ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

Size: px
Start display at page:

Download "ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics"

Transcription

1 ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS ere are two ommon ways of stating te Seond Law of ermodynamis. Statement #1: In an isolated system, entropy never dereases ( Statement #2: It is impossible for a system to undergo a yli proess wose S isol 0 sole effets are te flow of eat into te system from a eat reservoir and te performane of an equivalent amount of work by te system on te surroundings. Statement #2 is alled te Kelvin-Plank statement, and asserts tat you annot onvert a given amount of eat into an equal amount of work (tere is no su ting as a 100% effiient engine.) Even toug te two statement look very different, tey are atually equivalent! ). PROOF HA SAEMEN #1 AND SAEMEN #2 ARE EUIVALEN Imagine te yli proess sown on te termodynami diagram below, were β and η are arbitrary termodynami variables. Leg 1: A reversible, isotermal proess from State 1 to State 2. e ange in entropy of tis proess is S1 rev (1)

2 Leg 2: A reversible, adiabati proess to State 3 (tere is no ange in entropy during tis proess). Leg 3: An irreversible, adiabati proess bak to State 1. e entropy ange during tis leg we will all S3. Sine entropy is a state variable, and sine we end up at te same point as we started, te total entropy ange of te yle must be zero. erefore, we ave S3 S1 rev. (2) We also know tat, sine internal energy is a state variable, ten U rev W 0. (3) is means tat te work done in te yli proess is equal in magnitude, but of opposite sign, to te eat added to te system, W rev. (4) If rev were positive (meaning eat is added to te system), te work would be negative. is means te system would do work on te surroundings. e net result of tis would be a yli proess in wi all te eat added to te system is onverted into work, wi violates te Plank statement. erefore, rev must be negative. A negative rev doesn t violate te Plank statement, sine in tis ase work is being done on te system, and eat is being extrated. is is perfetly allowed by te Plank Statement, as work an be onverted to eat wit 100% effiieny. e Plank statement says tat you an t onvert eat to work wit 100% effiieny, but you are allowed to onvert work to eat wit 100% effiieny. We ve proven tat rev 0. is means, from Eq. (2), tat S. (5) 3 rev 0 us, te entropy must inrease in an irreversible, adiabati proess. If a system is isolated, it is adiabati. erefore, in an isolated system, any irreversible proess will result in an inrease in te total entropy of te system. Purely reversible proesses in an isolated system will leave te entropy unanged. 2

3 e entire universe is an isolated (and losed) system (at least as far as we know). erefore, we an also write universe S 0. We ve just proven tat te matematial statement, S isol 0, and te Kelvin- Plank statement, are equivalent! FURHER COMMENS ON HE SECOND LAW Some tings to remember: In any irreversible, adiabati proess, entropy inreases. is is true, even if te proess is quasi-stati. In any reversible, adiabati proess, entropy remains onstant. In an isolated system, reversible proesses don t ange te total entropy of te system. In an isolated system, irreversible proesses always inrease te total entropy of te system. e entropy in an isolated system an never derease. It an only remain onstant (if te proesses are purely reversible) or inrease (if tere are any irreversible proesses). e universe is an isolated system (so we believe): Sine tere are ertainly lots of irreversible proesses at play in our universe, ten te total entropy of te universe is always inreasing. e seond law of termodynamis is a big downer! It says we will never be able to onstrut a 100% effiient eat engine, or ave a perpetual motion maine. Pilosopial note: e seond law of termodynamis, like te first law, as never been proven to be true. In fat, it annot be proven to be true. It is a priniple or law tat so far as always worked. But, tat s not to say tat at some point in time a proess or penomenon will be disovered tat violates te seond law of termodynamis. In tat event, ten te seond law will be proven to be false. 3

4 HE MAXIMUM WORK HEOREM e seond law of termodynamis tells us tat tere is no su ting as a 100% effiient eat engine (one tat an onsume a given amount of termal energy and onvert it ompletely into work). We an use te seond law of termodynamis to investigate te maximum teoretial effiieny of a eat engine. is is not just an abstrat idea for meteorologists. Many meteorologial penomenon, su as tropial ylones, beave like eat engines, onverting termal energy into work (kineti energy). We an terefore speak of te maximum teoretial effiienies of tropial ylones, te Hadley irulation, et. Imagine an isolated termodynami system tat onsists of tree subsystems: e primary system: is subsystem undergoes a proess between two termodynami states (State A and State B) and makes available an amount of energy du. e reversible work soure: is subsystem eiter performs work, or as work performed on it. e reversible eat reservoir: is subsystem is a repository for any residual eat. 4

