Introduction to affine Springer fibers and the Hitchin fibration

Size: px
Start display at page:

Download "Introduction to affine Springer fibers and the Hitchin fibration"

Transcription

1 Introduction to affine Springer fibers and the Hitchin fibration Zhiwei Yun Lecture notes by Tony Feng Contents 1 Classical Springer Theory Springer fibers Geometric properties of B e The Springer Correspondence Affine Springer fibers Affine Grassmannian Symmetries of X γ Finiteness of affine Springer fibers Dimension computations Affine Weyl Group Actions Orbital Integrals Setup Orbital integrals Geometric interpretation The Hitchin Fibration 23 5 Conclusion 25 1

2 1 CLASSICAL SPRINGER THEORY 1 Classical Springer Theory Springer Theory is now a classical piece of geometric representation theory, on which much other theory is built. 1.1 Springer fibers We work over an algebraically closed field k = k. Fix a simple algebraic group G/k. Furthermore, assume that ch k is large with respect to G (more precisely, the invariants of G) - this means that the representation theory over k is like that in characteristic 0. Example 1.1. The main examples will be G = SL n and Sp 2n. Notation. As usual, we denote g = Lie(G), the Lie algebra of G. B the flag variety of G, which can be defined as the space of Borel subgroups of G. This has the structure of a smooth projective variety, and is isomorphic to G/B. N g the nilpotent cone (evidently a cone because the property of being nilpotent is preserved by scalar multiplication). Example 1.2. If we have an embedding of Lie algebras g gl n, then N consists of nilpotent matrices in g. Definition 1.3. For a Borel subgroup B G, the nilradical n B of Lie(B), is the nilpotent cone of Lie(B). Let Ñ = {(e, B) N B e n B }. Then Ñ admits an obvious projection to B, which makes it a vector bundle (in fact, the cotangent bundle) of B: Ñ T B. Exercise 1.4. Check this by checking that n B may be canonically identified with the cotangent space of B at B. Definition 1.5. The map π: Ñ N is the Springer resolution. Implicit in the definition is the statement that Ñ N is a resolution of singularities (a birational morphism from a smooth variety). Indeed, Ñ is a cotangent bundle of a smooth variety, hence is itself smooth. Definition 1.6. Pick e N. Then the fiber π 1 (e) =: B e = {B G e Lie n B } is the Springer fiber of e. Example 1.7. If G = SL n = SL(V), then the Borel subgroups of G are in bijection with flags 0 V 1 V 2... V n 1 V, with the Borel subgroup being the stabilizer of its corresponding flag. 2

3 1 CLASSICAL SPRINGER THEORY Let e be a nilpotent matrix. Then we can recover B e as B e = {0 V 1... V n 1 V ev i V i 1 }. If e = 0, then this is no restriction, so we find that B e = B. At the other extreme, if e has a single Jordan block e then B e is a point. In terms of the standard basis, the unique full flag in the Springer fiber over e is 0 v 1... v 1,..., v n 1 V Example 1.8. We study the Springer fiber B e for G = SL 3 and e = 0 0 (there are two 0 Jordan blocks). Then we claim that B e is the union of two copies of P 1 along a point: B e = P 1 pt P 1. To see why, consider a flag 0 V 1 V 2 V. Either e(v 2 ) = 0 or not. If not, then evidently we must have V 1 = v 1, since that is the (one-dimensional) image of e. Therefore, any such flag has the form 0 v 1 V 2 V, so the choice of V 2 corresponds to any plane in k 3 containing v 1, i.e. a line in the twodimensional quotient V/ v 1, which is parametrized by P 1. 3

4 1 CLASSICAL SPRINGER THEORY Now consider the other case, where e(v 2 ) = 0. Since ker e = v 1, v 2, such flags are of the form 0 V 1 v 1, v 2 V. In this case, the freedom is choosing a line in the two-dimensional subspace v 1, v 2, which is again parametrized by P 1. The two choices evidently intersect at the standard flag 0 v 1 v 1, v 2 V. Remark 1.9. From this example we see that the Springer fibers may be singular. Example Let G = SL 4 and e =. 0 0 Note that e has two Jordan blocks, each of size 2. Then B e is the union of two surfaces, isomorphic to P(O( 2) O) and P 1 P 1, over P 1. This P 1 is embedded via the canonical section of the Hirzebruch surface P(O( 2) O) and diagonally in P 1 P 1. To see why, consider a flag 0 V 1 V 2 V 3 V. Definition Let g = {(x, B) x g, B B, x Lie B}. This is again a vector bundle over the flag variety. The map π g : g g is called the Grothendieck alteration. 4

5 1 CLASSICAL SPRINGER THEORY If you restrict π g to N, we almost get Ñ. The subtle difference is that in this case we only asked that x Lie(B) instead of n B, and that makes a difference that you don t see at the level of points. That is, the pre-image of N under π g is not reduced, but its reduced structure is Ñ. Exercise Work out an example of this. 1.2 Geometric properties of B e We list some properties without proof. (See the exercises.) B e is connected (usually singular, and in fact reducible). dim B e = 1 2 (dim N dim O e), where O e the orbit of e under the adjoint action. This is obviously integral, reflecting that the codimension of O e is always even. Symmetries. We have an action of C G (e), the centralizer of e in G, on B e. But there is more. We have an action of G := G G m on N, where the G m acts by dilation. Then Stab G (e) (which contains C G(e)) acts on B e. The reason is that G acts not only on N but on the Springer resolution Ñ (with G m acting trivially on the flag variety part). A nice thing about this is that Stab G (e) surjects to G m. This gives a torus action on N, which you wouldn t necessarily have if you didn t consider the G m action. In H (B e ), where we take étale cohomology with Q l -coefficients or singular cohomology with Q-coefficients, we have H odd (B e ) = 0 (DeConcini-Lusztig-Procesi) and H (B e ) is pure (Springer) in the sense of weights or Hodge theory, respectively. Remark If G = SL n, then B e can be stratified into cells, each isomorphic to some affine space, and then these two statements follow immediately. 1.3 The Springer Correspondence Let W be the Weyl group of G, which we can define as N(T)/T for some maximal torus T in G. Theorem 1.14 (Springer). There is a natural action of W on H (B e ). Remark This is subtle because there is no complex-geometric action of W on B e inducing this action on cohomology. However, W does act on B in the category of real algebraic geometry, in a way that induces this action on cohomology. The idea is that instead of presented the flag variety as G/B, one uses a compact real form for G. For instance, if G = GL n then B = G/B = U n (R)/T c. Concretely, this can be thought of as orthogonal framings in C n with the standard hermitian form, C n = L 1 L 2... L n. 5

6 1 CLASSICAL SPRINGER THEORY It s clear how W S n acts on the set of such framings. However, this action is only realanalytic and not complex-analytic. Sketch of construction. (Lusztig) We require some facts. Fact. The map π g : g g is a small map, i.e. if then codim Y d > 2d for all d > 0. Y d = {x g dim π 1 g (x) d} g Example If g = sl 2, then π g is generically 2:1. The fiber over 0 is the whole flag variety, P 1. All other fibers are finite. Since the point 0 has codimension 3 in g, the map is small. By another general result, this fact implies that Rπ g is a perverse sheaf. Moreover, it is IC(g ss, L[dim g]) where L = (π g ) Q g ss (in general one would take the derived pushforward, but that is unnecessary here as the pushforward is already exact, because the map is a finite cover). Over g ss, the map π g ss : g ss g ss is an étale Galois cover with Galois group W. The induced W-action on L is the obvious one. By the functoriality of IC, W acts on Rπ g Q. Taking stalks at e N, we get a W action on (Rπ g Q) e = H (B e ). Example If e is regular, then B e is a point and the action is trivial. If e = 0 then B e = B and we get W acting on the cohomology of the full flag variety H (B). Borel s presentation of the cohomology of the flag variety is H (B) Sym(t )/ Sym(t ) W +. The action of W is induced by the obvious one of W on t. N is a union of orbits. The largest is typically called the regular orbit O reg. Then next largest orbit is called the subregular orbit, O subreg. This has codimension 2 in N. So for subregular e, we find that dim B e = 1, and in fact is always a union of P 1 s. Their configuration is interesting, and turns out to be related to the Dykin diagram of G. The rule 6

