Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Size: px
Start display at page:

Download "Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle"

Transcription

1 Pysis 07 Problem 25 O A Pringle = Joules ote I ad to set te zero tolerane ere e ev <-> joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle ev ev e ev e = Hz so = meters in nanometers, nm nm = Pysis 07 Problem 27 O A Pringle poton energy Power is energy per time Potons per seond is energy per time divided by energy per poton P 0 3 P n n = potons per seond ote tat as long as I keep everyting in mks units, te units automatially work out OK

2 Pysis 07 Problem 28 O A Pringle poton poton = poton = 307 Te eye an detet 3 o tese potons ote again tat units work out OK i we stik wit te mks system Pysis 07 Problem 29 O A Pringle (a) How many potons all per seond on ea square meter o te eart's surae diretly aing te sun? poton 50 4 on ea square meter: P P as in problem 25, number per seond is power divided by energy n n = potons/s poton (b) Wat is te power output o te sun, and ow many potons per seond does it emit? Te power per area at a radius o 5*0^ m is given as 4x0^3 W/m^2 To answer te irst part, just multiply te power per area by te area o a spere o te given radius r 5 0 A 4 π r 2 P sun PA P sun = watts P sun poton = potons per seond emitted by te sun () How many potons per ubi meter are tere near te eart? 3 will need tis in a minute Tis is mainly a unit onversion problem Look at te units number number s = volume s volume number number s = volume s m m 2 number density = s speed area ρ n 2 ρ = potons per ubi meter 2

3 Pysis 07 Problem 20 O A Pringle t P Te energy o a pulse is te power times te time pulse Pt Te number o potons in te pulse is te energy o te pulse divided by te energy o a poton pulse = Pysis 07 Problem 2 O A Pringle Te equation to use is 0 energies will ome out in ev i I use in tese units Solve or 0 = ere's te requeny; not neessary, just wanted to look at it = Tis is a wavelengt o 80 nm Pysis 07 Problem 22 O A Pringle will give K in ev We are given te ollowing: Simply plug tese into equation 2 0 = 656 ev 3

4 Pysis 07 Problem 23 O A Pringle Te equation we will use is 0 were will give us energies in ev Beause = and =/, longer wavelengts o ligt ave lower energies Tis problem is equivalent to asking "wat is te minimum requeny o ligt tat will ause potoeletrons to be emitted rom sodium" Tat minimum requeny is just te tresold requeny or sodium, wi an be ound rom te work untion φ 23 ev, rom table 2 3 Tis is just te minimun energy needed to produe a potoeletron, so φ 0 or φ 0 0 = Hz Te maximum wavelengt is just, using = meters, or 540 nm (to get Beiser's answer, use =2998*0^8 and =436*0^-5) Wat will te maximum kineti energy o te potoeletrons be i 200-nm ligt alls on a sodium surae? Tis is just like problem 20, exept we are given wavelengts instead o requenies 0 = alulated above 200 = 39eV 0 Pysis 07 Problem 24 O A Pringle Tis sounds triky but really isn't Ligt inident on te ball will ause potoeletrons to be emitted Te ball will aquire a positive arge and tereore an eletrial potential as te eletrons are emitted Wen work untion plus te potential o te ball equals te energy o te inident ligt, no more eletrons will be emitted For silver φ 47 ev Plank's onstant ev*s requeny o inident ligt: = Hz In words: inident energy=v+φ V φ V = 5Volts 4

5 Pysis 07 Problem 25 O A Pringle Te 5 mw (milliwatts) gives te energy per unit time in te inident ligt beam P joules/s 400-nm tells us te poton energy I'll work in mks units ere poton poton = joules per poton Dividing te power (energy per time) by te energy o a poton (energy per poton) gives us te number o potons per seond inident on te ell P poton = potons per seond Only 0 perent o tese potons produe potoeletrons, so te number n produing potoeletrons is n 000 n = eletrons produed per seond Tis n is atually te urrent, but we sould express it in te more amiliar units o oulombs e oulombs per eletron I n e I = oulombs per seond, or amps Pysis 07 Problem 26 O A Pringle a) Find te extintion voltage, tat is, te retarding voltage at wi te potoeletron urrent disappears Te extintion voltage ours wen te retarding voltage plus te work untion equal te potoeletron energy φ V ext φ V ext φ V ext = 0605eletron volts b) Find te speed o te astest potoeletrons Te most energeti eletrons will appear wen Vext=0, ie, φ = 0605 eletron volts; yes, te same number as in part a xperiene sould tell us tat 06 ev is nonrelativisti; we will do a nonrelativisti alulation, and i te speed is too great, go bak and do a relativisti alulation K max 2 m 2 eletron v max e

