ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

Size: px
Start display at page:

Download "ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005"

Transcription

1 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib sheet (one side only), Conversion Factors (inside cover of text) and the Property Tables and Figures from your text book. There are 4 questions to be answered. Read the questions very carefully. Clearly state all assumptions. It is your responsibility to write clearly and legibly. Question 1 (12 marks) Air at 300 K, 0.14 MPa is contained in a piston-cylinder device as shown below. The initial volume is 0.3 m 3. The piston is then slowly pushed upward until the volume reaches 0.06 m 3. Heat transfer with the surroundings allows the temperature of the air inside the cylinder to remain at 300 K throughout the process. The pressure relief valve at the top of the cylinder opens when the pressure reaches 0.6 MPa to allow mass to escape and thus prevent the pressure from ever exceeding 0.6 MPa. a) Determine the specific volume [m 3 /kg] of the air in the cylinder at the final pressure and temperature. b) Determine the mass [kg] of the air that flows through the valve. c) If for some reason the valve failed to open, what would the final pressure [MPa] be? d) Determine the final temperature of the air, if the piston-cylinder is insulated (no heat transfer) and a final pressure of 0.6 MPa is achieved through a reversible compressive process while the valve remains closed.

2 Assume: air is an ideal gas the process is quassi-equilibrium Part a) We know the valve opens at 0.6 MPa and 300 K, therefore v 2 R T 2 P 2 (0.287 kj/kg K) (300 K) ( 10 3 kj/m 3 ) m 3 /kg (0.6 MPa) MPa Part b) From conservation of mass we know m m 1 m 2 m 1 P 1V 1 RT 1 m 2 P 2V 2 RT 2 ( 10 3 kj/m 3 ) (0.14 MPa) (0.3 m 3 ) MPa (0.287 kj/kg K) (300 K) ( 10 3 kj/m 3 ) (0.6 MPa) (0.06 m 3 ) MPa (0.287 kj/kg K) (300 K) kg kg The mass that escapes through the valve is then m ( kg) ( kg) kg Part c) Since air behaves as an ideal gas, we know mrt 1 P 1 V 1 mrt 2 P 2 V 2 Since the process is isothermal and a control mass, mrt 1 mrt 2 and we can write P 1 V 1 P 2 V 2 P 2 V 1 V 2 P m MPa 0.70 MPa 0.06 m3

3 If the valve remains closed the pressure will rise to 0.7 MPa. Part d) Assume isentropic compression, i.e. process. adiabatic and reversible and no mass escapes during the T 2 T 1 ( ) (k 1)/k P2 P 1 where k 1.4 for air. T 2 (300 K) ( ) 0.6 MPa (1.4 1)/ K 0.14 MPa

4 Question 2 (7 marks) An amusement park at the bottom of Niagara Falls wants to install a water turbine to produce 100 kw of power. Water (assumed to be incompressible) would enter the pipeline leading to the turbine at 12.5 C and kp a at the top of the falls, 51 m above the turbine exit, with a velocity of 3 m/s. The water would leave the turbine at 12.5 C and kp a. The pipeline and the turbine are both adiabatic. a) Determine the mass flow rate [kg/min] of the water. b) Determine the diameter [m] of the pipeline. Assume a circular cross section and uniform diameter throughout the system. Assumptions: steady state, steady flow Part a) Choose the control volume to include the inlet at the top of the falls and the outlet at the exit of the turbine. Performing an energy balance where: ṁe 1 ẇ + ṁe 2 The average temperature of the water is T avg ( )/ C. The specific heat at this temperature is

5 C p (@12.5 C)4.205 kj/(kg K) ṁ ẇ e in e out ẇ (h 1 h 2 ) 0 +(pe 1 pe 2 )+(ke 1 ke 2 ) 0 ẇ g(z 1 z 2 ) ( 100 kw 1000 m 2 /s 2 ) ( m/s 2 ) (51 m) kj/kg kg/s Part b) The mass flow rate can be written as ṁ ρva ρ (πd 2 /4) V At T avg 12.5 C the density of water is ρ kg/m 3 D 4ṁ πρv 4 ( kg/s) π (998.5 kg/m 3 ) (3 m/s) m

6 Question 3 (8 marks) An inventor has developed an engine that operates on the thermal gradients in the ocean. The surface waters at the proposed location are 29.5 C and those at a reasonable depth are at 10 C. The engine is claimed to produce 74.6 kw and rejects 300 kw of heat. a) What is the thermal efficiency of this engine? b) Clearly demonstrate if this process is or is not possible by comparing it with the Carnot cycle operating between T H and T L. c) Find the rate of entropy generation, Ṡ gen [kw/k], for the inventor s engine. Part a) From the first law for a heat engine, one can write: The thermal efficiency is: Q H Q L + Ẇ net η 1 Q L Q H 1 Q L Ẇ net + Q L kw 74.6 kw kw 19.9% Part b) The maximum possible efficiency of a heat engine is the Carnot efficiency which works between the same thermal reservoirs. η Carnot 1 T L T H K K 6.4%