7 1 CLASSICAL SPRINGER THEORY is that each node of the Dynkin diagram becomes a node of the curve. More generally, in the simply laced case the Dynkin diagram is the dual graph to the the Springer fiber. Example For G = Sp 2n, the short roots are as before, and the long roots corresponds to two P 1 s. What is the action of the Weyl group on this union of P 1 s? For e subregular and g of type A, D, E we have H 2 (B e ) t. Then the Weyl group action is the usual reflection action on H 2 (B e ) t. The analysis is more complicated in the non simply-laced cases. Example For type G 2, C G (e) is a disconnected algebraic group. The component group is isomorphic to S 3, and the action on cohomology factors throught this component group. 7

8 1 CLASSICAL SPRINGER THEORY So there is an S 3 action on H 2 (B e ). In fact we we have simultaneous actions of W and S 3 on H 2 (B e ), and these actions commute (the Weyl group commutes with centralizer, of course), and that decomposes it into t and a two-dimensional piece. The action of S 3 on the second piece is its irreducible two-dimensional representation. Now let us state the Springer correspondence. This says that each irreducible representation of W can be realized in the cohomological representations constructed by Springer. Theorem 1.20 (Springer correspondence). For each irreducible representation V of W, there is a pair (e, ρ) where e N and ρ is an irreducible representation of A G := π 0 (C G (e)) such that V Hom Ag (ρ, H 2d e (B e )) (where 2d e = dim B e ) as W-representations. Furthermore, the pair (e, ρ) is unique up to G-conjugation. We can reformulate this as the existence of a natural injection Irr(W) {(e, ρ) e N, ρ Irr(A G (e))}/conjugation. A more geometric perspective on the right hand side is that it is the set of isomorphism classes of G-equivariant irreducible local systems on nilpotent orbits. Sketch of proof. We require a more refined result. Theorem 1.21 (Borho-MacPherson). If π: Ñ N is the Springer resolution, then Rπ Q[dim N] is a perverse sheaf and End(Rπ Q) Q[W]. 8

9 1 CLASSICAL SPRINGER THEORY Since the Weyl group acts on Rπ Q[dim N], the Borho-MacPherson Theorem implies a decomposition Rπ Q[dim N] = F χ V χ (V χ,χ) Irr(W) Note that every (V χ, χ) has a non-zero summand on the right hand side because End(Rπ Q) Q[W]. Now F χ = IC(O, E) where O N is a nilpotent orbit and E is a G-equivariant local system on O (i.e. an irreducible representation of π 0 (C G (e)). This gives the injection Irr(W) {(O, E)} predicted by the Springer correspondence. 9

10 2 AFFINE SPRINGER FIBERS 2 Affine Springer fibers Motivation. First off, why does anybody care about (affine) Springer fibers? By work of Lusztig, Springer fibers turn out to have applications to the representation theory of finite groups of Lie type, e.g. SL n (F p ). Analogously, affine Springer fibers are closely related to the representation theory of p-adic groups. 2.1 Affine Grassmannian We work over an algebraically closed field k = k. Let F = k((t)) and O F = k[[t]]. Then the affine Grassmannian Gr G satisfies Gr G (k) = G(F)/G(O F ). (See the lectures of Xinwen Zhu for a more thorough introduction to the affine Grassmannina.) For G = GL n, we can also interpret Gr G (k) = {O F lattices in F n }. For γ gl n (F) and Λ F n a lattice, we obtain a subgroup γλ F n (which is not necessarily a lattice, as γ could have been 0). Definition 2.1. The affine Springer fiber of γ is the ind-subscheme X γ Gr G classifying lattices that are stable under γ: X γ (k) = {Λ F n such that γλ Λ}. Example 2.2. Let G = GL n. What is the bijection Gr G (k) {O F lattices in F n }? For a coset gg(o F ), we may associate the lattice go n F where On F Fn is the standard lattice. We claim that this is surjective (i.e. all lattices arise in this way), and that all ambiguity comes from right multiplication by G(O n F ). The surjectivity is obvious. If γλ Λ, write Λ = go n F. Then the condition is reformulated as γgo n F gon F, or g 1 γg gl n (O F ). This motivates the more general definition: Definition 2.3. Let G be a reductive group over k. If γ g(f) = g k F, then we define the affine Springer fiber X γ of γ as the ind-subscheme that classifies cosets gg(o F ) such that Ad(g 1 )γ g(o F ) =: g k O F. This can be huge, e.g. for γ = 0 we get the whole affine Grassmannian. We re not really interested in studying those huge fibers. So from now on we restrict to the case γ g(f) rs= regular semisimple. For G = GL n, that means that the eigenvalues are distinct. In practice, X γ is usually non-reduced, but we want to work with its reduced subscheme. Therefore, from now on we rename X red γ = X γ. 10

11 2 AFFINE SPRINGER FIBERS ( ) x 0 Example 2.4. Let G = SL 2 and γ = with x k 0 x (we should assume that the characteristic is not 2 to have distinct eigenvalues). Then X γ is a discrete set of points parametrized by Z. Indeed, the lattices stable under γ of volume 1 are of the form t n O F t n O F. ( ) t 0 For γ = g the affine Springer fiber X 0 t γ is an infinite chain of P 1 : ( ) t 0 There is a Z-action on X γ corresponding to Λ 0 t 1 (since this matrix commutes with γ, it preserves ( the) property of being in the affine Springer fiber). 0 1 For γ =, the affine Springer fiber X t 0 γ is just a point (the standard lattice). ( ) 0 t For γ = t 2, the affine Springer fiber X 0 γ is a single P 1. Note that in the last two cases, we actually obtain schemes (rather than ind-schemes). The geometry of the affine Springer fiber appears to depend heavily on whether or not the matrix can be diagonalized. The third example has eigenvalues being square roots of t, and thus require a quadratic extension in order to diagonalize. The general principle is that the more diagonalizable the element γ, the more infinite the affine Springer fiber X γ. 2.2 Symmetries of X γ Let G γ be the centralizer of γ in G(F). Since we assumed that γ is regular semisimple, G γ is a torus over F (i.e. if we extend scalars to F, it becomes a product of G m s). ( ) ( ) t a Example 2.5. If γ =, then C t G (γ) is the diagonal torus a 1 with a F. 11

