Dynamics and Relativity

Size: px
Start display at page:

Download "Dynamics and Relativity"

Transcription

1 Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site Lecture notes, wic I will not give out, are also available on my web site: tey will appear after eac lecture.

2 2

3 Capter 0 Preliminaries 0.1 Course contents Section 0: Preliminaries 0.1 Course plan 0.2 Some vector calculus. Section 1: Newtonian dynamics: basic concepts 1.1 Newton s Laws 1.2 Dimensional Analysis Section 2: Forces 2.1 Potentials 2.2 Conserved quantities (including angular momentum) 2.3 Friction 2.4 Te Lorenz force 2.5 Gravitational force 2.6 Escape velocity Section 3: Orbits 3.1 Motion in a plane 3.2 Orbits in a central force: te u-θ equation 3.3 Closed orbits 3.4 Stability of circular orbits 3.5 Orbits in an inverse square force 3.6 Ruterford scattering 3.7 Kepler s Laws 3.8 Orbits under more general forces 3

4 4 CHAPTER 0. PRELIMINARIES Section 4: Rotating Frames 4.1 Angular velocity 4.2 Rotating axes 4.3 Coriolis force 4.4 Centrifugal force Section 5: Systems of particles 5.1 Equations of motion 5.2 Variable mass problems 5.3 Two-body problem 6.4 Moments of inertia 5.5 Inertia tensor 5.6 Motion of a rigid body Section 6: Special Relativity 6.1 Concepts and laws 6.2 Space-time diagrams 6.3 Lorentz transformations 6.4 Lengt contraction and time dilation 6.5 Velocity composition 6.6 Proper time and te Minkowski metric 6.7 Four-vectors 6.8 Dynamical examples 6.9 *Doppler effect (if time allows)*

5 0.2. THE COURSE Te course It migt seem odd to combine two seeming very disparate teories Newtonian dynamics and special relativity in one course. However, tere are many ideas common to te two teories and tinking about te fundamental ideas beind Newtonian dynamics can ligt up one s understanding of relativity (and vice versa). It is very striking tat te problems tat Newton was wrestling wit in te seventeent century are exactly tose occupying Einstein 220 years later. Many students will ave seen quite a lot of Newtonian dynamics at scool and in te past ave complained tat tere is little new for tem in te course. Te same students also complained tat tey understood te material better at scool. Of course, wat tis means is tat tey could do te questions at scool witout really understanding wat tey were doing and, believing tat tey didn t need to work at te course, ten found tat tey couldn t catc up. To try to prevent tis appening, I ave avoided setting questions on examples seets tat look like souped up A-level or STEP questions. Many oter students will ave seen very little Newtonian dynamics at scool and will find tis course quite ard to start wit. I advise tese students to stick at it. Very soon, tey sould get to grips wit wat is after all mainly matematics. For te benefit of bot sets of students, I ave provided printed lecture notes. In tese notes, I ave put in more explanation and matematical steps tan is possible (or desirable) in large lectures, and I ave tried also to include some deeper discussions and ideas beyond te course for tose wo really ave covered some of te material. I will not distribute tese notes in lectures: tey can be seen on my web site (wic is presumably wat you are now looking at). 0.3 Some vector calculus Muc of tis course is formulated in terms of vectors. No doubt te following lemma will also be proved in te vector calculus course, but it is important enoug to be proved twice. 1 Lemma Let u(t) be a time-dependent vector 2 wit components u i (i = 1, 2, 3) wit respect to a set of fixed Cartesian axes. Ten ( = 1, 2, ) 3. Note Tis just says tat vectors can be differentiated component by component, in Cartesians. Of course, we assume tat te axes are not time-dependent (moving) and in Capter 4 we deal wit a case wen tis lemma does not old: rotating Cartesian axes. Similarly, if te axes are not Cartesian, te lemma may not old. 3 Proof We can t make progress wit tis witout knowing wat differentiation of a vector means. 1 Make te most of tis: it is probably te last lemma-proof-corollary in te course. 2 To be more precise, we want u to be a differentiable function R R 3. 3 For example, in sperical polar coordinates and axes, te position vector of te particle is (r, 0, 0), i.e. rbr, (NOT of course (r, θ, pi)), but te velocity is (ṙ, r θ, r sin θ φ).

