11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

Size: px
Start display at page:

Download "11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101"

Transcription

1 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013 PHY 113 C Fall Leture /19/2013 PHY 113 C Fall Leture 23 2 Comment ab Exam 3: Part I take ome porton (1 problem): avalable ursday 11/21/2013 ater lass; must be turned n beore Part II n-lass porton (3 problems): uesday 11/25/2013 Some speal arrangements or early exams ave been (or wll be) arranged by pror agreement O ourse, all setons o te exam are to be taken under te gudelnes o te onor ode 11/19/2013 PHY 113 C Fall Leture

2 Important equatons or marosop and mrosop desrptons o termodynam propertes o matter Frst Law o ermodynams : ΔE W ermodynam Work : Ideal Gas Law : P nr Mrosop analyss o gas moleules: (assume N moleules o mass m or n moles o molar mass M ) P N m0vrms n Mv Mvrms R 3 For moleules wt C / C nr 1 P nt Fall /19/2013 PHY 113 C 2013 Leture 4 : 0 2 rms nt W Pd nr E Webassgn Assgnment 20 e rms speed o an oxygen moleule (O 2 ) n a ontaner o oxygen gas s 563 m/s. Wat s te temperature o te gas? From te knet analyss o gas moleules: (assume N moleules o mass m0 or n moles o molar mass M ) P N m0vrms n Mvrms nr Mvrms R 3 11/19/2013 PHY 113 C Fall Leture 23 5 Webassgn Assgnment 20 In a onstant-volume proess, 213 J o energy s transerred by eat to 0.99 mol o an deal monatom gas ntally at 299 K. (a) Fnd te work done on te gas. For onstant volume proess, W=0. (b) Fnd te nrease n nternal energy o te gas. DE nt = + 0 = 213J + 0 = 213 J () Fnd ts nal temperature. nc 11/19/2013 PHY 113 C Fall Leture

3 Webassgn Assgnment 20 A 2.00-mol sample o a datom deal gas expands slowly and adabatally rom a pressure o 5.06 atm and a volume o 12.2 L to a nal volume o 29.6 L. (a) Wat s te nal pressure o te gas? (b) Wat are te ntal and nal temperatures? () Fnd or te gas durng ts proess. (d) Fnd ΔE nt or te gas durng ts proess. (e) Fnd W or te gas durng ts proess. 11/19/2013 PHY 113 C Fall Leture 23 7 Dgresson: Adabat proess (=0) DEnt W n RD PD γ-1 P nr DP PD nrd nrd γ-1pd DP PD D DP γ P γ P γ ln ln P γ P P γ 11/19/2013 PHY 113 C Fall Leture 23 8 Webassgn Assgnment 20 A 2.00-mol sample o a datom deal gas expands slowly and adabatally rom a pressure o 5.06 atm and a volume o 12.2 L to a nal volume o 29.6 L. For datom deal gas: 1.4 (a) Wat s te nal pressure o te gas? γ γ P P P P / 5.06atm12.2/ b) Wat are te ntal and nal temperatures? P=nR ) Fnd or te gas durng ts proess. =0 d) Fnd ΔE nt or te gas durng ts proess. ΔE nt =W e) Fnd W or te gas durng ts proess. 11/19/2013 PHY 113 C Fall Leture

4 Webassgn Assgnment 20 (a) How mu work s requred to ompress 4.95 mol o ar at 19.6 C and 1.00 atm to one-tent o te orgnal volume by an sotermal proess? (b) How mu work s requred to produe te same ompresson n an adabat proess? () Wat s te nal pressure n part (a)? (d) Wat s te nal pressure n part (b)? 11/19/2013 PHY 113 C Fall Leture Webassgn Assgnment 20 (a) How mu work s requred to ompress 4.95 mol o ar at 19.6 C and 1.00 atm to one-tent o te orgnal volume by an sotermal proess? W Pd For an sotermal proess : nr P nr W d nr ln W ln 11/19/2013 PHY 113 C Fall Leture Webassgn Assgnment 20 (b) How mu work s requred to ompress 4.95 mol o ar at 19.6 C and 1.00 atm to one-tent o te orgnal volume by an adabat proess? Note: assume 1.4 For an adabat proess : DE For an adabat proess : R C 2.5R 1 nt W nc /19/2013 PHY 113 C Fall Leture