5 From te first law of termodynamis we ave du d dw. e total ange in entropy of te entire system is te sum of te entropy anges of ea individual subsystem, wi is ds total ds primary d were r is te temperature of te reversible eat reservoir. Eliminating d from te two expressions above yields dw du ds ds. r primary In te expression above, te following are fixed: du, dsprimary, and. In order to aieve maximum effiieny, we want to maximize dw. o do tis, we need to minimize dstotal. Ideally, we want to make dstotal = 0, wi would our if te system operates ompletely reversibly. We ave just proven wat is known as te Maximum Work eorem: For all proesses leading from a speified initial state to a speified final state of te primary system, te delivery of work is maximum (and te delivery of eat is minimum) for a reversible proess. Furtermore, te delivery of work (and of eat) is idential for every reversible proess. 1 r r total MAXIMUM EFFICIENCY OF A HEA ENGINE We an use te maximum work teorem to determine te maximum teoretial effiieny of a eat engine. You migt ask wy we would be interested in studying eat engines in an atmosperi termodynamis lass. e answer is simple many meteorologial proess (tunderstorms, urrianes, extratropial ylones, et.) at as eat engines, onverting termal energy into kineti energy (or work). A eat engine is an engine tat takes eat from a ot reservoir, onverts part of tis eat into work, and deposits te remainder into a old reservoir. We will imagine tat te ot and old reservoirs are so large tat teir temperatures remain pratially onstant. 1 ermodynamis and an Introdution to ermostatistis, Callen, 1985, Jon Wiley & Sons 5

6 From te first law of termodynamis (onservation of energy) we ave W. e termodynami effiieny of te engine is defined as W/, and is e ange in entropy is W 1. S. Sine we know te most effiient engine possible is a ompletely reversible engine (for wi S = 0), we an write. Substituting te above expression into te equation for effiieny gives 1. Maximum teoretial effiieny of a eat engine e greater te temperature differenes between te ot and old reservoirs, te greater te effiieny. No real engine an ever be more effiient tan a reversible engine. is means tat te maximum effiieny of any eat engine is real engine 1. 6

7 HE CARNO CYCLE e maximum work teorem, and te maximum effiieny of a eat engine were bot derived witout using any one speifi reversible yle (sine it turns out tat all reversible yles ave te same effiieny). However, most termodynamis texts and disussions make referene to a speifi reversible yle known as te Carnot yle, and istorially te maximum work teorem and even te onept of entropy were developed using te Carnot yle. Beause of its istorial signifiane we briefly disuss tis yle ere. e Carnot yle onsists of four legs: A ig-temperature isotermal expansion, wi requires an amount of eat to be added to te gas. An adiabati expansion. A low-temperature isotermal ontration, wi requires te removal of eat. An adiabati ompression bak to te original starting point. On a P-V diagram te Carnot yle looks like APPLICAIONS OF HEA-ENGINE EFFICIENCY O HE AMOSPHERE At tis point you may be asking Wat in te ek does te effiieny of a eat engine ave to do wit atmosperi termodynamis? is is ertainly a valid question. But it turns out tat studying eat-engine effiieny is very relevant to atmosperi proesses. 7

8 ropial ylones, te Hadley irulation, monsoons, et. an all be tougt of as eat engines tat operate between a ig temperature reservoir (te ropial oeans) and a low temperature reservoir (te upper tropospere), and onvert te eat into kineti energy. A knowledge of te effiieny of tese eat engines an allow us to plae upper limits on te amount of kineti energy tat an be produed. However, atmosperi eat engines, like oter real-life eat engines, are not reversible. o extend te onept of eat engines to real-life situations requires us to use te onept of nonequilibrium termodynamis, or at least finite-time termodynamis. Altoug tese are beyond te sope of tis ourse, a few good referenes or artiles to read on tis subjet are Effiieny of a Carnot engine at maximum power output, F.L. Curzon and B. Alborn, Amerian Journal of Pysis, 43, pp , 1975 Wind energy as a solar-driven eat engine: A termodynami approa, J.M. Gordon and Y. Zarmi, Amerian Journal of Pysis, 57, pp , 1989 A nonendoreversible model for wind energy as a solar-driven eat engine, Journal of Applied Pysis, 80, pp , 1996 Understanding Non-equilibrium ermodynamis, G. Lebon, D. Jou, and J. Casas-Vazquez, Springer-Verlag, 325 pp., 2010 POENIAL EMPERAURE Potential temperature is defined as te temperature tat an air parel would ave if it were brougt adiabatially and reversibly to some referene pressure (almost always 1000 mb). From te Poisson relation involving and p, we ave p 1 p R p onst. so tat potential temperature an be written as R p p0. p 8