6 6 CHAPTER 0. PRELIMINARIES Taking te usual definition in terms of limits, we ave lim u(t + ) u(t) 0 u 1(t + ) 0 0 u 2 (t + ) u 3 (t + ) u 1(t) u 2 (t) u 3 (t) u 1(t + ) u 1 (t) u 2 (t + ) u 2 (t) u 3 (t + ) u 3 (t) u 1 (t + ) u 1 (t) u 2 (t + ) u 2 (t) 0 u 3 (t + ) u 3 (t) wic is te required result. An alternative approac migt ave been to write (definition of differentiation) (same, in Cartesian components) (usual rules for adding vectors) (usual rule for multiplying vectors by scalars) (definition of differentiation) u = u i e i (e i e j = δ ij, summation convention applies) and ten differentiate to obtain te result immediately: = d(u ie i ) = i e i + de i u i = i e i (since te cartesian axis vectors e i are fixed). If te axes are not fixed, tis result would not old. For example, in plane polar coordinates, r = re r, and dr = dr e r + r de r = dr e r + r dθ e θ. (1) Te second term can be obtained by converting to cartesian axes so tat e r = (cos θ, sin θ). Ten differentiating wit respect to t, using te cain rule, gives de r = dθ de r dθ = θ( cos θ, sin θ) = θe θ. Te last term in (1) represents te compenent of velocity (if t is time) tangent to te circle r = constant, as will be discussed in section 4. Adopting tis alternative approac assumes tat we know ow to differentiate te sum of vectors and te proct of a scalar (u i ) and a vector (e i ). We would ave to start wit a couple of lemmas: d (u + v) = + dv and d(λv) = λ dv + dλ v

7 0.3. SOME VECTOR CALCULUS 7 were u and v are arbitrary t-dependent vectors and λ is and arbitrary t-dependent scalar. Tese are bot easily proved from te definition of a derivative, applied to vectors. 4 For example: d(λv) λ(t + )v(t + ) λ(t)v(t) 0 ( ) λ(t + ) v(t + ) v(t) 0 =λ dv + dλ v ( ) v(t) λ(t + ) λ(t) + lim 0 Corollary Te derivatives of scalar and vector procts obey te Leibnitz (proct) rule. Proof For scalar procts, we ave d(u v) = d(u iv j δ ij ) = d(u iv i ) (using suffix notation and summation convention) For vector procts, = i v dv i i + u i = v + u dv d(u v) (using Leibnitz for eac term in te summation) = v + u dv. (using te above Lemma) Tis can be proved in te same way as for te scalar proct, except te vector proct as ɛ ijk rater tan δ ij ; tis does not affect te proof, because te compenents of ɛ ijk are constants, being 0 or ±1. 4 But ten we migt ask wat exactly we mean by a vector tat is a function of a parameter. It is like a set of Babuska dolls: everytime you go a layer deeper, anoter even deeper layer appears.

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Notes on Planetary Motion

Notes on Planetary Motion (1) Te motion is planar Notes on Planetary Motion Use 3-dimensional coordinates wit te sun at te origin. Since F = ma and te gravitational pull is in towards te sun, te acceleration A is parallel to te

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA Te Krewe of Caesar Problem David Gurney Souteastern Louisiana University SLU 10541, 500 Western Avenue Hammond, LA 7040 June 19, 00 Krewe of Caesar 1 ABSTRACT Tis paper provides an alternative to te usual

More information

The Electron in a Potential

The Electron in a Potential Te Electron in a Potential Edwin F. Taylor July, 2000 1. Stopwatc rotation for an electron in a potential For a poton we found tat te and of te quantum stopwatc rotates wit frequency f given by te equation:

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Robotic manipulation project

Robotic manipulation project Robotic manipulation project Bin Nguyen December 5, 2006 Abstract Tis is te draft report for Robotic Manipulation s class project. Te cosen project aims to understand and implement Kevin Egan s non-convex

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Chapter 2 Ising Model for Ferromagnetism

Chapter 2 Ising Model for Ferromagnetism Capter Ising Model for Ferromagnetism Abstract Tis capter presents te Ising model for ferromagnetism, wic is a standard simple model of a pase transition. Using te approximation of mean-field teory, te

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Manipulator Dynamics (1) Read Chapter 6

Manipulator Dynamics (1) Read Chapter 6 Manipulator Dynamics (1) Read Capter 6 Wat is dynamics? Study te force (torque) required to cause te motion of robots just like engine power required to drive a automobile Most familiar formula: f = ma

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Blueprint End-of-Course Algebra II Test

Blueprint End-of-Course Algebra II Test Blueprint End-of-Course Algebra II Test for te 2001 Matematics Standards of Learning Revised July 2005 Tis revised blueprint will be effective wit te fall 2005 administration of te Standards of Learning

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

3. Using your answers to the two previous questions, evaluate the Mratio

3. Using your answers to the two previous questions, evaluate the Mratio MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0219 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4 Distributed: Friday, April 2, 2004 Due: Friday,

More information

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f =

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f = Introduction to Macine Learning Lecturer: Regev Scweiger Recitation 8 Fall Semester Scribe: Regev Scweiger 8.1 Backpropagation We will develop and review te backpropagation algoritm for neural networks.

More information

Krazy Katt, the mechanical cat

Krazy Katt, the mechanical cat Krazy Katt, te mecanical cat Te cat rigting relex is a cat's innate ability to orient itsel as it alls in order to land on its eet. Te rigting relex begins to appear at 3 4 weeks o age, and is perected

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information