12 ( If γ = t 2 AFFINE SPRINGER FIBERS ) 1, then over F = k((it 1/2 )) F the matrix γ becomes diagonalizable, so {( ) a b G γ (F) = bt a This is a one-dimensional torus, nonsplit over F. Definition 2.6. The co-character group of G γ is We always have a map } a, b F, a 2 b 2 t = 1 = ker((f ) Nm F ). X (G γ ) = Hom F alg (G m, G γ ). G m Z X (G γ ) G γ (1) which describes the inclusion of the maximal split subtorus in G γ. For any cocharacter µ: G m G γ, we can take F-points to obtain µ: F[t, t 1 ] G γ (F). Denote by t µ the image of t in G γ (F) under µ(f). Putting this together with (1) gives a map t X (G γ ) X (G γ ) F Z X (G γ ) G γ (F). Let L γ = t X (G γ ) G γ (F), which is a lattice. Since G γ (F) acts on X γ, we find that the lattice L γ does as well. Theorem 2.7 (Kazhdan-Lustzig). If γ g(f) rs, then L γ acts freely on X γ and L γ \X γ is proper. Example 2.8. Taking the quotient of the infinite chain of P 1 from Example 2.4 by the Z- action, since Z = X (G γ ) is the lattice corresponding to the diagonal torus, yields the nodal (projective) cubic: ( ) 0 1 If γ = then we have that X t 0 (G γ ) = 0, so L γ = {0}. However, the theorem is not vacuous because then it says that the affine springer fiber X γ is proper. 12

13 2 AFFINE SPRINGER FIBERS 2.3 Finiteness of affine Springer fibers. Theorem 2.9 (Kazhdan-Lusztig). Let γ g(f) rs and F = k((t)). Then L γ \X γ is proper over k. Let G γ G(F) be the centralizer of γ. Recall that we considered the group X (G gγ ) of all homomorphisms G m G γ (F), and a map X (G γ ) G γ (F) sending a cocharacter λ to λ(t). The image is a lattice L γ acting on X γ. Proof. We consider only the case γ t(f) rs. We choose ( a ) maximal torus T G over k, so a T(F) G(F). For example, in sl 2 such a choice is. We want to show that there exists a finite type scheme Y X γ such that X γ is covered by translations of Y under the action of L γ. Once we know this, we see that the quotient L γ \X γ admits a surjective map from Y. Then it s easy to show that L γ \X γ is actually proper. TONY: [ehhhh?] Recall the Iwasawa decomposition, which implies that G(F)/G(O) = N(F)t λ G(O)/G(O) λ X (T) where N is the unipotent radical (think of sl 2, where N = affine Springer fiber lying in the cell where λ = 0, a 1 Y := X γ (N(F)G(O)/G(O)). ( ) 1 ). Consider the part of the 1 Sinced we assumed that γ t(f) rs, we have G γ (F) = T(F) and hence L γ = {t λ λ X (T)}. Then the action of the lattice L γ is described as follows: t µ L γ takes N(F)t λ G(O)/G(O) N(F)t λ+µ G(O)/G(O). So it s clear that L γ Y will cover all of X γ. All we need to show now is that Y is of finite type. A point in Y is an element u N(F)/N(O) such that Ad(u 1 )γ g(o). Since Ad(u 1 ) is upper-triangular and γ is diagonal, this will necessarily lie in b(o). Also note that we must have γ t(o), or the affine Springer fiber will be empty. By the root decomposition, we have Ad(u 1 )γ = γ + τ α, τ α g α (F). α>0 (We know that we can sum over positive roots only because the result is in the Borel.) Let s try to digest the terms that appear here. Observe that since u N(F)/N(O), we may write u = α>0 x α (c α ) where x α : G a G corresponds to the root α and c α F. Then it is a fact that τ α = α, γ c α (where the pairing of α t and γ t is the natural one between t and t) plus something involving only those c β for roots β lower than α, i.e. such that α β is positive. This means that if we order our matrix compatibly with this 13

14 2 AFFINE SPRINGER FIBERS partial order, and we think about solving for c α inductively from the lower weights, then the diagonal terms are α, γ..... β, γ c β... τ β τ α... = α, γ c α Our constraint is that all of the entries of the matrix lie in O, which amounts to some inequalities saying that the valuation is non-negative. Now think about solving for the c α. Inductively, we can view c β as having bounded valuation for all β < α. When we solve for c α in terms of c β, the key point is that α, γ 0 for all roots α, precisely because γ is regular semisimple, so this inequality puts a non-trivial bound on c α. That forces Y to be of finite type over k. Example For sl 2, we have ( ) 1 cα u = 1 ( ) a1 so if γ = (with regularity being equivalent to a 1 a 2 ), then a Dimension computations ( ) ( ) Ad(u 1 a1 c )γ = α (a 1 a 2 ) a1 c = α γ, α. Now we want to compute the dimension of X γ. a 2 Split case. Suppose γ t(o F ), so that the fiber is non-empty. From the proof in the preceding section, one sees: dim X γ = val F α, γ. α>0 For each γ g(f) rs, consider ad(γ): g(f) g(f). This is not invertible, since the kernel is the Lie algebra g γ (F) of the centralizer of γ, which is a torus. So that means that it descends to an injection g(f)/g γ (F) g. Since we would like to have a square matrix, we consider the reduction ad γ: g(f)/g γ (F) g/g γ (F) which we know is an isomorphism. Define (γ) := det(ad γ) F. a 2 14

15 2 AFFINE SPRINGER FIBERS When γ t(f) n, we claim that val F α, γ = 1 2 val F (γ). α>0 Indeed, think of g(f)/g γ (F) as the sum of the all the root spaces (both positive and negative). On the root space g α, ad γ acts by α, γ by definition. So val F (γ) is equal to the sume of val F α, γ over all the negative and positive roots. This suggests that Theorem 2.11 (Bezrukavnikov). We have where c(γ) = rank G rank X (G γ ) } {{ } L γ dim X γ 1 2 val F (Y). dim X γ = 1 2 val F (γ) c(γ) Think ok c(γ) as an error term. If γ is diagonalizable, then X (G γ ) has rank equal to rank G and c(γ) = 0. If not then it s smaller, so c(γ) is larger and the affine Springer fiber is smaller. Proof. The idea is to reduce the dimension of this complicated variety to calculating the dimension of a certain commutative group. We consider Some properties of this subset: X reg γ, X reg γ X reg γ X reg γ = {gg(o) Ad(g 1 )γ mod t g(k) reg } X γ. is open (clear) and dim X reg γ X γ is dense), = dim X γ (in fact, Ngo Bau Chau later proved that G γ (F) acts transitively on X reg γ, and we have X reg γ = G γ (F)/ compact open subgroup. This quotient is a finite-dimensional commutative group over k, possibly with infinitely many components. 2.5 Affine Weyl Group Actions We can construct an analogue of the affine Springer fibers for affine flag varieties: Y γ Fl, the affine flag varietyof G. For G = GL n, Fl has an interpretation in terms of lattices, like the affine Grassmannian, but instead of a single lattice we consider a chain of lattices: Fl = {... Λ 0 Λ 1... lattices in F n dim k Λ i /Λ i 1 = 1, Λ i+n = t 1 Λ i for all i}. 15

16 2 AFFINE SPRINGER FIBERS The set of such chains should be naturally identified with Fl(k). Note that this admits a map to Gr(k) by sending the chain to Λ 0, which should be be the k-points of an algebraic map Fl Gr. If G = GL n, then we can define, in analogy to the affine Springer fiber, In general, we have Y γ = {Λ Fl γλ i Λ i }. Fl = LG/I = G(F)/I where I is an Iwahori subgroup of G(O), which is a subgroup reducing to the Borel modulo t. Iwahori subgroups are all conjugate. You can think of them as integral analogues of Borel subgroups. I G(O) B(k) G(k) If G is simply-connected, then we may think of Fl as the space of Iwahori subgroups in LG, completely analogous to how B is the space of Borel subgroups in G. Then we may define: mod t Y γ = {Iwahori subgroups I LG γ Lie(I)}. Definition For general G and a fixed Iwahori I, we define Y γ = {gi Fl Ad(g 1 )γ Lie(I)}. The Y γ have similar properties to the X γ, e.g. they have lattice actions such that the quotients by these actions are proper. However, we want to move on to discuss Springer s realizations of affine Weyl group actions. Theorem 2.13 (Lustzig, Sage). Let γ g(f) rs. There is a natural action of the affine Weyl group W = X (T) W on H (Y γ ). Remark Since things are horribly infinite, it s better to consider homology rather than cohomology. This action may be constructed along the lines of the arguments we gave, not involving perverse sheaves. However, it is not well understood how to actually compute them. 16