6 K max e onvert to Joules! m eletron v max 2 m eletron v max = small enoug to be nonrelativisti Pysis 07 Problem 27 O A Pringle We are given ligt o requenies and 2, and te maximum kineti energies K and K2 wi tey produe We want to ind te experimental value or and φ K φ Remember, te little square means tese are symboli equations only 2 K 2 φ It's very easy to solve tese simultaneously or K φ 2 K 2 φ K K 2 K K 2 2 In a ouple o lines, I'm going to opy tis symboli equation (F2), paste it below (F4), and turn it "on" wit "eq" ow plug in numbers K 97 K K K 2 = Tis value is in units o ev*s You an easily onvert it to J*s ow use te value or to solve eiter equation at te start or φ Use Cut and Paste (F2 and F4) again ow solve or φ K φ φ K φ = 300 Sine is in ev*s, units o φ are ev Pysis 07 Problem 28 O A Pringle To solve tis, simply take te equation φ and solve it or 7 φ 54 6

7 75 3 φ = ev*s Te atual value o in tese units is 436x0-5 δ Pysis 07 Problem 25 O A Pringle GM 2 R In mks units, G M R te wavelengt o te ligt δ gives te requeny o te ligt GM 2 R I'm going to work tis problem te straigtorward brute strengt way oting triky, but it involves onversions bak and ort between and You migt save some time by doing te algebra irst on paper δ = 27 Te new requeny is less tan te original requeny, so prime δ ow alulate te new wavelengt: prime prime prime = Te red sit is te amount by wi te wavelengt anged: δ prime δ = meters Or δ=00006 nm 7

8 Pysis 07 Problem 252 O A Pringle Tis is just problem 2-5 wit dierent numbers I will use my 2-5 solution diretly ere In mks units, G M R te wavelengt o te ligt gives te requeny o te ligt δ GM δ = R Te new requeny is less tan te original requeny, so prime δ ow alulate te new wavelengt: prime prime = prime Te red sit is te amount by wi te wavelengt anged: δ prime δ = meters Or δ=06 nm Pysis 07 Problem 254 O A Pringle Find te Swarzsild radius o te sun G M R S 2G M 2 R S = meters I te sun ad less tan tis radius, it would be a blak ole 8

9 Pysis 07 Problem 255 O A Pringle Te gravitational potential energy U relative to ininity o a body o mass m at a distane R rom te enter o a body o mass M is U=-GmM/R (a) I R is te radius o te body o mass M, ind te esape speed ve o te body (presumably Beiser means te body o mass m), wi is te minimum speed needed to leave it permanently To esape, te "body o mass m" must ave enoug kineti energy to overome te gravitational attration o te body o mass M Let me all m te small body and M te large body Te small body starts at te surae o te large body, were te gravitational potential energy is ( Gm M) U R and m starts wit a kineti energy o mv^2/2, so our initial total energy is ( Gm M) R 2 m v 2 Ater m as just esaped rom M, m as used up all o its kineti energy in esaping, so its kineti energy is zero I m ad exatly enoug energy to just esape, it won't ave esaped until it reaed a distane o r= At r= te gravitational potential energy is zero (/r=0 tere), so te total energy is zero Tereore ( Gm M) R 2 m v 2 = 0 "Divide bot sides by m, and solve or v to get v 2G M R (b) Obtain a ormula or te Swarzsild radius o te body by setting ve=, te speed o ligt, and solving or r 2G M R Square bot sides, solve or R to get R 2G M 2 9

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

DUAL NATURE OF RADIATION AND MATTER

DUAL NATURE OF RADIATION AND MATTER DUAL NATURE OF RADIATION AND MATTER Important Points: 1. J.J. Tomson and Sir William Crookes studied te discarge of electricity troug gases. At about.1 mm of Hg and at ig voltage invisible streams called

