Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Size: px
Start display at page:

Download "Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution"

Transcription

1 Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

2 Pressure and Kinetic Energy Assume a container is a cube with edges d. Look at the motion of the molecule in terms of its velocity components and momentum and the average force Pressure is proportional to the number of molecules per unit volume (N/V) and to the average translational kinetic energy of the molecules. This equation also relates the macroscopic quantity of pressure with a microscopic quantity of the average value of the square of the molecular speed One way to increase the pressure is to increase the number of molecules per unit volume The pressure can also be increased by increasing the speed (kinetic energy) of the molecules P 2 N 1 2 m v 3 V 2 o

3 Molecular Interpretation of Temperature We can take the pressure as it relates to the kinetic energy and compare it to the pressure from the equation of state for an ideal gas 2 N 1 2 P mv nrt NkBT 3 V 2 Temperature is a direct measure of the average molecular kinetic energy

4 Molecular Interpretation of Temperature Simplifying the equation relating temperature and kinetic energy gives mo v kbt 2 2 This can be applied to each direction, mv x kbt 2 2 with similar expressions for v y and v z

5 Total Kinetic Energy The total kinetic energy is just N times the kinetic energy of each molecule Ktot trans N mv NkBT nrt If we have a gas with only translational energy, this is the internal energy of the gas This tells us that the internal energy of an ideal gas depends only on the temperature

6 Kinetic Theory Problem A 5.00-L vessel contains nitrogen gas at 27.0 C and 3.00 atm. Find (a) the total translational kinetic energy of the gas molecules and (b) the average kinetic energy per molecule.

7 Hot Question Suppose you apply a flame to 1 liter of water for a certain time and its temperature rises by 10 degrees C. If you apply the same flame for the same time to 2 liters of water, by how much will its temperature rise? a) 1 degree b) 5 degrees c) 10 degrees d) zero degrees

8 Ludwig Boltzmann or Dean Gooch? Austrian physicist Contributed to Kinetic Theory of Gases Electromagnetism Thermodynamics Pioneer in statistical mechanics

9 Distribution of Molecular Speeds The observed speed distribution of gas molecules in thermal equilibrium is shown at right N V is called the Maxwell-Boltzmann speed distribution function m o is the mass of a gas molecule, k B is Boltzmann s constant and T is the absolute temperature m 3 / 2 o 2 mv NV 4 N v e 2 kt B 2 /2k T B

10 Molecular Speeds and Collisions

11 Speed Summary Root mean square speed v rms 3kBT m o 1.73 kbt m o The average speed is somewhat lower than the rms speed v avg 8kBT m The most probable speed, v mp is the speed at which the distribution curve reaches a peak o 1.60 kbt m o v rms > v avg > v mp v mp 2kBT m 1.41 kbt m

12 Some Example v rms Values At a given temperature, lighter molecules move faster, on the average, than heavier molecules

13 The peak shifts to the right as T increases This shows that the average speed increases with increasing temperature The asymmetric shape occurs because the lowest possible speed is 0 and the highest is infinity Speed Distribution

14 The Kelvin Temperature of an ideal gas is a measure of the average translational kinetic energy per particle: 3/ 2kT KE 1/ 2mv 2 rms k =1.38 x J/K Boltzmann s Constant Root-mean-square speed: v rms v 2 3 kt m

15 Kinetic Theory Problem Calculate the RMS speed of an oxygen molecule in the air if the temperature is 5.00 C. The mass of an oxygen molecule is u (k = 1.3 8x J/K, u = 1.66 x kg) v rms 3kT m What is m? m is the mass of one oxygen molecule in kg. What is u? How do we get the mass in kg?

16 Kinetic Theory Problem Calculate the RMS speed of an oxygen molecule in the air if the temperature is 5.00 C. The mass of an oxygen molecule is u (k = 1.3 8x J/K, u = 1.66 x kg) v rms 3kT m What is m? m is the mass of one oxygen molecule. 23 3( / ) (32 u)(1.66 x10 kg / u) x J K K 466 m/ s Is this fast? YES! Speed of sound: 343m/s!