17 3 ORBITAL INTEGRALS 3 Orbital Integrals 3.1 Setup We now choose k = F q and F = k((t)). Let G/k be a reductive group. Then G(F) is a locally compact topological group, hence carries a (left) Haar measure dg, unique up to scalar. (Though it turns out that G(F) is unimodular, so the left and right Haar measures coincide.) Let S(G(F)) be the space of locally constant C-valued functions on G(F) with compact support. Example 3.1. The characteristic function 1 G(O) is locally constant and compactly supported, because G(O) is open and compact. For f S(G(F)), we may consider G(F) f (g) dg. Assume that f is right invariant under G(O), so f descends to a function f : G(F)/G(O) C. Normalize dg so that vol(g(o), dg) = 1. Then f (g) dg = 3.2 Orbital integrals G(F) g G(F)/G(O) f (g). For orbital integrals, we need a variant of the preceding discussion. For our starting point, we have a function ϕ S(g(F)) and γ g(f) rs. We want to make sense of the integral ϕ(ad(g 1 )γ). We haven t yet chosen a measure. If we naïvely use the Haar measure, then the integral ϕ(ad(g 1 γ) dg G(F) may not converge. The problem is that ϕ isn t a Schwartz function on G(F). Indeed, the the integrand is the composition which is not Schwartz. G(F) Ad( ) 1 γ g(f) ϕ C 17

18 3 ORBITAL INTEGRALS Example 3.2. A compactly supported function ϕ on F restricts to a compactly supported function function ϕ on F if and only if ϕ(0) = 0. However, note that the function is invariant under G γ, since it commutes with g. Therefore, the above actually factors through Now, this is a compactly supported function. Definition 3.3. We define the orbital integral O γ (ϕ) = G γ (F)\G(F) Ad( ) 1 γ g(f) ϕ C G γ (F)\G(F) ϕ(ad(g 1 )γ) dg d γ g where dg is a Haar measure on G and d γ g is a Haar measure on G γ (F). Relation to affine Springer fibers. Consider what this gives for the function ϕ = 1 g(o). Then the integrand of O γ (1 g(o) ) is 1 if Ad(g 1 )γ g(o) and 0 otherwise. In other words, it is precisely the characteristic function of the affine Springer fibers X γ, so O γ (1 g(o) ) measures the volume of X γ. Define the set X γ = X γ (k) = {gg(o) G(F)/G(O) Ad(g 1 )γ g(o)}. The g which contribute to the integral are precisely those coming from X γ. Now pick a lattice L 0 G γ (F) which is cocompact. This is the analogue of the group L γ that we introduced in the geometric setting. For example, we can take L 0 = L γ (k). (This is possibly a smaller lattice than L γ, since its k-structure can be twisted by Galois.) Roughly speaking, we have O γ (1 g(o) ) = #(L 0 \X γ ). Of course this formula can t quite be true, because the right hand side depends on the choice of L 0 while the left hand side doesn t, and the left hand side depends on a normalization of measure while the right hand side doesn t. The precise relation is as follows. Lemma 3.4. We have O γ (1 g(o) ) = vol(l 0 \G γ, d γ g) 1 #(L 0 \X γ ). Remark 3.5. We are still assuming that dg is normalized so that vol(g(o), dg) = 1. Warning: (L γ \X γ )(k) always admits a map from L γ (k)\x γ (k), but these are not equal in general. Example 3.6. We discuss an example which is on the problem sheet. Let k = F q, F = k((t)), and G = SL 2 /F. For a k \ (k ) 2, we consider the affine Springer fibers for the two elements ( ) ( ) 0 at γ =, γ 0 at 2 =. t These are conjugate under GL 2 (F), but not SL 2 (F). However, they become conjugate after making a quadratic extension k = k( a), E = Fk. 18

19 3 ORBITAL INTEGRALS Let me give the geometric picture. The affine Springer fibers X γ and X γ are indschemes over k, such that if we pass to k, then each looks like a chain of P 1. However, the Galois actions look different. In each case Galois operates roughly as a reflection, exchanging pairs of components. However, the affine Springer fiber X γ has a special (i.e. stable) point, while X γ has a special component. In particular, on X γ the group Gal(k /k) fixes only the special point, so O γ = 1. On the other hand, on X γ the group Gal(k /k) fixes the central P 1. Therefore, it descends to some form of P 1 over k. But since there are no twisted forms of P 1 over a finite field, it must actually descend to P 1 k, so O γ = q + 1. Now what about the quotient by the lattice action? If L γ = X (G γ k k), then there should be a relation between O γ and L γ \X γ (k). In this example, Gal(k /k) Gal(E/F) σ acts on Z = L γ by 1. Concerning X γ, the quotient L γ \X γ is obtained by identifying two points on P 1. But while each of these points is not defined over k, they form Galois conjugates and hence their pair is identified over k. Therefore, the quotient gains an additional point: #(L γ \X γ )(k) = q

20 3 ORBITAL INTEGRALS It turns out that #L γ \X γ (k) has the same answer, but the picture is more complicated. Definition 3.7. Let γ g(f) rs and ϕ S(g(F)). 1. We say that γ and γ are stably conjugate, and denote γ st γ, if they are conjugate under G(F), and we define the stable conjugacy class This is a finite set. 2. We define the stable orbital integral StConj(γ) = {γ st γ}/g(f). SO γ (ϕ) = [γ ] StConj(γ) O γ (ϕ). Theorem 3.8 (Goresky-Kottwitz-MacPherson, Ngô). We have SO γ (1 g(o) ) = vol(k γ, d γ g) 1 #(L γ \X γ )(k) where K γ G γ (F) is the parahoric (in this case, unique maximal compact) subgroup. Example 3.9. In our example, G γ = ker(nm: E Nm F ) and K γ = G γ (O). 3.3 Geometric interpretation Theorem 3.10 (Grothendieck-Lefschetz Trace Formula). We have SO γ = vol(k γ, d γ g) 1 i ( 1) i Tr(Frob, H (L γ \X γ ) k) 20