9 Potential temperature is onserved during a reversible adiabati proess. erefore, it an be used as a proxy for entropy. In fat, te two are related via s s 0 p ln. 0 Meteorologists often refer to adiabats as isentropes. Isentropi analysis is analysis done on surfaes of onstant potential temperature. EXERCISES 1. An engine operates on a Carnot yle. e working fluid is Helium, and ideal gas wit a moleular weigt of 4 g/mol. e initial pressure and speifi volume are 1000 mb and 6 m 3 /kg. a. Wat is te initial temperature? b. e volume at point B is 5 times greater tan at point A. Wat is te pressure at point B?. e volume at point C is 5 times greater tan at point B. Wat is te pressure at point C? d. Wat is te temperature at point C? 9

10 e. Wat is te pressure and speifi volume at point D? f. Wat is te eat per unit mass added to te working fluid during te ig temperature expansion (A to B)? g. Wat is te eat per unit mass removed from te working fluid during te low temperature ompression (C to D)?. Wat is te speifi work (work per unit mass) done by te working fluid during one yle? i. Using your answers to f., g., and., find te effiieny of tis engine and ompare it to te maximum teoretial effiieny given by Sow tat te maximum teoretial effiieny of a refrigerator (defined as te amount of eat removed from te old reservoir divided by te work) is. 3. Sow tat speifi entropy is related to potential temperature via s s0 p ln. 0 (Hint: Begin wit te expression for s(,p) and use te definition of potential temperature.) 4. a. Explain wy, for an ideal gas, te yli proess sown below on a p-v diagram an only go ounterlokwise or else it violates te Seond Law of ermodynamis. 10

11 b. For some substanes te proess sown migt be able to proeed lokwise. Explain wy tis migt be possible. 11

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Maximum work for Carnot-like heat engines with infinite heat source

Maximum work for Carnot-like heat engines with infinite heat source Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ Outline Introduing entropy e meaning of entropy Reversibility Disorder Information Seleted

More information

EF 152 Exam #3, Spring 2016 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Capter 6 Te Seond Law of Termodynamis In te last two apters of tis book we applied te first law of termodynamis to losed and open systems onsidering bot quasistati and non-quasi-stati proesses. A question

More information

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China.

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China. Carnot's teorem and Szilárd engine Liangsuo Su 1,2, Xiaokang Liu 1, Suyi Huang 1, Siping Jin 1,2,3 1 Sool of energy and power engineering, Huazong University of Siene & enology. Wuan, Cina. 2 Innovation

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

THE SECOND LAW OF THERMODYNAMICS

THE SECOND LAW OF THERMODYNAMICS HE SECOND LAW OF HERMODYNAMICS 9 EXERCISES Setions 9. and 9.3 e Seond Law of ermodynamis and Its Appliations 3. INERPRE is problem requires us to alulate te effiieny of reversible eat engines tat operate

More information

A Counterexample to the Second Law of Thermodynamics

A Counterexample to the Second Law of Thermodynamics Applied Pysis Resear; Vol. 6, No. 3; 2014 ISSN 1916-9639 E-ISSN 1916-9647 Publised by Canadian Center of Siene and Eduation A Counterexample to te Seond Law of ermodynamis 1 Douglas, AZ, USA José C Íñiguez

More information

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts 3 nd International Termal Condutivity Conferene 0 t International Termal Expansion Symposium April 7 May 1, 014 Purdue University, West Lafayette, Indiana, USA Role of Termal Condutivity for Termoeletris

More information

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action.

