LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD)

Size: px
Start display at page:

Download "LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD)"

Transcription

1 LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) TONY FENG 1. Recollections Let ω be a meromorphic differential on X and ψ 0 : F q Q l be an additive character. Last time we produced f C (GL 2 (O)\ GL 2 (A K )/B(K), Q l ) by the formula (( ) ( a 1 z f b 1)) r(div ω + Div(b/a))ψ 0 ( z, ω ) (1.1) ω Ω K where Ω K = Ω K 0. We know that f would be a cuspidal eigenform for GL 2 if we can show that f is actually right-invariant by the full GL 2 (K), and that is what we aim to show. 2. A geometric formula We are going to give a geometric interpretation of the function f defined in (1.1). We interpret GL 2 (O)\ GL 2 (A K )/ GL 2 (K) = Bun GL2 (k) =: Bun 2. and GL 2 (O)\ GL 2 (A K )/B(K) = Bun B (k) =: Flag 2. Here Flag 2 parametrizes flags (A, L) where L is a rank 2 vector bundle on X and A is a line-subbundle of L such that L/A is a invertible (i.e. A is a maximal line sub-bundle of L). We want to reinterpret f in these terms. First, what flag corresponds to ( ) ( a 1 z? b 1) We can view a and b as GL 1 -adeles, whose correspondence we understand well: it is the correspondence between divisors and line bundles: a A and b B := L/A. Then L should be determined by an extension class 0 A L B 0 in Ext 1 (B, A) = H 1 (B 1 A). This is the image of z under the natural isomorphism A K /(K + b a O) = H 1 (B 1 A) (2.1) Date: March 4,

2 2 TONY FENG Proof of (2.1). Consider the short exact sequence 0 O(D) K K/O(D) 0 We have an identification H 0 (K/O(D)) A K /D 1 O described by taking polar parts. (For clarity, if D = n v ϖ v then D 1 O means v ϖ 1 v O v.) The desired isomorphism then follows from the long exact sequence, noting that the higher cohomology of K vanishes since it is constant: A K /(K + b a O) H 1 (B 1 A) H 0 (K/O(Div(a/b))) H 1 (O(Div(a/b))). Let s first rewrite (1.1) slightly. Notice that changing ω by an F q -multiple doesn t affect the divisor. Therefore, (( ) ( a 1 z f q r(div ω+div(b/a)) b 1)) r(div ω+div(b/a)). ω Ω K /F q ω,z =0 ω Ω K /F q ω,z =0 (There is a little shuffling around of terms here, and using the fact that the sum over F q of a non-trivial character is 1.) Let P (L, A) = PH 0 (A 1 B Ω) and H(L, A) P (L, A) be the hyperplane cut out by z = 0. Then our geometric reformulation is f q r(d) r(d). (2.2) H(L,A) P (L,A) In these geometric terms the task is to show that the above formula is independent of the sub-bundle A, hence descends to a function of L. 3. Geometric interpretation of Hecke operators Definition 3.1. A lower modification of L at v X is a rank two sub-bundle L such that L( v) L L An upper modification of L is an L such that L is a lower modification of L at v.

3 LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) 3 The space of lower modifications of L at v can be pictured as a projective space P 1 k v, since it is determined by a choice of line in L/L( v) = k 2 v. The space of modifications of L at v up to scalar is the affine Grassmannian for PGL 2, which can be pictured as the Cayley graph for a free group on q v + 1 generators. In these terms, the Hecke operators on Bun 2 have the following interpretation: (U v f)(l) = f(l( v)) (T v f)(l) = f(l ). The Hecke operators on Flag 2 have a completely analogous interpretation: (U v f)(l, A) = f(l( v), A( v)) (T v f)(l, A) = f(l, A L ). To first order, we can imagine that there are two transverse direction in the affine Grassmannian for GL 2 : one modifying lattices by scalar and one which looks like the affine Grassmannian for PGL 2. The Hecke operator U v translates in the first direction, and the Hecke operator T v averages in the second direction. Example 3.2. For fun (and later use) let s think about what A L looks like as L ranges over Lower v (L). Looking just in the formal neighborhood of v, we have that lower modifications are represented by choices of lines in L/L( v). Also A represents a line in L/L( v), and so exactly one lower modification L contains A, namely the one corresponding to the line of A. What about upper modifications? There is exactly one upper modification of L in which A is not maximal, namely the pushout of L along A A(v). This can also be described as the pullback of B B(v) in the short exact sequence 0 A(v) L B 0 0 A(v) L(v) B(v) 0