5 ermodynam yles or desgnng deal engnes and eat pumps ttp://auto.owstuworks.om/engne1.tm Engne proess: P (1.013 x 10 5 ) Pa P P B A C D Work o engne : Eeny : W W eng eng n W Heat nput to system : n 11/19/2013 PHY 113 C Fall Leture Examples proess by an deal gas: P B C AB BC CD DA P (1.013 x 10 5 ) Pa ( P P ) γp ( ) ( P P ) -γp ( ) W 0 -P ( - ) 0 P ( - ) A D P DE nt ( P P ) P ( ) ( P P ) -P ( ) Weng Eeny : n P P 11/19/2013 PHY 113 C Fall Leture 23 AB BC 14 Example rom omework Eeny : W eng P P n AB BC Also : W W eng n n 1 CD AB DA BC n 1 n 11/19/2013 PHY 113 C Fall Leture

6 Most eent termodynam yle -- Carnot Sad Carnot /19/2013 PHY 113 C Fall Leture Carnot yle: AB Isotermal at BC Adabat CD Isotermal at DA Adabat Eeny o Carnot yle n n ε 1 1 n 11/19/2013 PHY 113 C Fall Leture lker exerse: We dsussed te eeny o an engne as n 1 n n Is ts result A. Speal to te Carnot yle B. General to all deal termodynam yles lker exerse: We dsussed te eeny o an engne runnng wt ot and old reservors as 1 Is ts result A. Speal to te Carnot yle B. General to all deal termodynam yles 11/19/2013 PHY 113 C Fall Leture

7 Note tat or a Carnot yle: WAB nr ln( C / D) n WCD nr ln( B / A) For adabatproess 1 1 B C 1 1 A D C / D B / A n For Carnot yle: 1 11/19/2013 PHY 113 C Fall Leture lker exerse: Wy sould we are ab te Carnot yle? A. We souldn t B. It approxmately models some eatng and oolng tenologes C. It provdes nsgt nto anoter termodynam varable -- entropy 11/19/2013 PHY 113 C Fall Leture /19/2013 PHY 113 C Fall Leture

8 Webassgn Assgnment 21 A eat engne operates between a reservor at 28 C and one at 362 C. Wat s te maxmum eeny possble or ts engne? e Carnot yle s te most eent proess operatng between ot and old temperatures : /19/2013 PHY 113 C Fall Leture Webassgn Assgnment 21 An deal gas s taken troug a Carnot yle. e sotermal expanson ours at 260 C, and te sotermal ompresson takes plae at 50.0 C. e gas takes n 1.28 x10 3 J o energy rom te ot reservor durng te sotermal expanson. (a) Fnd te energy expelled to te old reservor n ea yle (b) (b) Fnd te net work done by te gas n ea yle. 11/19/2013 PHY 113 C Fall Leture e Otto yle eoretal eeny : / 2 s te ompresson rato -- typally 1 / 2 = 8 = /19/2013 PHY 113 C Fall Leture

9 11/19/2013 PHY 113 C Fall Leture e Desel yle eoretal eeny: 1 D A 1 C B In prnple, ger eeny tan omparable Otto yle. 11/19/2013 PHY 113 C Fall Leture Engne vs eatng/oolng desgns Heat pump; eatng mode: (Carnot) W Heat pump; oolng mode: (Carnot) W 11/19/2013 PHY 113 C Fall Leture

10 Bre omments ab entropy marosop pture Carnot yle Note tat or a Carnot yle : WAB nr ln( C / D ) WCD nr ln( B / A) For adabat proess 1 1 B C 1 1 A D C / D B / A 11/19/2013 PHY 113 C Fall Leture Bre omments ab entropy ontnued For a Carnot yle : Dene : d ds For a Carnot yle S "state varable" (lke D S yle Oter examples o entropy : 0 E nt Cange o entropy wle meltng : ) o o J For meltng1kg water at 0 C ( K) DS 1219J / K o 11/19/2013 PHY 113 C Fall Leture K 29 DS d ml uson meltng 10

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

Chapter 18: The Laws of Thermodynamics

Chapter 18: The Laws of Thermodynamics Capter 18: e Laws o ermodynams Answers to Even-Numbered Coneptual uestons. (a) Yes. Heat an low nto te system at te same tme te system expands, as n an sotermal expanson o a gas. (b) Yes. Heat an low out