More information

Problem Set 3: Solutions

Problem Set 3: Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 3: Solutions 1. Te energy required to break one OO bond in ozone O 3, OOO) is about 500 kj/mol. Wat is

More information

Assignment Solutions- Dual Nature. September 19

Assignment Solutions- Dual Nature. September 19 Assignment Solutions- Dual Nature September 9 03 CH 4 DUAL NATURE OF RADIATION & MATTER SOLUTIONS No. Constants used:, = 6.65 x 0-34 Js, e =.6 x 0-9 C, c = 3 x 0 8 m/s Answers Two metals A, B ave work

More information

Wave-Particle Duality: de Broglie Waves and Uncertainty

Wave-Particle Duality: de Broglie Waves and Uncertainty Gauge Institute Journal Vol. No 4, November 6 Wave-Partile Duality: de Broglie Waves and Unertainty vik@adn.om November 6 Abstrat In 195, de Broglie ypotesized tat any material partile as an assoiated

More information

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING 9. Te work function of a certain metal is. J. Ten te maximum kinetic energy of potoelectrons emitted by incident radiation of wavelengt 5 A is: (9 E)

More information

The Electromagnetic Spectrum. Today

The Electromagnetic Spectrum. Today Today Announcements: HW#7 is due after Spring Break on Wednesday Marc 1 t Exam # is on Tursday after Spring Break Te fourt extra credit project will be a super bonus points project. Tis extra credit can

More information

APPENDIXES. Let the following constants be established for those using the active Mathcad

APPENDIXES. Let the following constants be established for those using the active Mathcad 3 APPENDIXES Let te following constants be establised for tose using te active Matcad form of tis book: m.. e 9.09389700 0 3 kg Electron rest mass. q.. o.6077330 0 9 coul Electron quantum carge. µ... o.5663706

More information

Problem Set 4: Whither, thou turbid wave SOLUTIONS

Problem Set 4: Whither, thou turbid wave SOLUTIONS PH 253 / LeClair Spring 2013 Problem Set 4: Witer, tou turbid wave SOLUTIONS Question zero is probably were te name of te problem set came from: Witer, tou turbid wave? It is from a Longfellow poem, Te

More information

7. QUANTUM THEORY OF THE ATOM

7. QUANTUM THEORY OF THE ATOM 7. QUANTUM TEORY OF TE ATOM Solutions to Practice Problems Note on significant figures: If te final answer to a solution needs to be rounded off, it is given first wit one nonsignificant figure, and te

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 1 PHYSICAL CHEMISTRY Dalton (1805) Tomson (1896) - Positive and negative carges Ruterford (1909) - Te Nucleus Bor (1913) - Energy levels Atomic Model : Timeline CATHODE RAYS THE DISCOVERY OF ELECTRON Scrödinger

More information

Electromagnetic Waves

Electromagnetic Waves Eletroagneti Waves Physis 6C Eletroagneti (EM) waves an be produed by atoi transitions (ore on this later), or by an alternating urrent in a wire. As the harges in the wire osillate bak and forth, the

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Conductance from Transmission Probability

Conductance from Transmission Probability Conductance rom Transmission Probability Kelly Ceung Department o Pysics & Astronomy University o Britis Columbia Vancouver, BC. Canada, V6T1Z1 (Dated: November 5, 005). ntroduction For large conductors,

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4)

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4) Pysics Teac Yourself Series Topic 15: Wavelie nature of atter (Unit 4) A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tss.co.au E: info@tss.co.au TSSM 2017 Page 1 of 8 Contents

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Peltier Heat Pump 0076 Instrution manual 05/7 TL/JS Transport ase Semati view 3 Stirrer unit 4 Connetor for stirrer unit 5 Connetor for power supply 6 Stirring rod old side 7 Peltier

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Particle Properties of Wave

Particle Properties of Wave 1 Chapter-1 Partile Properties o Wave Contains: (Blakbody radiation, photoeletri eet, Compton eet).1: Blakbody radiation A signiiant hint o the ailure o lassial physis arose rom investigations o thermalradiation

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

Problem Set 11: Angular Momentum, Rotation and Translation

Problem Set 11: Angular Momentum, Rotation and Translation MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physis Physis 80T Fall Term 004 Problem Set : Angular Momentum, Rotation and Translation Available on-line November ; Due: November 3 at 4:00 pm Please

More information

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Answer Key Name: Date: UNIT # EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Part I Questions. Te epression 0 can be simpliied to () () 0 0. Wic o te ollowing is equivalent to () () 8 8? 8.