4 4 TONY FENG 4. Geometric formulation of invariance Definition 4.1. For L Bun 2 let h(l) denote the least degree of invertible quotient sheaves of L F q on X F q. Note that h(l) >, because H 1 (X, L) is finite-dimensional. If we had a quotient L B with deg B 0, then the long exact sequence associated to 0 A L B 0 tells us that H 1 (L) H 1 (B); then Riemann-Roch gives a lower bound on deg B. We aim to prove the following result. Theorem 4.2. Let f : Flag 2 Q l be a Hecke eigenfunction. Suppose that for some N Z the following condition is satisfied: f(l, A) = f(l, A ) for all L, A, A such that deg A, A < h(l) N. Then f(l, A) is independent of A. In other words, if f(l, A) is independent of A whenever deg A is sufficiently negative, then f(l, A) is completely independent of A. Define the function g(l) := f(l, A) for any A with degree < h(l) N. We want to show that f(l, A) = g(l) for all A. First, we require a little Lemma guaranteeing that A is actually welldefined. Lemma 4.3. For any rank 2 vector bundle L on X, there exist maximal line subbundles A L of arbitrarily negative degree. Proof. The set of line sub-bundles of any fixed degree is finite, since Pic 0 (X) is finite (the rational poitns of a finite type variety over a finite field) and for every A the space Hom(A, L) is finite (being a finite-dimensional vector space over a finite field). However, the set of maximal rank one sub-bundles is infinite, being in bijection with lines in the generic fiber of L, which can be identified with K 2. Indeed, any such line defines a section of PL on some open subset, which can be completed by the valuative criterion to some section of the whole projective bundle, thus picking out a line sub-bundle of L with the right generic fiber. Now we ll use the Hecke condition to propagate the equality f(l, A) = g(l) through the Bun 2. Suppose f has eigenvalues t v, u v for T v, U v. Then g is also an eigenfunction with eigenvalues t v, u v. Indeed, U v g(l) = g(l( v), A( v)) and since deg A < h(l) 1 and h(l( v)) = h(l) 1 this is still in the range to be f(l( v), A( v)) = u v f(l, A). Similarly, T v g(l) = g(l ) = f(l, A L )

5 LANGLANDS FOR GL(2): GALOIS TO AUTOMORPHIC, III (D APRÈS DRINFELD) 5 for deg A h(l ), and by the Hecke eigenfunction property of f this is t v g(l). Notice that there is something funny going on here: if we choose deg A to be right at the limit h(l) N then one lower modification L has L A = A. Thus the Hecke eigensheaf property lets us propagate the invariance to higher degree relative to h(l). That is the idea exploited in the following proposition. Proposition 4.4. Let (L, A) Flag 2 and L be an upper modification of L at v such that A is maximal as a subsheaf of L. Suppose that for every L L we have f( L, A) = g( L). Then f(l, A) = g(l). Recall that the hypothesis of Theorem 4.2 is that f is independent of A once A has small enough degree with respect to h(l); since A is smaller with respect to L than L, this is progress. Proof. Consider applying T v to f(l;, A): we get t v f(l, A) = f(l, A) + and also t v g(l ) = g(l) + L Lower v(l ) L Lower v(l ) f(l, A L ) (4.1) g(l ) (4.2) but also by hypothesis f(l, A) = g(l ). Recall from Example 3.2 that L A = A( v), so f(l, A L ) = f(l, A( v)) = u v f(l (v), A) where now L (v) is an upper modification of L with A as a maximal subbundle. L (v) L L L By assumption f(l (v), A) = g(l (v)) and by the Hecke eigensheaf property for U v we have g(l (v)) = u 1 v g(l ), so the conclusion is that f(l, A L ) = g(l ). But then comparing (4.1) and (4.2) gives the result. Lemma 4.5. Let (L, A) Flag 2 with deg L > 2h(L). Then there exists an upper modification L of L at v such that h(l ) > h(l) and A is maximal as a subsheaf of L. Proof. Let A L be a line sub-bundle of maximal degree, so h(l) = deg(l/a ). There is one upper modification of L such that A is not maximal and one such that A is not maximal, so of the q v + 1 upper modifications there is at least one L in which both remain maximal. We claim that this L does the trick. Indeed, if it maps