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

Chapter 6 Second Law of Thermodynamics

Chapter 6 Second Law of Thermodynamics Capter 6 Second Law o Termodynamcs Te rst law o termodynamcs s an energy conservaton statement. It determnes weter or not a process can take place energetcally. It does not tell n wc drecton te process

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

EF 152 Exam #3, Spring 2016 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop

More information

P REVIEW NOTES

P REVIEW NOTES P34 - REIEW NOTES Capter 1 Energy n Termal Pyss termal equlbrum & relaxaton tme temperature & termometry: fxed ponts, absolute temperature sale P = nrt deal gas law: ( ) ( T ) ( / n) C( T ) ( ) + / n vral

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

Physics 2B Chapter 17 Notes - Calorimetry Spring 2018

Physics 2B Chapter 17 Notes - Calorimetry Spring 2018 Physs 2B Chapter 17 Notes - Calormetry Sprng 2018 hermal Energy and Heat Heat Capaty and Spe Heat Capaty Phase Change and Latent Heat Rules or Calormetry Problems hermal Energy and Heat Calormetry lterally

More information

Announcements. Exam 4 - Review of important concepts

Announcements. Exam 4 - Review of important concepts Announcements 1. Exam 4 starts Friday! a. Available in esting Center from Friday, Dec 7 (opening time), up to Monday, Dec 10 at 4:00 pm. i. Late fee if you start your exam after 4 pm b. Covers C. 9-1 (up

More information

Heat Engines, Entropy, and the Second Law of Thermodynamics

Heat Engines, Entropy, and the Second Law of Thermodynamics Heat Engnes, Entropy, and te Seond Law o ermodynams HER OULINE.1 Heat Engnes and te Seond Law o ermodynams. Heat umps and Rergerators. Reversble and Irreversble roesses.4 e arnot Engne. Gasolne and esel

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ Outline Introduing entropy e meaning of entropy Reversibility Disorder Information Seleted

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

PES 2130 Fall 2014, Spendier Lecture 7/Page 1

PES 2130 Fall 2014, Spendier Lecture 7/Page 1 PES 2130 Fall 2014, Spender Lecture 7/Page 1 Lecture today: Chapter 20 (ncluded n exam 1) 1) Entropy 2) Second Law o hermodynamcs 3) Statstcal Vew o Entropy Announcements: Next week Wednesday Exam 1! -

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 112. Homework #4. Benjamin Stahl. February 2, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 112. Homework #4. Benjamin Stahl. February 2, 2015 UIERSIY OF CALIFORIA - SAA CRUZ DEPARME OF PHYSICS PHYS Homework #4 Benjamin Stahl February, 05 PROBLEM It is given that the heat absorbed by a mole o ideal gas in a uasi-static process in which both its

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

First Law of Thermodynamics

First Law of Thermodynamics Frst Law of Thermodynamcs Readng: Chapter 18, Sectons 18-7 to 18-11 Heat and Work When the pston s dsplaced by ds, force exerted by the gas = F = pa, work done by the gas: dw Fds ( pa)( ds) p( Ads) p d.

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Chapter 20 The First Law of Thermodynamics

Chapter 20 The First Law of Thermodynamics Chapter he Frst aw o hermodynamcs. developng the concept o heat. etendng our concept o work to thermal processes 3. ntroducng the rst law o thermodynamcs. Heat and Internal Energy Internal energy: s the

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p ) Examle roblems Chater : he Kinetic heory o Gases Homework:, 8,,, 5, 7 (. 5-5) 9. An automobile tire has a volume o.64 x m and contains air at a gauge ressure (above atmosheric ressure) o 65 kpa when the

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement

Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement Physcal Chestry I or Bochests Che34 Lecture 18 (2/23/11) Yoshtaka Ish Ch5.8-5.11 & HW6 Revew o Ch. 5 or Quz 2 Announceent Quz 2 has a slar orat wth Quz1. e s the sae. ~2 ns. Answer or HW5 wll be uploaded