21 3 ORBITAL INTEGRALS This is the starting point of the geometric interpretation of the Fundamental Lemma. Example For G = SL 3 and γ = 1 1 t 4, we have X γ = {Λ F 3 γλ Λ, vol(λ) = vol(o 3 F )}. (the volume condition comes from the fact that we are considering SL 3 instead of GL 3 ). Since G γ (F) has no split torus, L 0 = 0. The conditions are that Λ is stable under O F and γ. Now we have the commutative subalgebra R := O F [γ] Mat 3 (F). In fact, R O F [y]/(y 3 t 4 ), so E := Frac(R) is a (possibly non-galois) cubic extension of F, isomorphic to k((t 1/3 )). Then we may write X γ = {R submodules Λ Frac(R) vol(λ) = vol(r)}. This is a familiar object from number theory: E is a local field (admittedly not necessariliy) and R is an order i E (but possibly not a Dedekind domain). So X γ consists of fractional ideals of R satisfying some volume condition. If R was actually a Dedekind domain, then this set would be trivial, since fractional ideals of a local Dedekind domain, i.e. discrete valuation ring, are just determined by the power of the uniformizer, which in turn determines the volume. If our R is not a Dedekind domain, then we get more. There is an extra symmetry: we have an action of k on R k[[s 3, s 4 ]] O E = k[[s]], where s = t 1/3 (this is the normalization of R). The action is simply by scaling s. The G m action on X γ induces a cell decomposition (this is a general phenomenon, going by the name of the Balynicki-Birula theorem, whenever we have G m acting on any proper variety), indexed by fixed points of G m. So what are the fixed points here? If Λ E is fixed under G m, since the eigenvalues of G m are the monomials in s, Λ must be (topologically) spanned by the monomials. This gives a bijection { Gm -fixed fractional ideals Λ for R } { non-empty subsets M Z }. stable under +3, +4, and bounded below The answer is that O γ = 1 + q + 2q 2 + q 3. This is clearly indicating a cell decomposition, with one 0-cell, one 1-cell, two 2-cells, and a 3-cell. In the preceding example everything was quite general up until the discussion of the extra symmetries. We could interpret the affine Springer fibers as a set of modules of some commutative order. Example For G = GL n and γ g(f) rs, one can form a commutative O F -algebra R such that Frac(R) is an F-algebra of degree n, and interpret X γ as a set of fractional R-ideals. 21

22 3 ORBITAL INTEGRALS Geometrically, think of Spec R as a local curve C forming a degree n cover of the formal disc Spec O F. Then X γ Pic(C) (the compactification of the Picard group of C). This is because we are classifying a line bundle plus a trivialization over the punctured disk, or alternatively a line bundle plus a meromorphic section. When C is not smooth then we need to consider more: the compactification consists of torsion-free coherent sheaves of generic rank 1. Note that here, the number n doesn t play a significant role, and the description is independent of it. 22

23 4 THE HITCHIN FIBRATION 4 The Hitchin Fibration Because of time constraints, we ll talk only about G = GL n. Definition 4.1. Fix X an algebraic curve over k = k and L a line bundle on X. The Hitchin moduli stack is M = { } E rank n vector bundle on X (E, ϕ) ϕ: E E L. Example 4.2. If L = ω X, then M T Bun n. Construction of the Hitchin fibration. There is a map f : M A (the base is yet to be described) sending (E, ϕ) to the coefficient of the characteristic polynomial of ϕ. What does this mean? The first coefficient a 1 should be tr(ϕ, E), but since ϕ isn t an endomorphism, this isn t a function but a section a 1 H 0 (X, L). Similarly, we have a 2 = tr(ϕ,. = 2 ɛ) H 0 (X, L 2 ) a n = det ϕ H 0 (X, L n ). So the base is A = n i=1 H0 (X, L i ). This is the Hitchin fibration. M = {(E, ϕ)} A = n i=1 H0 (X, L i ). Fix a = (a 1,..., a n ) A. Then what is M a = f 1 (a)? The picture is similar to the discussion of 3.3. The fiber is called a spectral curve. We can form Y a = O X [y]/(y n a 1 y n ± a n ). This is a flat, degree n cover of X Y a f p a n:1 X If the discriminant (a) 0 then Y a is a reduced curve. This Y a is an analogue of the local curve Spec R. Theorem 4.3 (Hitchin). There is a canonical identification M a Pic(Y a ). How does this work? That is, how do we relate a torsion-free coherent sheave of generic rank 1 on Y a to a vector bundle on X? The answer is that for F, p a is a rank n vector bundle on X. However, the fact that it comes from upstairs implies that p a F is equipped with extra structure. Think to the discussion of the example in 3.3: the pushforward will not just be an O F -module but an R-module, which is stable by γ.. 23

24 4 THE HITCHIN FIBRATION f Remark 4.4. For general G, we can define M G A G analogously. There is then a similar interpretation of M a using Pic, Prym, etc. Now let s try to relate M a and X γ. The whole point of the Hitchin fibration is that it helps us to understand the geometry of affine Springer fibers, and indeed leads to the solution of the Fundamental Lemma. Consider the spectral curve Y a = spectral curve Spec R x p a n:1 X Spec O x Then we have an action Pic(Y a ) on Pic(Y a ) by the tensor product. For each x X and a x g//g(o x ) there is a canonical lift of a x to g(o x ). That defines an affine Springer fiber X ax, and it admits an action of G ax. This action factors through some local analogue of the Picard group, P ax. (A large compact open subgroup of the torus acts trivially; the action factors through a finite-dimensional quotient.) Theorem 4.5 (Ngô). We have a homeomorphism of stacks [Pic(Y a )\Pic(Y a )] [P ax \X ax ]. x X This is the key point that makes the global fundamental lemma work. 24

25 5 CONCLUSION 5 Conclusion We conclude with a panorama of the objects that we have introduced. Springer fibers Affine Springer fibers Hitchin fibers (flag variety verson) (flag variety version) Setting k F = k((t)) X a curve over k Symmetry W (Weyl) W (affine Weyl) W Hecke graded affine graded double affine graded double affine Hecke algebra Hecke algebra Hecke algebra Applications: rep ns of G(F q ) orbital integrals on G(F) (finite Lie type) characters of G(F)-rep ns trace formula for G/k(X) 25

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N 74 16. Lecture 16: Springer Representations 16.1. The flag manifold. Let G = SL n (C). It acts transitively on the set F of complete flags 0 F 1 F n 1 C n and the stabilizer of the standard flag is the

More information

Fundamental Lemma and Hitchin Fibration

Fundamental Lemma and Hitchin Fibration Fundamental Lemma and Hitchin Fibration Gérard Laumon CNRS and Université Paris-Sud September 21, 2006 In order to: compute the Hasse-Weil zeta functions of Shimura varieties (for example A g ), prove

More information

Lectures on Springer theories and orbital integrals

Lectures on Springer theories and orbital integrals IAS/Park City Mathematics Series Volume 00, Pages 000 000 S 1079-5634(XX)0000-0 Lectures on Springer theories and orbital integrals Zhiwei Yun Abstract. These are the expanded lecture notes from the author

More information

The geometric Satake isomorphism for p-adic groups

The geometric Satake isomorphism for p-adic groups The geometric Satake isomorphism for p-adic groups Xinwen Zhu Notes by Tony Feng 1 Geometric Satake Let me start by recalling a fundamental theorem in the Geometric Langlands Program, which is the Geometric

More information

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )).