6 6 TONY FENG to a bundle Q of degree h(l) then the kernel is of larger degree than A. Since deg A > deg h(l) the composite map A L Q is zero, so the kernel strictly contains A, a contradiction. Now we conclude the proof of Theorem 4.2. Consider the statement P (m, n): For every L containing A as a maximal invertible subsheaf and such that h(l) m, deg L n we have f(l, A) = g(l). The hypothesis is that P (m, n) holds for m > deg A + N, which is everything sufficiently far to the right in the (m, n) plane. Next, Lemma 4.5 implies that we can find an upper modification L preserving the maximality of A if n > 2m, but increasing m m+1. A further upper modification can only increase h, so Proposition 4.4 then implies that P (m + 1, n) = P (m, n) if n > 2m. This gives the truth for P (m, n) for all sufficiently large n. Finally, Proposition 4.4 implies that P (m, n + 1) = P (m, n). This completes the truth of P (m, n) for all m, n. References [1] Drinfeld, Two-dimensional l-adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2). American Journal of Mathematics 105 (1983).

Proof of Langlands for GL(2), II

Proof of Langlands for GL(2), II Proof of Langlands for GL(), II Notes by Tony Feng for a talk by Jochen Heinloth April 8, 016 1 Overview Let X/F q be a smooth, projective, geometrically connected curve. The aim is to show that if E is

More information

Galois to Automorphic in Geometric Langlands

Galois to Automorphic in Geometric Langlands Galois to Automorphic in Geometric Langlands Notes by Tony Feng for a talk by Tsao-Hsien Chen April 5, 2016 1 The classical case, G = GL n 1.1 Setup Let X/F q be a proper, smooth, geometrically irreducible

More information

Geometric Class Field Theory

Geometric Class Field Theory Geometric Class Field Theory Notes by Tony Feng for a talk by Bhargav Bhatt April 4, 2016 In the first half we will explain the unramified picture from the geometric point of view, and in the second half

More information

A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1

A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1 A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1 ALEXANDER G.M. PAULIN Abstract. The (de Rham) geometric Langlands correspondence for GL n asserts that to an irreducible rank n integrable connection

More information

An Atlas For Bun r (X)

An Atlas For Bun r (X) An Atlas For Bun r (X) As told by Dennis Gaitsgory to Nir Avni October 28, 2009 1 Bun r (X) Is Not Of Finite Type The goal of this lecture is to find a smooth atlas locally of finite type for the stack

More information

Hecke modifications. Aron Heleodoro. May 28, 2013

Hecke modifications. Aron Heleodoro. May 28, 2013 Hecke modifications Aron Heleodoro May 28, 2013 1 Introduction The interest on Hecke modifications in the geometrical Langlands program comes as a natural categorification of the product in the spherical

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

More information

COMPLEX ALGEBRAIC SURFACES CLASS 9

COMPLEX ALGEBRAIC SURFACES CLASS 9 COMPLEX ALGEBRAIC SURFACES CLASS 9 RAVI VAKIL CONTENTS 1. Construction of Castelnuovo s contraction map 1 2. Ruled surfaces 3 (At the end of last lecture I discussed the Weak Factorization Theorem, Resolution

More information

Proof of Geometric Langlands for GL(2), I

Proof of Geometric Langlands for GL(2), I Proof of Geometric Langlands for GL(2), I Notes by Tony Feng for a talk by Stefan Patrikis April 5, 206 Some recollections. Notation Let X/F q =: k be a smooth projective geometrically connected curve.

More information

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) February 5, 2014 Let k be an algebraically closed field, let X be a algebraic curve over k (always assumed to be smooth and complete), and

More information

Tamagawa Numbers in the Function Field Case (Lecture 2)

Tamagawa Numbers in the Function Field Case (Lecture 2) Tamagawa Numbers in the Function Field Case (Lecture 2) February 5, 204 In the previous lecture, we defined the Tamagawa measure associated to a connected semisimple algebraic group G over the field Q

More information

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015 The Canonical Sheaf Stefano Filipazzi September 14, 015 These notes are supposed to be a handout for the student seminar in algebraic geometry at the University of Utah. In this seminar, we will go over

More information

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )).