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1 Section. 6. (a) N(t) t (b) days: 6 guppies week: 7 guppies (c) Nt () t t t ln ln t ln ln ln t 8. 968 Tere will be guppies ater ln 8.968 days, or ater nearly 9 days. (d) Because it suggests te number o

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

PHY 396 T: SUSY Solutions for problem set #12.

PHY 396 T: SUSY Solutions for problem set #12. PHY 396 T: SUSY Solutions or problem set #. Problem a: In priniple the non-perturbative superpotential o the theory may depend on the dual quark and antiquark ields q and q as well as the singlets Φ but

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C De Broglie Wavelengt Uncertainty Principle De Broglie Wavelengt Bot ligt and atter ave bot particle and wavelike propertie. We can calculate te wavelengt of eiter wit te ae forula: p v For large

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 4 Solutions 1. Group velocity of a wave. For a free relativistic quantum particle moving wit speed v, te

More information

The structure of the atoms

The structure of the atoms Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C.

More information

Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143

Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143 Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143 Approximately 7 questions/6 problems Approximately 50% material since last test, 50% everyting covered on Exams I-III About 50% of everyting closely

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter.

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter. Slide 1 / 63 Slide 2 / 63 emistry Optional Review Ligt and Matter 2015-10-27 www.njctl.org Slide 3 / 63 Slide 4 / 63 Ligt and Sound Ligt and Sound In 1905 Einstein derived an equation relating mass and

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

Dual Nature of matter and radiation: m v 1 c

Dual Nature of matter and radiation: m v 1 c Dual Nature of matter and radiation: Potons: Electromagnetic radiation travels in space in te form discrete packets of energy called potons. Tese potons travel in straigt line wit te speed of ligt. Important

More information

Continuity and Differentiability

Continuity and Differentiability Continuity and Dierentiability Tis capter requires a good understanding o its. Te concepts o continuity and dierentiability are more or less obvious etensions o te concept o its. Section - INTRODUCTION

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Tutorial 2 (Solution) 1. An electron is confined to a one-dimensional, infinitely deep potential energy well of width L = 100 pm.

Tutorial 2 (Solution) 1. An electron is confined to a one-dimensional, infinitely deep potential energy well of width L = 100 pm. Seester 007/008 SMS0 Modern Pysics Tutorial Tutorial (). An electron is confined to a one-diensional, infinitely deep potential energy well of widt L 00 p. a) Wat is te least energy te electron can ave?

More information

Chapter 12 Review, pages Knowledge

Chapter 12 Review, pages Knowledge Capter 12 Review, pages 660 665 Knowledge 1. (d) 2. (a) 3. (d) 4. (b) 5. (a) 6. (a) 7. (a) 8. (a) 9. (b) 10. (b) 11. (d) 12. () 13. (d) 14. True 15. False. Wen two lassial partiles approa ea oter, one

More information

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r 4: Derivatives of Circular Functions an Relate Rates Before we begin, remember tat we will (almost) always work in raians. Raians on't ivie te circle into parts; tey measure te size of te central angle

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Physics 6C. Heisenberg Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Heisenberg Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C Heienberg Uncertainty Principle Heienberg Uncertainty Principle Baic Idea you can t get eact meaurement 2 Verion: E p t 2 2 Eample: For te electron in te previou eample, teir wavelengt wa 0.123nm.