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action. 31 1 Earlier Leture In te earlier leture, we ave seen a Pulse Tube (PT) ryoooler in wi te meanial displaer is removed and an osillating gas flow in te tin walled tube produes ooling. Tis gas tube is alled

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Peltier Heat Pump 0076 Instrution manual 05/7 TL/JS Transport ase Semati view 3 Stirrer unit 4 Connetor for stirrer unit 5 Connetor for power supply 6 Stirring rod old side 7 Peltier

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Observations on harmonic Progressions *

Observations on harmonic Progressions * Oservations on armoni Progressions * Leonard Euler Under te name of armoni progressions all series of frations are understood, wose numerators are equal to ea oter, ut wose denominators on te oter onstitute

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle Pysis 07 Problem 25 O A Pringle 3 663 0 34 700 = 284 0 9 Joules ote I ad to set te zero tolerane ere e 6 0 9 ev joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle 663 0 34 3 ev

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Wave-Particle Duality: de Broglie Waves and Uncertainty

Wave-Particle Duality: de Broglie Waves and Uncertainty Gauge Institute Journal Vol. No 4, November 6 Wave-Partile Duality: de Broglie Waves and Unertainty vik@adn.om November 6 Abstrat In 195, de Broglie ypotesized tat any material partile as an assoiated

More information

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine Entropy, 4, 64-653; doi:.339/e4464 Artile OPEN ACCE entropy IN 99-43 www.mdpi.om/journal/entropy Assoiation of Finite-ime ermodynamis and a Bond-Grap Approa for Modeling an Endoreversible Heat Engine Yuxiang

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes Simulation of ybrid Potovoltai-Termal olletor (PV-T) Systems for domesti Heating and ooling ase Study: Island of odes N. HISTANDONIS G.A VOKAS. SKITTIDES Department of Meanial Engineering - Management

More information

THERMODYNAMICS Lecture 15: Heat exchangers

THERMODYNAMICS Lecture 15: Heat exchangers HERMODYNAMICS Leture 5: Heat exangers Pierwsza strona Introdution to Heat Exangers Wat Are Heat Exangers? Heat exangers are units designed to transfer eat from a ot flowing stream to a old flowing stream

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Thermal interaction between free convection and forced convection along a vertical conducting wall

Thermal interaction between free convection and forced convection along a vertical conducting wall Termal interation between free onvetion and fored onvetion along a vertial onduting wall J.-J. Su, I. Pop Heat and Mass Transfer 35 (1999) 33±38 Ó Springer-Verlag 1999 Abstrat A teoretial study is presented

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare ttp://ocw.mit.edu 5.74 Introductory Quantum Mecanics II Spring 9 For information about citing tese materials or our Terms of Use, visit: ttp://ocw.mit.edu/terms. Andrei Tokmakoff, MIT

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Chapter 5 Differentiation

Chapter 5 Differentiation Capter 5 Differentiation Course Title: Real Analsis 1 Course Code: MTH31 Course instrutor: Dr Atiq ur Reman Class: MS-II Course URL: wwwmatitorg/atiq/fa15-mt31 Derivative of a funtion: Let f be defined

More information

Summary of heat engines so far

Summary of heat engines so far ummary of ea engines so far - ermodynami sysem in a proess onneing sae o sae - In is proess, e sysem an do ork and emi/absorb ea - Wa proesses maximize ork done by e sysem? - We ave proven a reversible

More information

Heat Exchanger s Shell and Tube Modeling for Intelligent Control Design

Heat Exchanger s Shell and Tube Modeling for Intelligent Control Design 2011 International Conferene on Computer Communiation Devies (ICCCD 2011) Heat Exanger s Sell Tube Modeling for Intelligent Control Design Dirman Hanafi 1 Mod Nor Mod Tan 2 Abdulraman A.A. Ememed 3 Tatang

More information

Reversibility. Processes in nature are always irreversible: far from equilibrium

Reversibility. Processes in nature are always irreversible: far from equilibrium Reversibility Processes in nature are always irreversible: far from equilibrium Reversible process: idealized process infinitely close to thermodynamic equilibrium (quasi-equilibrium) Necessary conditions

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Research Article Substance Independence of Efficiency of a Class of Heat Engines Undergoing Two Isothermal Processes

Research Article Substance Independence of Efficiency of a Class of Heat Engines Undergoing Two Isothermal Processes hermodynamis olume 0, Artile ID 6797, 5 pages doi:0.55/0/6797 Researh Artile Substane Independene of Effiieny of a Class of Heat Engines Undergoing wo Isothermal roesses Y. Haseli Department of Mehanial