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )). 92 19. Perverse sheaves on the affine Grassmannian 19.1. Spherical Hecke algebra. The Hecke algebra H(G(Q p )//G(Z p )) resp. H(G(F q ((T ))//G(F q [[T ]])) etc. of locally constant compactly supported

More information

GEOMETRIC CLASS FIELD THEORY I

GEOMETRIC CLASS FIELD THEORY I GEOMETRIC CLASS FIELD THEORY I TONY FENG 1. Classical class field theory 1.1. The Artin map. Let s start off by reviewing the classical origins of class field theory. The motivating problem is basically

More information

Symplectic varieties and Poisson deformations

Symplectic varieties and Poisson deformations Symplectic varieties and Poisson deformations Yoshinori Namikawa A symplectic variety X is a normal algebraic variety (defined over C) which admits an everywhere non-degenerate d-closed 2-form ω on the

More information

SEMINAR NOTES: QUANTIZATION OF HITCHIN S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES (SEPT. 8, 2009)

SEMINAR NOTES: QUANTIZATION OF HITCHIN S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES (SEPT. 8, 2009) SEMINAR NOTES: QUANTIZATION OF HITCHIN S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES (SEPT. 8, 2009) DENNIS GAITSGORY 1. Hecke eigensheaves The general topic of this seminar can be broadly defined as Geometric

More information

MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED THETA DIVISORS

MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED THETA DIVISORS MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED THETA DIVISORS MIHNEA POPA 1. Lecture II: Moduli spaces and generalized theta divisors 1.1. The moduli space. Back to the boundedness problem: we want

More information

Holomorphic line bundles

Holomorphic line bundles Chapter 2 Holomorphic line bundles In the absence of non-constant holomorphic functions X! C on a compact complex manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e., rank

More information

NOTES ON DIVISORS AND RIEMANN-ROCH

NOTES ON DIVISORS AND RIEMANN-ROCH NOTES ON DIVISORS AND RIEMANN-ROCH NILAY KUMAR Recall that due to the maximum principle, there are no nonconstant holomorphic functions on a compact complex manifold. The next best objects to study, as

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

LAFFORGUE BACKGROUND SEMINAR PART 3 - UNIFORMIZATION OF Bun G

LAFFORGUE BACKGROUND SEMINAR PART 3 - UNIFORMIZATION OF Bun G LAFFORGUE BACKGROUND SEMINAR PART 3 - UNIFORMIZATION OF Bun G EVAN WARNER 1. More about the moduli stack of G-bundles Recall our setup from before: k is a field 1, X a projective connected smooth curve

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Application of cohomology: Hilbert polynomials and functions, Riemann- Roch, degrees, and arithmetic genus 1 1. APPLICATION OF COHOMOLOGY:

More information

Chern classes à la Grothendieck

Chern classes à la Grothendieck Chern classes à la Grothendieck Theo Raedschelders October 16, 2014 Abstract In this note we introduce Chern classes based on Grothendieck s 1958 paper [4]. His approach is completely formal and he deduces

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48 RAVI VAKIL CONTENTS 1. The local criterion for flatness 1 2. Base-point-free, ample, very ample 2 3. Every ample on a proper has a tensor power that

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

The Hecke category (part II Satake equivalence)

The Hecke category (part II Satake equivalence) The Hecke category (part II Satake equivalence) Ryan Reich 23 February 2010 In last week s lecture, we discussed the Hecke category Sph of spherical, or (Ô)-equivariant D-modules on the affine grassmannian

More information

Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

More information

15 Elliptic curves and Fermat s last theorem

15 Elliptic curves and Fermat s last theorem 15 Elliptic curves and Fermat s last theorem Let q > 3 be a prime (and later p will be a prime which has no relation which q). Suppose that there exists a non-trivial integral solution to the Diophantine

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

Theta divisors and the Frobenius morphism

Theta divisors and the Frobenius morphism Theta divisors and the Frobenius morphism David A. Madore Abstract We introduce theta divisors for vector bundles and relate them to the ordinariness of curves in characteristic p > 0. We prove, following

More information

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset Classification of quasi-finite étale separated schemes As we saw in lecture, Zariski s Main Theorem provides a very visual picture of quasi-finite étale separated schemes X over a henselian local ring

More information

The Affine Grassmannian

The Affine Grassmannian 1 The Affine Grassmannian Chris Elliott March 7, 2013 1 Introduction The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form Bun G (X), where X is an algebraic