7 Since the heat engine s efficiency is greater than the Carnot cycle efficiency, the cycle is impossible. Part c) An entropy balance over the heat engine gives or Ṡ gen ( ) dscv dt }{{} 0 (steady) Q H T H + Q L T L +( S) MER 0 Ṡ gen Q L T L Q H T H 300 kw 283 K kw K kw/k impossible since Ṡ gen < 0

8 Question 4 (8 marks) An adiabatic flash evaporator is used to make a small amount of clean water from dirty water. The dirty water enters as saturated liquid at 30 C andatarateof20 kg/min. Clean water leaves as a saturated vapour at 25 C. Dirty water leaves the evaporator as saturated liquid at 25 C. a) Determine the mass flow rate [kg/min] of the clean water vapour. b) Determine the rate of entropy generation [kw/k] within the evaporator. From Table A-4 we note that State T ( C) Phase h (kj/kg) s (kj/kg K) 1 30 sat. liquid sat. vapour sat. liquid Part a) Conservation of mass over the evaporator gives: ṁ 1 ṁ 2 + ṁ 3 Conservation of energy over the evaporator yields: Collecting common terms ṁ 1 h 1 ṁ 2 h 2 + ṁ 3 h 3 ṁ 2 h 2 +(ṁ 1 ṁ 2 )h 3

9 ṁ 2 ṁ1(h 1 h 3 ) (h 2 h 3 ) ( 20 kg )( ) min kg/min Part b) From the second law we know that Solving for the entropy production term 1 s 1 + Ṡ gen 2 s s 3 Ṡ gen 2 s s 3 2 s 2 +( 1 1 s 1 2 )s 3 1 s 1 ṁ 1 (s 3 s 1 )+ṁ 2 (s 2 s 3 ) ( 20 kg ) ( ) min kj K min 1 min 60 s kw K ( kj kg K kg ) ( ) min kj kg K

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 1 June 006 Midterm Examination R. Culham This is a hour, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib sheet (one side

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

ME Thermodynamics I

ME Thermodynamics I HW-22 (25 points) Given: 1 A gas power cycle with initial properties as listed on the EFD. The compressor pressure ratio is 25:1 Find: 1 Sketch all the processes on a p-h diagram and calculate the enthalpy,

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

In the next lecture...

In the next lecture... 16 1 In the next lecture... Solve problems from Entropy Carnot cycle Exergy Second law efficiency 2 Problem 1 A heat engine receives reversibly 420 kj/cycle of heat from a source at 327 o C and rejects

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 1:30 p.m. 3:30 p.m. Mongia Abraham Sojka Bae Naik ME 200 Final Exam December 12, 2011 8:00 a.m. to 10:00 a.m. INSTRUCTIONS

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Engineering Thermodynamics

Engineering Thermodynamics David Ng Summer 2017 Contents 1 July 5, 2017 3 1.1 Thermodynamics................................ 3 2 July 7, 2017 3 2.1 Properties.................................... 3 3 July 10, 2017 4 3.1 Systems.....................................

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015

ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015 ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015 CIRCLE YOUR LECTURE BELOW: 7:30 a.m. 10:30 a.m. 12:30 p.m. 2:30 p.m. 4:30 p.m. Joglekar Chen Chen Kittel Naik INSTRUCTIONS

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19. HERMODYNAMICS ES Answer Key. (a) 9. (a) 7. (c) 5. (a). (d). (b) 0. (d) 8. (d) 6. (c) 4. (b). (d). (c) 9. (b) 7. (c) 5. (c) 4. (d). (a) 0. (b) 8. (b) 6. (b) 5. (b). (d). (a) 9. (a) 7. (b) 6. (a) 4. (d).

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

More information

EXAM # 1 ME 300 SP2017

EXAM # 1 ME 300 SP2017 CIRCLE YOUR LECTURE BELOW: 8:3 am :3 am 3:3 pm Prof. Lucht Prof. Chen Prof. Goldenstein EXAM # ME 3 SP7 INSTRUCTIONS. Please place all your electronics, including but not limited to cell phones, computers,

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m. ME 00 Thermodynamics II Exam 1 September 7, 01 8:00 p.m. 9:00 p.m. Name: Solution Section (Circle One): Sojka Naik 11:0 a.m. 1:0 p.m. Instructions: This is a closed book/notes exam. You may use a calculator.

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Content Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As a system becomes

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes.

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes. 50 MAE 320 THERODYNAMICS FINAL EXAM - Practice Name: You are allowed three sheets of notes. 1. Fill in the blanks for each of the two (Carnot) cycles below. (a) 5 a) Heat engine or Heat pump/refrigerator

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. Department: Mechanical Subject Code: ME2202 U N IT - 1 Semester: III Subject Name: ENGG. THERMODYNAMICS 1. 1 kg of gas at 1.1 bar, 27 o C is compressed

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1 In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

More information

Isentropic Efficiency in Engineering Thermodynamics

Isentropic Efficiency in Engineering Thermodynamics June 21, 2010 Isentropic Efficiency in Engineering Thermodynamics Introduction This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by Moran and Shapiro (2008. The intent