17 A cylinder contains a mixture of helium and argon gas in equilibrium at 150 C. (a) What is the average kinetic energy for each type of gas molecule? (b) What is the root-mean-square speed of each type of molecule?

18 More Kinetic Theory Problems A gas molecule with a molecular mass of 32.0 u has a speed of 325 m/s. What is the temperature of the gas molecule? A) 72.0 K B) 136 K C) 305 K D) 459 K E) A temperature cannot be assigned to a single molecule. Temperature ~ Average KE of all particles

19 Equipartition of Energy Each translational degree of freedom contributes an equal amount to the energy of the gas In general, a degree of freedom refers to an independent means by which a molecule can possess energy Each degree of freedom contributes ½k B T to the energy of a system, where possible degrees of freedom are those associated with translation, rotation and vibration of molecules With complex molecules, other contributions to internal energy must be taken into account One possible energy is the translational motion of the center of mass Rotational motion about the various axes also contributes There is kinetic energy and potential energy associated with the vibrations

20 Monatomic and Diatomic Gases The thermal energy of a monatomic gas of N atoms is A diatomic gas has more thermal energy than a monatomic gas at the same temperature because the molecules have rotational as well as translational kinetic energy.

21 Molar Specific Heat We define specific heats for two processes that frequently occur: Changes with constant pressure Changes with constant volume Using the number of moles, n, we can define molar specific heats for these processes Molar specific heats: Q = nc V DT for constant-volume processes Q = nc P DT for constant-pressure processes

22 Ideal Monatomic Gas Therefore, DE int = 3/2 nrt DE is a function of T only In general, the internal energy of an ideal gas is a function of T only The exact relationship depends on the type of gas At constant volume, Q = DE int = nc V DT This applies to all ideal gases, not just monatomic ones

23 Ratio of Molar Specific Heats We can also define the ratio of molar specific heats g CP 5 R / C V 3 R/ 2 Theoretical values of C V, C P, and g are in excellent agreement for monatomic gases But they are in serious disagreement with the values for more complex molecules Not surprising since the analysis was for monatomic gases

24 Agreement with Experiment Molar specific heat is a function of temperature At low temperatures, a diatomic gas acts like a monatomic gas C V = 3/2 R At about room temperature, the value increases to C V = 5/2 R This is consistent with adding rotational energy but not vibrational energy At high temperatures, the value increases to C V = 7/2 R This includes vibrational energy as well as rotational and translational

25 Sample Values of Molar Specific Heats

26 In a constant-volume process, 209 J of energy is transferred by heat to 1.00 mol of an ideal monatomic gas initially at 300 K. Find (a) the increase in internal energy of the gas, (b) the work done on it, and (c) its final temperature

27 Molar Specific Heats of Other Materials The internal energy of more complex gases must include contributions from the rotational and vibrational motions of the molecules In the cases of solids and liquids heated at constant pressure, very little work is done, since the thermal expansion is small, and C P and C V are approximately equal

28 Adiabatic Processes for an Ideal Gas An adiabatic process is one in which no energy is transferred by heat between a system and its surroundings (think styrofoam cup) Assume an ideal gas is in an equilibrium state and so PV = nrt is valid The pressure and volume of an ideal gas at any time during an adiabatic process are related by PV g = constant g = C P / C V is assumed to be constant All three variables in the ideal gas law (P, V, T ) can change during an adiabatic process

29 Adiabatic Process The PV diagram shows an adiabatic expansion of an ideal gas The temperature of the gas decreases T f < T i in this process For this process P i V i g = P f V f g and T i V i g-1 = T f V f g-1

30 A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? (c) Find Q, W, and DE int.

31 Cyclic Processes DEint Q W A cyclic process is one that starts and ends in the same state On a PV diagram, a cyclic process appears as a closed curve DE int = 0, Q = -W In a cyclic process, the net work done on the system per cycle equals the area enclosed by the path representing the process on a PV diagram