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )). 92 19. Perverse sheaves on the affine Grassmannian 19.1. Spherical Hecke algebra. The Hecke algebra H(G(Q p )//G(Z p )) resp. H(G(F q ((T ))//G(F q [[T ]])) etc. of locally constant compactly supported

More information

Proof of Langlands for GL(2), II

Proof of Langlands for GL(2), II Proof of Langlands for GL(), II Notes by Tony Feng for a talk by Jochen Heinloth April 8, 016 1 Overview Let X/F q be a smooth, projective, geometrically connected curve. The aim is to show that if E is

More information

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) February 5, 2014 Let k be an algebraically closed field, let X be a algebraic curve over k (always assumed to be smooth and complete), and

More information

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that ALGEBRAIC GROUPS 61 5. Root systems and semisimple Lie algebras 5.1. Characteristic 0 theory. Assume in this subsection that chark = 0. Let me recall a couple of definitions made earlier: G is called reductive

More information

The Affine Grassmannian

The Affine Grassmannian 1 The Affine Grassmannian Chris Elliott March 7, 2013 1 Introduction The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form Bun G (X), where X is an algebraic

More information

Fundamental Lemma and Hitchin Fibration

Fundamental Lemma and Hitchin Fibration Fundamental Lemma and Hitchin Fibration Gérard Laumon CNRS and Université Paris-Sud May 13, 2009 Introduction In this talk I shall mainly report on Ngô Bao Châu s proof of the Langlands-Shelstad Fundamental

More information

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop Eric Sommers 17 July 2009 2 Contents 1 Background 5 1.1 Linear algebra......................................... 5 1.1.1

More information

On the geometric Langlands duality

On the geometric Langlands duality On the geometric Langlands duality Peter Fiebig Emmy Noether Zentrum Universität Erlangen Nürnberg Schwerpunkttagung Bad Honnef April 2010 Outline This lecture will give an overview on the following topics:

More information

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) IVAN LOSEV In this lecture we will discuss the representation theory of the algebraic group SL 2 (F) and of the Lie algebra sl 2 (F), where F is

More information

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset Classification of quasi-finite étale separated schemes As we saw in lecture, Zariski s Main Theorem provides a very visual picture of quasi-finite étale separated schemes X over a henselian local ring

More information

The Grothendieck-Katz Conjecture for certain locally symmetric varieties

The Grothendieck-Katz Conjecture for certain locally symmetric varieties The Grothendieck-Katz Conjecture for certain locally symmetric varieties Benson Farb and Mark Kisin August 20, 2008 Abstract Using Margulis results on lattices in semi-simple Lie groups, we prove the Grothendieck-

More information

Math 249B. Nilpotence of connected solvable groups

Math 249B. Nilpotence of connected solvable groups Math 249B. Nilpotence of connected solvable groups 1. Motivation and examples In abstract group theory, the descending central series {C i (G)} of a group G is defined recursively by C 0 (G) = G and C

More information

REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES. Notation. 1. GL n

REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES. Notation. 1. GL n REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES ZHIWEI YUN Fix a prime number p and a power q of p. k = F q ; k d = F q d. ν n means ν is a partition of n. Notation Conjugacy classes 1. GL n 1.1.

More information

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS DAN CIUBOTARU 1. Classical motivation: spherical functions 1.1. Spherical harmonics. Let S n 1 R n be the (n 1)-dimensional sphere, C (S n 1 ) the

More information

THE HITCHIN FIBRATION

THE HITCHIN FIBRATION THE HITCHIN FIBRATION Seminar talk based on part of Ngô Bao Châu s preprint: Le lemme fondamental pour les algèbres de Lie [2]. Here X is a smooth connected projective curve over a field k whose genus

More information

Discussion Session on p-divisible Groups

Discussion Session on p-divisible Groups Discussion Session on p-divisible Groups Notes by Tony Feng April 7, 2016 These are notes from a discussion session of p-divisible groups. Some questions were posed by Dennis Gaitsgory, and then their

More information

LECTURE 11: SOERGEL BIMODULES

LECTURE 11: SOERGEL BIMODULES LECTURE 11: SOERGEL BIMODULES IVAN LOSEV Introduction In this lecture we continue to study the category O 0 and explain some ideas towards the proof of the Kazhdan-Lusztig conjecture. We start by introducing

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

Math 210C. The representation ring

Math 210C. The representation ring Math 210C. The representation ring 1. Introduction Let G be a nontrivial connected compact Lie group that is semisimple and simply connected (e.g., SU(n) for n 2, Sp(n) for n 1, or Spin(n) for n 3). Let

More information

Notes on Green functions

Notes on Green functions Notes on Green functions Jean Michel University Paris VII AIM, 4th June, 2007 Jean Michel (University Paris VII) Notes on Green functions AIM, 4th June, 2007 1 / 15 We consider a reductive group G over

More information

Introduction to Affine Grassmannians

Introduction to Affine Grassmannians Introduction to Affine Grassmannians Xinwen Zhu Lecture notes by Tony Feng Contents 1 The Affine Grassmannian 2 1.1 Construction.................................. 2 1.2 Beauville-Laszlo interpretation........................

More information

We then have an analogous theorem. Theorem 1.2.

We then have an analogous theorem. Theorem 1.2. 1. K-Theory of Topological Stacks, Ryan Grady, Notre Dame Throughout, G is sufficiently nice: simple, maybe π 1 is free, or perhaps it s even simply connected. Anyway, there are some assumptions lurking.

More information

15 Elliptic curves and Fermat s last theorem

15 Elliptic curves and Fermat s last theorem 15 Elliptic curves and Fermat s last theorem Let q > 3 be a prime (and later p will be a prime which has no relation which q). Suppose that there exists a non-trivial integral solution to the Diophantine

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

Character sheaves and modular generalized Springer correspondence Part 2: The generalized Springer correspondence

Character sheaves and modular generalized Springer correspondence Part 2: The generalized Springer correspondence Character sheaves and modular generalized Springer correspondence Part 2: The generalized Springer correspondence Anthony Henderson (joint with Pramod Achar, Daniel Juteau, Simon Riche) University of Sydney

More information

Raynaud on F -vector schemes and prolongation

Raynaud on F -vector schemes and prolongation Raynaud on F -vector schemes and prolongation Melanie Matchett Wood November 7, 2010 1 Introduction and Motivation Given a finite, flat commutative group scheme G killed by p over R of mixed characteristic

More information

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1 Character sheaves on a symmetric space and Kostka polynomials Toshiaki Shoji Nagoya University July 27, 2012, Osaka Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1

More information

Lemma 1.3. The element [X, X] is nonzero.

Lemma 1.3. The element [X, X] is nonzero. Math 210C. The remarkable SU(2) Let G be a non-commutative connected compact Lie group, and assume that its rank (i.e., dimension of maximal tori) is 1; equivalently, G is a compact connected Lie group

More information

Hodge Theory of Maps

Hodge Theory of Maps Hodge Theory of Maps Migliorini and de Cataldo June 24, 2010 1 Migliorini 1 - Hodge Theory of Maps The existence of a Kähler form give strong topological constraints via Hodge theory. Can we get similar

More information

EKT of Some Wonderful Compactifications

EKT of Some Wonderful Compactifications EKT of Some Wonderful Compactifications and recent results on Complete Quadrics. (Based on joint works with Soumya Banerjee and Michael Joyce) Mahir Bilen Can April 16, 2016 Mahir Bilen Can EKT of Some

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

Symplectic varieties and Poisson deformations

Symplectic varieties and Poisson deformations Symplectic varieties and Poisson deformations Yoshinori Namikawa A symplectic variety X is a normal algebraic variety (defined over C) which admits an everywhere non-degenerate d-closed 2-form ω on the

More information

Peter Scholze Notes by Tony Feng. This is proved by real analysis, and the main step is to represent de Rham cohomology classes by harmonic forms.