More information

MAE 110A. Homework 3: Solutions 10/20/2017

MAE 110A. Homework 3: Solutions 10/20/2017 MAE 110A Homework 3: Solutions 10/20/2017 3.10: For H 2O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. Given a) T 140 C, v 0.5 m 3 kg b) p 30MPa,

More information

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa,

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa, - -58E The systolic and diastolic pressures of a healthy person are given in mmhg. These pressures are to be expressed in kpa, psi, and meter water column. Assumptions Both mercury and water are incompressible

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS Last Name First Name CIRCLE YOUR LECTURE BELOW: 8: am : am : pm Prof. Memon Prof. Naik Prof. Lucht EXAM # INSTRUCTIONS. This is a closed book examination. An equation sheet and all needed property tables

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz. 374 Exergy Analysis The value of the exergy of the system depends only on its initial and final state, which is set by the conditions of the environment The term T 0 P S is always positive, and it does

More information

Basic thermodynamics. heat to the high temperature reservoir.

Basic thermodynamics. heat to the high temperature reservoir. Consider a heat engine that is operating in a cyclic process takes heat (QH) from a high temperature reservoir & converts completely into work (W), violating the Kelvin Planck statement. Let the work W,

More information

ME 300 Thermodynamics II

ME 300 Thermodynamics II ME 300 Thermodynamics II Prof. S. H. Frankel Fall 2006 ME 300 Thermodynamics II 1 Week 1 Introduction/Motivation Review Unsteady analysis NEW! ME 300 Thermodynamics II 2 Today s Outline Introductions/motivations

More information

BME-A PREVIOUS YEAR QUESTIONS

BME-A PREVIOUS YEAR QUESTIONS BME-A PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT-1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasi-static process,

More information

ME Thermodynamics I

ME Thermodynamics I HW-6 (5 points) Given: Carbon dioxide goes through an adiabatic process in a piston-cylinder assembly. provided. Find: Calculate the entropy change for each case: State data is a) Constant specific heats

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

Name: I have observed the honor code and have neither given nor received aid on this exam.

Name: I have observed the honor code and have neither given nor received aid on this exam. ME 235 FINAL EXAM, ecember 16, 2011 K. Kurabayashi and. Siegel, ME ept. Exam Rules: Open Book and one page of notes allowed. There are 4 problems. Solve each problem on a separate page. Name: I have observed

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

SUMMARY AND CONCEPTS FOR. Introduction to Engineering Thermodynamics by Sonntag and Borgnakke First edition. Wiley 2001

SUMMARY AND CONCEPTS FOR. Introduction to Engineering Thermodynamics by Sonntag and Borgnakke First edition. Wiley 2001 SUMMARY AND CONCEPTS FOR Introduction to Engineering Thermodynamics by Sonntag and Borgnakke First edition Wiley 2001 This is a collection of end of chapter summaries and main concepts and concept problems

More information

20 m neon m propane. g 20. Problems with solutions:

20 m neon m propane. g 20. Problems with solutions: Problems with solutions:. A -m tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T7K; P00KPa; M air 9; M

More information

Thermodynamic Systems

Thermodynamic Systems Thermodynamic Systems For purposes of analysis we consider two types of Thermodynamic Systems: Closed System - usually referred to as a System or a Control Mass. This type of system is separated from its

More information

ME 201 Thermodynamics

ME 201 Thermodynamics Spring 01 ME 01 Thermodynamics Property Evaluation Practice Problems II Solutions 1. Air at 100 K and 1 MPa goes to MPa isenthapically. Determine the entropy change. Substance Type: Ideal Gas (air) Process:

More information

Lecture 29-30: Closed system entropy balance

Lecture 29-30: Closed system entropy balance ME 200 Thermodynamics I Spring 2016 Lecture 29-30: Closed system entropy balance Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 200240, P.

More information

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26 Conservation of Energy for a Closed System Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-, Bangladesh zahurul@me.buet.ac.bd

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

ESO201A: Thermodynamics

ESO201A: Thermodynamics ESO201A: Thermodynamics First Semester 2015-2016 Mid-Semester Examination Instructor: Sameer Khandekar Time: 120 mins Marks: 250 Solve sub-parts of a question serially. Question #1 (60 marks): One kmol

More information

ME 200 Thermodynamics 1 Fall 2016 Final Exam

ME 200 Thermodynamics 1 Fall 2016 Final Exam Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2016 Final Exam Circle your instructor s last name Ardekani Bae Fisher olloway Jackson Meyer Sojka INSTRUCTIONS This is a closed book and

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:30 am 8:30 am 10:30 am 11:30 am Joglekar Bae Gore Abraham 1:30 pm 3:30 pm 4:30 pm Naik Naik Cheung ME 200 Exam 2 October 16, 2013 6:30 p.m. to

More information

Chapter 5: Mass, Bernoulli, and Energy Equations

Chapter 5: Mass, Bernoulli, and Energy Equations Chapter 5: Mass, Bernoulli, and Energy Equations Introduction This chapter deals with 3 equations commonly used in fluid mechanics The mass equation is an expression of the conservation of mass principle.

More information

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University Chapter 7 ENTROPY Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information