32 Isothermal Process At right is a PV diagram of an isothermal expansion The curve is a hyperbola The curve is called an isotherm The curve of the PV diagram indicates PV = constant The equation of a hyperbola Because it is an ideal gas and the process is quasi-static, PV = nrt and nrt W P dv dv nrt V V V V f f f V V V i i i W V i nrt ln V f dv V

33 DEint Q W PV nrt W V V f i P dv Isothermal Process An isothermal process is one that occurs at a constant temperature Since there is no change in temperature, DE int = 0 Therefore, Q = - W Any energy that enters the system by heat must leave the system by work

34 DEint Q W PV nrt W V V f i P dv Isobaric Processes An isobaric process is one that occurs at a constant pressure The values of the heat and the work are generally both nonzero The work done is W = P (V f V i ) where P is the constant pressure

35 DEint Q W PV nrt W V V f i P dv Isovolumetric Processes An isovolumetric process is one in which there is no change in the volume Since the volume does not change, W = 0 From the first law, DE int = Q If energy is added by heat to a system kept at constant volume, all of the transferred energy remains in the system as an increase in its internal energy

36 Special Case: Adiabatic Free Expansion This is an example of adiabatic free expansion The process is adiabatic because it takes place in an insulated container Because the gas expands into a vacuum, it does not apply a force on a piston and W = 0 Since Q = 0 and W = 0, DE int = 0 and the initial and final states are the same and no change in temperature is expected. No change in temperature is expected

37 Thermo Processes DEint Q W Adiabatic No heat exchanged Q = 0 and DE int = W Isobaric Constant pressure W = P (V f V i ) and DE int = Q + W Isovolumetric Constant Volume W = 0 and DE int = Q Isothermal Constant temperature DE int = 0 and Q = -W W V i nrt ln V f

38 DEint Q W W V V f i P dv A gas is taken through the cyclic process as shown. (a) Find the net energy transferred to the system by heat during one complete cycle. (b) What If? If the cycle is reversed that is, the process follows the path ACBA what is the net energy input per cycle by heat?

39 DEint Q W PV nrt W V V f i P dv A sample of an ideal gas goes through the process as shown. From A to B, the process is adiabatic; from B to C, it is isobaric with 100 kj of energy entering the system by heat. From C to D, the process is isothermal; from D to A, it is isobaric with 150 kj of energy leaving the system by heat. Determine the difference in internal energy E(B) E(A).

40 Important Concepts

41 Heat Engine DEint = 0 for the entire cycle A heat engine is a device that takes in energy by heat and, operating in a cyclic process, expels a fraction of that energy by means of work A heat engine carries some working substance through a cyclical process The working substance absorbs energy by heat from a high temperature energy reservoir (Q h ) Work is done by the engine (W eng ) Energy is expelled as heat to a lower temperature reservoir (Q c )

42 e W Q eng h DEint = 0 for the entire cycle

43 Thermal Efficiency of a Heat Engine DEint = 0 for the entire cycle Thermal efficiency is defined as the ratio of the net work done by the engine during one cycle to the energy input at the higher temperature e W Q Q Q eng h c c 1 Q Q Q h h h We can think of the efficiency as the ratio of what you gain to what you give

44 Rank in order, from largest to smallest, the work W out performed by these four heat engines. e W Q Q Q eng h c c 1 Q Q Q h h h A. W b > W a > W c > W d B. W b > W a > W b > W c C. W b > W a > W b = W c D. W d > W a = W b > W c E. W d > W a > W b > W c

45 Rank in order, from largest to smallest, the work W out performed by these four heat engines. e W Q Q Q eng h c c 1 Q Q Q h h h A. W b > W a > W c > W d B. W b > W a > W b > W c C. W b > W a > W b = W c D. W d > W a = W b > W c E. W d > W a > W b > W c

46 Perfect Heat Engine No energy is expelled to the cold reservoir It takes in some amount of energy and does an equal amount of work e = 100% It is an impossible engine

47 W Q Q e W Q H H Could this heat engine be built? C Q T T and ec 1 Q T T c c c h h h A. Yes. B. No. C. It s impossible to tell without knowing what kind of cycle it uses.