Peter Scholze Notes by Tony Feng. This is proved by real analysis, and the main step is to represent de Rham cohomology classes by harmonic forms. p-adic Hodge Theory Peter Scholze Notes by Tony Feng 1 Classical Hodge Theory Let X be a compact complex manifold. We discuss three properties of classical Hodge theory. Hodge decomposition. Hodge s theorem

More information

Construction of M B, M Dol, M DR

Construction of M B, M Dol, M DR Construction of M B, M Dol, M DR Hendrik Orem Talbot Workshop, Spring 2011 Contents 1 Some Moduli Space Theory 1 1.1 Moduli of Sheaves: Semistability and Boundedness.............. 1 1.2 Geometric Invariant

More information

Notes on Partial Resolutions of Nilpotent Varieties by Borho and Macpherson

Notes on Partial Resolutions of Nilpotent Varieties by Borho and Macpherson Notes on Partial Resolutions of Nilpotent Varieties by Borho and Macpherson Chris Elliott January 14th, 2014 1 Setup Let G be a complex reductive Lie group with Lie algebra g. The paper [BM83] relates

More information

GEOMETRIC CLASS FIELD THEORY I

GEOMETRIC CLASS FIELD THEORY I GEOMETRIC CLASS FIELD THEORY I TONY FENG 1. Classical class field theory 1.1. The Artin map. Let s start off by reviewing the classical origins of class field theory. The motivating problem is basically

More information

Math 210B. Profinite group cohomology

Math 210B. Profinite group cohomology Math 210B. Profinite group cohomology 1. Motivation Let {Γ i } be an inverse system of finite groups with surjective transition maps, and define Γ = Γ i equipped with its inverse it topology (i.e., the

More information

LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD)

LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) TONY FENG 1. Recollections Let ω be a meromorphic differential on X and ψ 0 : F q Q l be an additive character. Last time we produced

More information

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS Contents 1. Regular elements in semisimple Lie algebras 1 2. The flag variety and the Bruhat decomposition 3 3. The Grothendieck-Springer resolution 6 4. The

More information

1 Notations and Statement of the Main Results

1 Notations and Statement of the Main Results An introduction to algebraic fundamental groups 1 Notations and Statement of the Main Results Throughout the talk, all schemes are locally Noetherian. All maps are of locally finite type. There two main

More information

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS ANA BALIBANU DISCUSSED WITH PROFESSOR VICTOR GINZBURG 1. Introduction The aim of this paper is to explore the geometry of a Lie algebra g through the action

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

Equivariant Algebraic K-Theory

Equivariant Algebraic K-Theory Equivariant Algebraic K-Theory Ryan Mickler E-mail: mickler.r@husky.neu.edu Abstract: Notes from lectures given during the MIT/NEU Graduate Seminar on Nakajima Quiver Varieties, Spring 2015 Contents 1

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24 FOUNDATIONS OF ALGEBRAIC GEOMETR CLASS 24 RAVI VAKIL CONTENTS 1. Normalization, continued 1 2. Sheaf Spec 3 3. Sheaf Proj 4 Last day: Fibers of morphisms. Properties preserved by base change: open immersions,

More information

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =.

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =. FINITE GROUP THEORY: SOLUTIONS TONY FENG These are hints/solutions/commentary on the problems. They are not a model for what to actually write on the quals. 1. 2010 FALL MORNING 5 (i) Note that G acts

More information

Geometric Class Field Theory

Geometric Class Field Theory Geometric Class Field Theory Notes by Tony Feng for a talk by Bhargav Bhatt April 4, 2016 In the first half we will explain the unramified picture from the geometric point of view, and in the second half

More information

Beilinson s conjectures I

Beilinson s conjectures I Beilinson s conjectures I Akshay Venkatesh February 17, 2016 1 Deligne s conjecture As we saw, Deligne made a conjecture for varieties (actually at the level of motives) for the special values of L-function.

More information

Introduction to Chiral Algebras

Introduction to Chiral Algebras Introduction to Chiral Algebras Nick Rozenblyum Our goal will be to prove the fact that the algebra End(V ac) is commutative. The proof itself will be very easy - a version of the Eckmann Hilton argument

More information

Arithmetic of certain integrable systems. University of Chicago & Vietnam Institute for Advanced Study in Mathematics

Arithmetic of certain integrable systems. University of Chicago & Vietnam Institute for Advanced Study in Mathematics Arithmetic of certain integrable systems Ngô Bao Châu University of Chicago & Vietnam Institute for Advanced Study in Mathematics System of congruence equations Let us consider a system of congruence equations

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Combinatorics and geometry of E 7

Combinatorics and geometry of E 7 Combinatorics and geometry of E 7 Steven Sam University of California, Berkeley September 19, 2012 1/24 Outline Macdonald representations Vinberg representations Root system Weyl group 7 points in P 2

More information

Braid group actions on categories of coherent sheaves

Braid group actions on categories of coherent sheaves Braid group actions on categories of coherent sheaves MIT-Northeastern Rep Theory Seminar In this talk we will construct, following the recent paper [BR] by Bezrukavnikov and Riche, actions of certain

More information

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n)

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) VERA SERGANOVA Abstract. We decompose the category of finite-dimensional gl (m n)- modules into the direct sum of blocks, show that

More information

QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS

QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS SAM RASKIN 1. Differential operators on stacks 1.1. We will define a D-module of differential operators on a smooth stack and construct a symbol map when

More information

Galois to Automorphic in Geometric Langlands

Galois to Automorphic in Geometric Langlands Galois to Automorphic in Geometric Langlands Notes by Tony Feng for a talk by Tsao-Hsien Chen April 5, 2016 1 The classical case, G = GL n 1.1 Setup Let X/F q be a proper, smooth, geometrically irreducible

More information

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism 8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

More information

Geometric Structure and the Local Langlands Conjecture

Geometric Structure and the Local Langlands Conjecture Geometric Structure and the Local Langlands Conjecture Paul Baum Penn State Representations of Reductive Groups University of Utah, Salt Lake City July 9, 2013 Paul Baum (Penn State) Geometric Structure

More information

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL ALGEBRA EXERCISES, PhD EXAMINATION LEVEL 1. Suppose that G is a finite group. (a) Prove that if G is nilpotent, and H is any proper subgroup, then H is a proper subgroup of its normalizer. (b) Use (a)

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

Goresky MacPherson Calculus for the Affine Flag Varieties

Goresky MacPherson Calculus for the Affine Flag Varieties Canad. J. Math. Vol. 62 (2), 2010 pp. 473 480 doi:10.4153/cjm-2010-029-x c Canadian Mathematical Society 2010 Goresky MacPherson Calculus for the Affine Flag Varieties Zhiwei Yun Abstract. We use the fixed

More information

AHAHA: Preliminary results on p-adic groups and their representations.

AHAHA: Preliminary results on p-adic groups and their representations. AHAHA: Preliminary results on p-adic groups and their representations. Nate Harman September 16, 2014 1 Introduction and motivation Let k be a locally compact non-discrete field with non-archimedean valuation

More information

The Hecke category (part II Satake equivalence)

The Hecke category (part II Satake equivalence) The Hecke category (part II Satake equivalence) Ryan Reich 23 February 2010 In last week s lecture, we discussed the Hecke category Sph of spherical, or (Ô)-equivariant D-modules on the affine grassmannian

More information

0 A. ... A j GL nj (F q ), 1 j r

0 A. ... A j GL nj (F q ), 1 j r CHAPTER 4 Representations of finite groups of Lie type Let F q be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the F q -rational points of a connected

More information

Proof of Geometric Langlands for GL(2), I

Proof of Geometric Langlands for GL(2), I Proof of Geometric Langlands for GL(2), I Notes by Tony Feng for a talk by Stefan Patrikis April 5, 206 Some recollections. Notation Let X/F q =: k be a smooth projective geometrically connected curve.

