial density (kg/m3) of nitrogen gas

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

Chapter 4 Optimal Design

Chapter 4 Optimal Design 4- Capter 4 Optimal Design e optimum design of termoelectric devices (termoelectric generator and cooler) in conjunction wit eat sins was developed using dimensional analysis. ew dimensionless groups were

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM Print your name and section clearly on all nine pages. (If you do not know your section number, write your TA s name.) Show all

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam.

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Physics 201, Exam 4 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Name (signed) The multiple-choice problems carry no partial

More information