48 W Q Q e W Q H H Could this heat engine be built? C Q T T and ec 1 Q T T c c c h h h A. Yes. B. No. C. It s impossible to tell without knowing what kind of cycle it uses.

49 Analyze this engine to determine (a) the net work done per cycle, (b) the engine s thermal efficiency and (c) the engine s power output if it runs at 600 rpm. Assume the gas is monatomic and follows the idealgas process above.

50 Gasoline Engine In a gasoline engine, six processes occur during each cycle For a given cycle, the piston moves up and down twice This represents a four-stroke cycle The processes in the cycle can be approximated by the Otto cycle

51 The Conventional Gasoline Engine

52 Gasoline Engine Intake Stroke During the intake stroke, the piston moves downward A gaseous mixture of air and fuel is drawn into the cylinder Energy enters the system as potential energy in the fuel

53 Gasoline Engine Compression Stroke The piston moves upward The air-fuel mixture is compressed adiabatically The temperature increases The work done on the gas is positive and equal to the negative area under the curve

54 Gasoline Engine Spark Combustion occurs when the spark plug fires This is not one of the strokes of the engine It occurs very quickly while the piston is at its highest position Conversion from potential energy of the fuel to internal energy

55 Gasoline Engine Power Stroke In the power stroke, the gas expands adiabatically This causes a temperature drop Work is done by the gas The work is equal to the area under the curve

56 Gasoline Engine Valve Opens An exhaust valve opens as the piston reaches its bottom position The pressure drops suddenly The volume is approximately constant So no work is done Energy begins to be expelled from the interior of the cylinder

57 Gasoline Engine Exhaust Stroke In the exhaust stroke, the piston moves upward while the exhaust valve remains open Residual gases are expelled to the atmosphere The volume decreases

58 The Otto cycle approximates the processes occurring in an internal combustion engine Otto Cycle

59 Otto Cycle Efficiency If the air-fuel mixture is assumed to be an ideal gas, then the efficiency of the Otto cycle is e 1 1 V V g g is the ratio of the molar specific heats V 1 / V 2 is called the compression ratio

60 Otto Cycle Efficiency, cont Typical values: Compression ratio of 8 g = 1.4 e = 56% Efficiencies of real engines are 15% to 20% Mainly due to friction, energy transfer by conduction, incomplete combustion of the airfuel mixture

61

62 Heat Pumps and Refrigerators Heat engines can run in reverse This is not a natural direction of energy transfer Must put some energy into a device to do this Devices that do this are called heat pumps or refrigerators Examples A refrigerator is a common type of heat pump An air conditioner is another example of a heat pump

63

64 Coefficient of Performance The effectiveness of a heat pump is described by a number called the coefficient of performance (COP) In heating mode, the COP is the ratio of the heat transferred in to the work required COP = energy transferred at high temp work done by heat pump Q h W

65 COP, Heating Mode COP is similar to efficiency Q h is typically higher than W Values of COP are generally greater than 1 It is possible for them to be less than 1 We would like the COP to be as high as possible

66 COP, Cooling Mode In cooling mode, you gain energy from a cold temperature reservoir Q c COP W A good refrigerator should have a high COP Typical values are 5 or 6

67 Carnot Engine Carnot Cycle A heat engine operating in an ideal, reversible cycle (now called a Carnot cycle) between two reservoirs is the most efficient engine possible. This sets an upper limit on the efficiencies of all other engines

68 Carnot Cycle, PV Diagram The work done by the engine is shown by the area enclosed by the curve, W eng The net work is equal to Q h Q c DE int = 0 for the entire cycle

69 Efficiency of a Carnot Engine Carnot showed that the efficiency of the engine depends on the temperatures of the reservoirs Qc Tc Tc and ec 1 Qh Th Th Temperatures must be in Kelvins All Carnot engines operating between the same two temperatures will have the same efficiency

70 Carnot s Theorem No real heat engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs All real engines are less efficient than a Carnot engine because they do not operate through a reversible cycle The efficiency of a real engine is further reduced by friction, energy losses through conduction, etc.