More information

Physics 207 Lecture 27

Physics 207 Lecture 27 hyscs 07 Lecture 7 hyscs 07, Lecture 7, Dec. 6 Agenda: h. 0, st Law o Thermodynamcs, h. st Law o thermodynamcs ( U Q + W du dq + dw ) Work done by an deal gas n a ston Introducton to thermodynamc cycles

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Maximum work for Carnot-like heat engines with infinite heat source

Maximum work for Carnot-like heat engines with infinite heat source Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei

More information

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13 Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall Physics 231 Topic 14: Laws of Thermodynamics Alex Brown Dec 7-11 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

The Laws of Thermodynamics

The Laws of Thermodynamics 1 Te Laws of Termodynamics CLICKER QUESTIONS Question J.01 Description: Relating termodynamic processes to PV curves: isobar. Question A quantity of ideal gas undergoes a termodynamic process. Wic curve

More information

THE SECOND LAW OF THERMODYNAMICS

THE SECOND LAW OF THERMODYNAMICS HE SECOND LAW OF HERMODYNAMICS 9 EXERCISES Setions 9. and 9.3 e Seond Law of ermodynamis and Its Appliations 3. INERPRE is problem requires us to alulate te effiieny of reversible eat engines tat operate

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 hemcal Reacton Engneerng (RE) s the feld that studes the rates and mechansms of chemcal reactons and the desgn of the reactors n whch they take place. Web Lecture 19 lass Lecture 17 uesday 3/19/2013

More information

On Adaptive Control of Simulated Moving Bed Plants. Plants Using Comsol s Simulink Interface. Speaker: Marco Fütterer

On Adaptive Control of Simulated Moving Bed Plants. Plants Using Comsol s Simulink Interface. Speaker: Marco Fütterer daptve Smulated Movng ed Plants Usng Comsol s Smulnk Interfae Speaker: Maro Fütterer Insttut für utomatserungstehnk Otto-von-Guerke Unverstät Unverstätsplatz, D-39106 Magdeburg Germany e-mal: maro.fuetterer@ovgu.de

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 PHY 3 C General Physcs I AM-:5 PM MF Oln 0 Plan or Lecture 8: Chapter 8 -- Conservaton o energy. Potental and knetc energy or conservatve orces. Energy and non-conservatve orces 3. Power PHY 3 C Fall 03--

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Details on the Carnot Cycle

Details on the Carnot Cycle Details on the Carnot Cycle he isothermal expansion (ab) and compression (cd): 0 ( is constant and U() is a function U isothermal of only for an Ideal Gas.) V b QH Wab nrh ln Va (ab : isothermal expansion)

More information

The area under the graph in a PV diagram is equal in magnitude to

The area under the graph in a PV diagram is equal in magnitude to a volume V and exerts a uniform pressure P on the cylinder walls and the piston. The gas is compressed slowly enough so the system remains essentially in thermodynamic equilibrium at all times. As the

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

3-1 Introduction: 3-2 Spontaneous (Natural) Process:

3-1 Introduction: 3-2 Spontaneous (Natural) Process: - Introducton: * Reversble & Irreversble processes * Degree of rreversblty * Entropy S a state functon * Reversble heat engne Carnot cycle (Engne) * Crteron for Eulbrum SU,=Smax - Spontaneous (Natural)

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Lecture 3 Examples and Problems

Lecture 3 Examples and Problems Lecture 3 Examles and Problems Mechancs & thermodynamcs Equartton Frst Law of Thermodynamcs Ideal gases Isothermal and adabatc rocesses Readng: Elements Ch. 1-3 Lecture 3, 1 Wllam Thomson (1824 1907) a.k.a.

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass 17 Molar mass: There are dfferent ways to report a molar mass lke (a) Number average molar mass, (b) mass average molar mass, (c) Vscosty average molar mass, (d) Z- Average molar mass Number Average Molar

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj?

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj? 376 Lea & Burke Physcs; The Nature of Thngs 19.44 J»(Pa) At constant V A \ LjSj?! '/! If / l/l /!! j j J [ ^ 1 I X j j> 1 ' : / J! 60 100 T('K) 200 Constant V lnes are mapped onto straght lnes on the P-T

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008 Mat 324 Advanced Fnancal Matematcs Sprng 28 Fnal Exam Solutons May 2, 28 Ts s an open book take-ome exam. You may work wt textbooks and notes but do not consult any oter person. Sow all of your work and

More information