More information

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG Contents 1. Review 1 2. Lifting differential forms from the boundary 2 3. Eisenstein

More information

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes! ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

More information

Category O and its basic properties

Category O and its basic properties Category O and its basic properties Daniil Kalinov 1 Definitions Let g denote a semisimple Lie algebra over C with fixed Cartan and Borel subalgebras h b g. Define n = α>0 g α, n = α

More information

1. Algebraic vector bundles. Affine Varieties

1. Algebraic vector bundles. Affine Varieties 0. Brief overview Cycles and bundles are intrinsic invariants of algebraic varieties Close connections going back to Grothendieck Work with quasi-projective varieties over a field k Affine Varieties 1.

More information

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr )

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr ) MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 43 5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified embedding in a projective space. However, an ample line bundle

More information

Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

More information

Defining equations for some nilpotent varieties

Defining equations for some nilpotent varieties 1 Defining equations for some nilpotent varieties Eric Sommers (UMass Amherst) Ben Johnson (Oklahoma State) The Mathematical Legacy of Bertram Kostant MIT June 1, 2018 Kostant s interest in the Buckyball

More information

COMPLEX ALGEBRAIC SURFACES CLASS 9

COMPLEX ALGEBRAIC SURFACES CLASS 9 COMPLEX ALGEBRAIC SURFACES CLASS 9 RAVI VAKIL CONTENTS 1. Construction of Castelnuovo s contraction map 1 2. Ruled surfaces 3 (At the end of last lecture I discussed the Weak Factorization Theorem, Resolution

More information

Math 594. Solutions 5

Math 594. Solutions 5 Math 594. Solutions 5 Book problems 6.1: 7. Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof should work for infinite groups). Give an example of a group G which possesses

More information

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle Vector bundles in Algebraic Geometry Enrique Arrondo Notes(* prepared for the First Summer School on Complex Geometry (Villarrica, Chile 7-9 December 2010 1 The notion of vector bundle In affine geometry,

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

Tamagawa Numbers in the Function Field Case (Lecture 2)

Tamagawa Numbers in the Function Field Case (Lecture 2) Tamagawa Numbers in the Function Field Case (Lecture 2) February 5, 204 In the previous lecture, we defined the Tamagawa measure associated to a connected semisimple algebraic group G over the field Q

More information

Cohomological Formulation (Lecture 3)

Cohomological Formulation (Lecture 3) Cohomological Formulation (Lecture 3) February 5, 204 Let F q be a finite field with q elements, let X be an algebraic curve over F q, and let be a smooth affine group scheme over X with connected fibers.

More information

THE p-smooth LOCUS OF SCHUBERT VARIETIES. Let k be a ring and X be an n-dimensional variety over C equipped with the classical topology.

THE p-smooth LOCUS OF SCHUBERT VARIETIES. Let k be a ring and X be an n-dimensional variety over C equipped with the classical topology. THE p-smooth LOCUS OF SCHUBERT VARIETIES GEORDIE WILLIAMSON ABSTRACT. These are notes from talks given at Jussieu (seminaire Chevalley), Newcastle and Aberdeen (ARTIN meeting). They are intended as a gentle

More information

BIRTHING OPERS SAM RASKIN

BIRTHING OPERS SAM RASKIN BIRTHING OPERS SAM RASKIN 1. Introduction 1.1. Let G be a simply connected semisimple group with Borel subgroup B, N = [B, B] and let H = B/N. Let g, b, n and h be the respective Lie algebras of these

More information

PICARD GROUPS OF MODULI PROBLEMS II

PICARD GROUPS OF MODULI PROBLEMS II PICARD GROUPS OF MODULI PROBLEMS II DANIEL LI 1. Recap Let s briefly recall what we did last time. I discussed the stack BG m, as classifying line bundles by analyzing the sense in which line bundles may

More information

arxiv: v1 [math.rt] 23 Nov 2009

arxiv: v1 [math.rt] 23 Nov 2009 PARABOLIC CHARACTER SHEAVES, III arxiv:0911.4318v1 [math.rt] 23 Nov 2009 G. Lusztig 1. A decomposition of G δ /U P 1.1. Let k be an algebraically closed field. In this paper an algebraic variety (or algebraic

More information

Hitchin fibration and endoscopy

Hitchin fibration and endoscopy Hitchin fibration and endoscopy Talk given in Kyoto the 2nd of September 2004 In [Hitchin-Duke], N. Hitchin proved that the cotangent of the moduli space of G-bundle over a compact Riemann surface is naturally

More information

Characteristic classes in the Chow ring

Characteristic classes in the Chow ring arxiv:alg-geom/9412008v1 10 Dec 1994 Characteristic classes in the Chow ring Dan Edidin and William Graham Department of Mathematics University of Chicago Chicago IL 60637 Let G be a reductive algebraic

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24 RAVI VAKIL CONTENTS 1. Vector bundles and locally free sheaves 1 2. Toward quasicoherent sheaves: the distinguished affine base 5 Quasicoherent and coherent sheaves

More information

Spherical varieties and arc spaces

Spherical varieties and arc spaces Spherical varieties and arc spaces Victor Batyrev, ESI, Vienna 19, 20 January 2017 1 Lecture 1 This is a joint work with Anne Moreau. Let us begin with a few notations. We consider G a reductive connected

More information

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed. Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed. Answer: Note that the first generator factors as (y

More information

descends to an F -torus S T, and S M since S F ) 0 red T F

descends to an F -torus S T, and S M since S F ) 0 red T F Math 249B. Basics of reductivity and semisimplicity In the previous course, we have proved the important fact that over any field k, a non-solvable connected reductive group containing a 1-dimensional

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

HARTSHORNE EXERCISES

HARTSHORNE EXERCISES HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

More information

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim. 0.1. Stratified spaces. References are [7], [6], [3]. Singular spaces are naturally associated to many important mathematical objects (for example in representation theory). We are essentially interested

More information

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg =

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg = Problem 1 Show that if π is an irreducible representation of a compact lie group G then π is also irreducible. Give an example of a G and π such that π = π, and another for which π π. Is this true for

More information

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Benson Farb and Mark Kisin May 8, 2009 Abstract Using Margulis s results on lattices in semisimple Lie groups, we prove the Grothendieck-

More information

Cuspidality and Hecke algebras for Langlands parameters

Cuspidality and Hecke algebras for Langlands parameters Cuspidality and Hecke algebras for Langlands parameters Maarten Solleveld Universiteit Nijmegen joint with Anne-Marie Aubert and Ahmed Moussaoui 12 April 2016 Maarten Solleveld Universiteit Nijmegen Cuspidality

More information

10 l-adic representations

10 l-adic representations 0 l-adic representations We fix a prime l. Artin representations are not enough; l-adic representations with infinite images naturally appear in geometry. Definition 0.. Let K be any field. An l-adic Galois

More information

The Hitchin map, local to global

The Hitchin map, local to global The Hitchin map, local to global Andrei Negut Let X be a smooth projective curve of genus g > 1, a semisimple group and Bun = Bun (X) the moduli stack of principal bundles on X. In this talk, we will present

More information

3d Gauge Theories, Symplectic Duality and Knot Homology I. Tudor Dimofte Notes by Qiaochu Yuan

3d Gauge Theories, Symplectic Duality and Knot Homology I. Tudor Dimofte Notes by Qiaochu Yuan 3d Gauge Theories, Symplectic Duality and Knot Homology I Tudor Dimofte Notes by Qiaochu Yuan December 8, 2014 We want to study some 3d N = 4 supersymmetric QFTs. They won t be topological, but the supersymmetry

More information