71 Notes About Carnot Efficiency Efficiency is 0 if T h = T c Efficiency is 100% only if T c = 0 K Such reservoirs are not available Efficiency is always less than 100% The efficiency increases as T c is lowered and as T h is raised In most practical cases, T c is near room temperature, 300 K So generally T h is raised to increase efficiency

72 Carnot Cycle in Reverse Theoretically, a Carnot-cycle heat engine can run in reverse This would constitute the most effective heat pump available This would determine the maximum possible COPs for a given combination of hot and cold reservoirs

73 Carnot Heat Pump COPs In heating mode: COP In cooling mode: C Qh Th W T T h c COP C Qc Tc W T T h c

74 26. A heat pump, shown in Figure P22.26, is essentially an air conditioner installed backward. It extracts energy from colder air outside and deposits it in a warmer room. Suppose that the ratio of the actual energy entering the room to the work done by the device s motor is 10.0% of the theoretical maximum ratio. Determine the energy entering the room per joule of work done by the motor, given that the inside temperature is 20.0 C and the outside temperature is 5.00 C. Q W h Qh W Carnotefficiency Carnotcycle Q h Th 293 K W T T 293 K 268 K h c 1.17 joules of energy enter the room by heat for each joule of work done.

75 Can this refrigerator be built? W Q Q H COP Q c W C COP C Qc Tc W T T h c

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Unit 05 Kinetic Theory of Gases

Unit 05 Kinetic Theory of Gases Unit 05 Kinetic Theory of Gases Unit Concepts: A) A bit more about temperature B) Ideal Gas Law C) Molar specific heats D) Using them all Unit 05 Kinetic Theory, Slide 1 Temperature and Velocity Recall:

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases chapter 1 The Kinetic Theory of Gases 1.1 Molecular Model of an Ideal Gas 1. Molar Specific Heat of an Ideal Gas 1.3 Adiabatic Processes for an Ideal Gas 1.4 The Equipartition of Energy 1.5 Distribution

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall Physics 231 Topic 14: Laws of Thermodynamics Alex Brown Dec 7-11 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept

More information

The laws of Thermodynamics. Work in thermodynamic processes

The laws of Thermodynamics. Work in thermodynamic processes The laws of Thermodynamics ork in thermodynamic processes The work done on a gas in a cylinder is directly proportional to the force and the displacement. = F y = PA y It can be also expressed in terms

More information

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions Web Resource: Ideal Gas Simulation Kinetic Theory of Gases Physics Enhancement Programme Dr. M.H. CHAN, HKBU Link: http://highered.mheducation.com/olcweb/cgi/pluginpop.cgi?it=swf::00%5::00%5::/sites/dl/free/003654666/7354/ideal_na.swf::ideal%0gas%0law%0simulation

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Physics 4C Chapter 19: The Kinetic Theory of Gases

Physics 4C Chapter 19: The Kinetic Theory of Gases Physics 4C Chapter 19: The Kinetic Theory of Gases Whether you think you can or think you can t, you re usually right. Henry Ford The only thing in life that is achieved without effort is failure. Source

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

CHAPTER 15 The Laws of Thermodynamics. Units

CHAPTER 15 The Laws of Thermodynamics. Units CHAPTER 15 The Laws of Thermodynamics Units The First Law of Thermodynamics Thermodynamic Processes and the First Law Human Metabolism and the First Law The Second Law of Thermodynamics Introduction Heat

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 32: Heat and Work II Slide 32-1 Recap: the first law of thermodynamics Two ways to raise temperature: Thermally: flow of heat Energy

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Introduction to thermodynamics

Introduction to thermodynamics Chapter 6 Introduction to thermodynamics Topics First law of thermodynamics Definitions of internal energy and work done, leading to du = dq + dw Heat capacities, C p = C V + R Reversible and irreversible