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND Jisong He 1, W.J. Vlasblom 2 and S. A. Miedema 3 ABSTRACT Te literature studies sow tat until now, te existing investigations

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #4: Due at 500 pm Monday 8 July,. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) o a very good approximation, ammonia obeys the Bertholet equation

More information

Centro Brasileiro de Pesquisas Fsicas - CBPF. Rua Dr. Xavier Sigaud, 150. Dipartimento di Fisica Teorica Universita ditorino and

Centro Brasileiro de Pesquisas Fsicas - CBPF. Rua Dr. Xavier Sigaud, 150. Dipartimento di Fisica Teorica Universita ditorino and Quark fragmentation into vetor pseudosalar mesons at LE CBF-NF-057/97 by M. Anselmino, M. Bertini 2, C. Burgard 3, F. Caruso. Quintairos Centro Brasileiro de esuisas Fsias - CBF Rua Dr. Xavier Sigaud,

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting Are penny-saped raks a good model for ompliant porosity? oris Gurevi Curtin Univ. and CSIRO Petroleum Dina Makarynska Curtin Univ. and Marina Pervukina CSIRO Petroleum Pert Australia Summary Variation

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

The Laws of Thermodynamics

The Laws of Thermodynamics 1 Te Laws of Termodynamics CLICKER QUESTIONS Question J.01 Description: Relating termodynamic processes to PV curves: isobar. Question A quantity of ideal gas undergoes a termodynamic process. Wic curve

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes.

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes. ecture 2.7 Entropy and the Second law of hermodynamics During last several lectures we have been talking about different thermodynamic processes. In particular, we have discussed heat transfer between

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

The Basics of Vacuum Technology

The Basics of Vacuum Technology Te Basics of Vacuum Tecnology Grolik Benno, Kopp Joacim January 2, 2003 Basics Many scientific and industrial processes are so sensitive tat is is necessary to omit te disturbing influence of air. For

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

The Compton effect according to Schrödinger s theory

The Compton effect according to Schrödinger s theory Der Comptoneffet na der Srödingersen Teorie, Zeit. f. Pys. 40 (196), 117-133. Te Compton effet aording to Srödinger s teory By W. GORDON in Berlin (Reeived on 9 September 196) Translated by D. H. Delpeni

More information

Research on Static Tension Ratio Characteristic of Double-Vessel Friction Hoist System Components

Research on Static Tension Ratio Characteristic of Double-Vessel Friction Hoist System Components TELKOMIKA Indonesian Journal of Eletrial Engineering Vol., o., Otober 4, pp. 78 ~ 73 DOI:.59/telkomnika.vi8.564 78 Resear on Stati Tension Ratio Carateristi of Double-Vessel Frition oist System Components

More information

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction Journal of Modern Pysics, 2017, 8, 1795-1808 ttp://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 arnot Factor of a Vapour Power ycle wit Regenerative Extraction Duparquet Alain

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Walrasian Equilibrium in an exchange economy

Walrasian Equilibrium in an exchange economy Microeconomic Teory -1- Walrasian equilibrium Walrasian Equilibrium in an ecange economy 1. Homotetic preferences 2 2. Walrasian equilibrium in an ecange economy 11 3. Te market value of attributes 18

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Design of Unknown Inputs Observer for a Chemical Process: Analysis of Existence and Observability Based on Phenomenological Model

Design of Unknown Inputs Observer for a Chemical Process: Analysis of Existence and Observability Based on Phenomenological Model Design of Unknown Inputs Observer for a Cemial Proess: Analysis of Existene and Observability Based on Penomenologial Model Mario Giraldo Esuela de Meatrónia aultad de Minas Universidad Naional de Colombia

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Supporting information

Supporting information Eletroni Supplementary Material (ESI) for Journal of Materials Cemistry A. Tis journal is Te Royal Soiety of Cemistry 017 Supporting information Simultaneous improvement of power fator and termal ondutivity

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

MATH 1A Midterm Practice September 29, 2014

MATH 1A Midterm Practice September 29, 2014 MATH A Midterm Practice September 9, 04 Name: Problem. (True/False) If a function f : R R is injective, ten f as an inverse. Solution: True. If f is injective, ten it as an inverse since tere does not

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information