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Krazy Katt, the mechanical cat

Krazy Katt, the mechanical cat Krazy Katt, te mecanical cat Te cat rigting relex is a cat's innate ability to orient itsel as it alls in order to land on its eet. Te rigting relex begins to appear at 3 4 weeks o age, and is perected

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1 r nucleus orbital electron wave λ /7/008 Quantum ( F.Robilliard) 1 Wat is a Quantum? A quantum is a discrete amount of some quantity. For example, an atom is a mass quantum of a cemical element te mass

More information

The Compton effect according to Schrödinger s theory

The Compton effect according to Schrödinger s theory Der Comptoneffet na der Srödingersen Teorie, Zeit. f. Pys. 40 (196), 117-133. Te Compton effet aording to Srödinger s teory By W. GORDON in Berlin (Reeived on 9 September 196) Translated by D. H. Delpeni

More information

Test on Nuclear Physics

Test on Nuclear Physics Test on Nuclear Pysics Examination Time - 40 minutes Answer all questions in te spaces provided Tis wole test involves an imaginary element called Bedlum wic as te isotope notation sown below: 47 11 Bd

More information

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb?

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb? Capter continued carges on te plates were reversed, te droplet would accelerate downward since all forces ten act in te same direction as gravity. 5. A 0.5-F capacitor is able to store 7.0 0 C of carge

More information

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery Graviton Induced Nuclear Fission troug Electromagnetic Wave Flux Pil Russell, * Jerry Montgomery Nort Carolina Central University, Duram, NC 27707 Willowstick Tecnologies LLC, Draper, UT 84020 (Dated:

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Problem Solving. Problem Solving Process

Problem Solving. Problem Solving Process Problem Solving One of te primary tasks for engineers is often solving problems. It is wat tey are, or sould be, good at. Solving engineering problems requires more tan just learning new terms, ideas and

More information

JANE PROFESSOR WW Prob Lib1 Summer 2000

JANE PROFESSOR WW Prob Lib1 Summer 2000 JANE PROFESSOR WW Prob Lib Summer 2000 Sample WeBWorK problems. WeBWorK assignment Derivatives due 2//06 at 2:00 AM..( pt) If f x 9, find f 0. 2.( pt) If f x 7x 27, find f 5. 3.( pt) If f x 7 4x 5x 2,

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Homework 1. L φ = mωr 2 = mυr, (1)

Homework 1. L φ = mωr 2 = mυr, (1) Homework 1 1. Problem: Streetman, Sixt Ed., Problem 2.2: Sow tat te tird Bor postulate, Eq. (2-5) (tat is, tat te angular momentum p θ around te polar axis is an integer multiple of te reduced Planck constant,

More information

Solving Continuous Linear Least-Squares Problems by Iterated Projection

Solving Continuous Linear Least-Squares Problems by Iterated Projection Solving Continuous Linear Least-Squares Problems by Iterated Projection by Ral Juengling Department o Computer Science, Portland State University PO Box 75 Portland, OR 977 USA Email: juenglin@cs.pdx.edu

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

UNIT-1 MODERN PHYSICS

UNIT-1 MODERN PHYSICS UNIT- MODERN PHYSICS Introduction to blackbody radiation spectrum: A body wic absorbs all radiation tat is incident on it is called a perfect blackbody. Wen radiation allowed to fall on suc a body, it

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Chapter 10 Light- Reflectiion & Refraction

Chapter 10 Light- Reflectiion & Refraction Capter 0 Ligt- Relectiion & Reraction Intext Questions On Page 68 Question : Deine te principal ocus o a concae irror. Principal ocus o te concae irror: A point on principal axis on wic parallel ligt rays

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Topic 6b Finite Difference Approximations

Topic 6b Finite Difference Approximations /8/8 Course Instructor Dr. Rymond C. Rump Oice: A 7 Pone: (95) 747 6958 E Mil: rcrump@utep.edu Topic 6b Finite Dierence Approximtions EE 486/5 Computtionl Metods in EE Outline Wt re inite dierence pproximtions?

More information

Chapter 5 Differentiation

Chapter 5 Differentiation Capter 5 Differentiation Course Title: Real Analsis 1 Course Code: MTH31 Course instrutor: Dr Atiq ur Reman Class: MS-II Course URL: wwwmatitorg/atiq/fa15-mt31 Derivative of a funtion: Let f be defined

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

Maximum work for Carnot-like heat engines with infinite heat source

Maximum work for Carnot-like heat engines with infinite heat source Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei

More information