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

More information

Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and. The Adiabatic Process Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Part I: Basic Concepts of Thermodynamics Lecture 3: Heat and Work Kinetic Theory of Gases Ideal Gases 3-1 HEAT AND WORK Here we look in some detail at how heat and work are exchanged between a system and

More information

Entropy in Macroscopic Systems

Entropy in Macroscopic Systems Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system:

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system: There are two ways to change the internal energy of a system: Thermodynamics Work 1. By flow of heat, q Heat is the transfer of thermal energy between and the surroundings 2. By doing work, w Work can

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Examples. Fire Piston (demo) Example (Comparison of processes)

Examples. Fire Piston (demo) Example (Comparison of processes) Examples Fire Piston (demo) Fire Piston istory http://en.wikipedia.org/wiki/fire_piston Example 19.68 (Comparison of processes) Fire piston calculations http://complex.gmu.edu/www-phys/phys262/soln/fire_piston.pdf

More information

Chapter 12 Thermodynamics

Chapter 12 Thermodynamics Chapter 12 Thermodynamics 12.1 Thermodynamic Systems, States, and Processes System: definite quantity of matter with real or imaginary boundaries If heat transfer is impossible, the system is thermally

More information

第 1 頁, 共 6 頁 Chap20 1. Test Bank, Question 5 Which of the following is NOT a state variable? Work Internal energy Entropy Temperature Pressure 2. Test Bank, Question 18 Let denote the change in entropy

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58 PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 6, 7, 37, 44, 46, 5, 58 14.1 An ideal gas is sealed in a rigid container at 5 C and. What will its temperature be when the pressure is incresed

More information

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel.

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel. Chapter Thirteen KINETIC THEORY MCQ I 13.1 A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500m s 1

More information

Chapter 20 Entropy and the 2nd Law of Thermodynamics

Chapter 20 Entropy and the 2nd Law of Thermodynamics Chapter 20 Entropy and the 2nd Law of Thermodynamics A one-way processes are processes that can occur only in a certain sequence and never in the reverse sequence, like time. these one-way processes are

More information

Heat Machines (Chapters 18.6, 19)

Heat Machines (Chapters 18.6, 19) eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, )

Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, ) Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, 18.1-5 ) Matter and Thermal Physics Thermodynamic quantities: Volume V and amount of substance Pressure P Temperature T: Ideal gas Zeroth Law of

More information

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees

A) 120 degrees B) 90 degrees C) 60 degrees D) 45 degrees E) 30 degrees Phys10 - First Major 071 Zero Version Q1. Two identical sinusoidal traveling waves are sent along the same string in the same direction. What should be the phase difference between the two waves so that

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

More information

Atomic Theory, Temperature and Thermal Expansion

Atomic Theory, Temperature and Thermal Expansion Chapter V Thermodynamics Day 1 Atomic Theory, Temperature and Thermal Expansion Sections 13-1, 13-2 and 13-4 Atomic Theory We step back to the atomic level where the atom,ατoµoς, is indivisible, that is,

More information

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1 University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1 Name: Date: 1. Let k be the Boltzmann constant. If the configuration of the molecules in a gas changes so that the multiplicity

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

More information

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13 Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

More information

Cyclic Processes. water

Cyclic Processes. water Name Cyclic Processes Cyclic Processes A fixed quantity of ideal gas is contained within a metal cylinder that is sealed with a movable, frictionless, insulating piston. (The piston can move up or down

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Thermodynamics and Atomic Physics II

Thermodynamics and Atomic Physics II Thermodynamics and Atomic Physics II 1. Heat from a source at 550 K is added to the working fluid of an engine operating at a steady rate. The temperature of the surroundings is 300 K. The efficiency of

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees

First major ( 043 ) a) 180 degrees b) 90 degrees c) 135 degrees d) 45 degrees e) 270 degrees First major ( 043 ) 1) The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t) = y m sin( kx ωt ϕ ). At time t = 0 the point at x = 0 has a displacement of zero and is moving

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

More information