More information

Stable maps and Quot schemes

Stable maps and Quot schemes Stable maps and Quot schemes Mihnea Popa and Mike Roth Contents 1. Introduction........................................ 1 2. Basic Setup........................................ 4 3. Dimension Estimates

More information

arxiv:math/ v1 [math.ag] 18 Oct 2003

arxiv:math/ v1 [math.ag] 18 Oct 2003 Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

More information

Some Remarks on Prill s Problem

Some Remarks on Prill s Problem AFFINE ALGEBRAIC GEOMETRY pp. 287 292 Some Remarks on Prill s Problem Abstract. N. Mohan Kumar If f : X Y is a non-constant map of smooth curves over C and if there is a degree two map π : X C where C

More information

The geometric Satake isomorphism for p-adic groups

The geometric Satake isomorphism for p-adic groups The geometric Satake isomorphism for p-adic groups Xinwen Zhu Notes by Tony Feng 1 Geometric Satake Let me start by recalling a fundamental theorem in the Geometric Langlands Program, which is the Geometric

More information

Algebraic v.s. Analytic Point of View

Algebraic v.s. Analytic Point of View Algebraic v.s. Analytic Point of View Ziwen Zhu September 19, 2015 In this talk, we will compare 3 different yet similar objects of interest in algebraic and complex geometry, namely algebraic variety,

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48 RAVI VAKIL CONTENTS 1. A little more about cubic plane curves 1 2. Line bundles of degree 4, and Poncelet s Porism 1 3. Fun counterexamples using elliptic curves

More information

Then the blow up of V along a line is a rational conic bundle over P 2. Definition A k-rational point of a scheme X over S is any point which

Then the blow up of V along a line is a rational conic bundle over P 2. Definition A k-rational point of a scheme X over S is any point which 16. Cubics II It turns out that the question of which varieties are rational is one of the subtlest geometric problems one can ask. Since the problem of determining whether a variety is rational or not

More information

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0

Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0 Algebraic Curves/Fall 2015 Aaron Bertram 1. Introduction. What is a complex curve? (Geometry) It s a Riemann surface, that is, a compact oriented twodimensional real manifold Σ with a complex structure.

More information

BRILL-NOETHER THEORY. This article follows the paper of Griffiths and Harris, "On the variety of special linear systems on a general algebraic curve.

BRILL-NOETHER THEORY. This article follows the paper of Griffiths and Harris, On the variety of special linear systems on a general algebraic curve. BRILL-NOETHER THEORY TONY FENG This article follows the paper of Griffiths and Harris, "On the variety of special linear systems on a general algebraic curve." 1. INTRODUCTION Brill-Noether theory is concerned

More information

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =.

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =. FINITE GROUP THEORY: SOLUTIONS TONY FENG These are hints/solutions/commentary on the problems. They are not a model for what to actually write on the quals. 1. 2010 FALL MORNING 5 (i) Note that G acts

More information

Special cubic fourfolds

Special cubic fourfolds Special cubic fourfolds 1 Hodge diamonds Let X be a cubic fourfold, h H 2 (X, Z) be the (Poincaré dual to the) hyperplane class. We have h 4 = deg(x) = 3. By the Lefschetz hyperplane theorem, one knows

More information

COMPLEX ALGEBRAIC SURFACES CLASS 4

COMPLEX ALGEBRAIC SURFACES CLASS 4 COMPLEX ALGEBRAIC SURFACES CLASS 4 RAVI VAKIL CONTENTS 1. Serre duality and Riemann-Roch; back to curves 2 2. Applications of Riemann-Roch 2 2.1. Classification of genus 2 curves 3 2.2. A numerical criterion

More information

Discussion Session on p-divisible Groups

Discussion Session on p-divisible Groups Discussion Session on p-divisible Groups Notes by Tony Feng April 7, 2016 These are notes from a discussion session of p-divisible groups. Some questions were posed by Dennis Gaitsgory, and then their

More information

THE REPRESENTATION THEORY, GEOMETRY, AND COMBINATORICS OF BRANCHED COVERS

THE REPRESENTATION THEORY, GEOMETRY, AND COMBINATORICS OF BRANCHED COVERS THE REPRESENTATION THEORY, GEOMETRY, AND COMBINATORICS OF BRANCHED COVERS BRIAN OSSERMAN Abstract. The study of branched covers of the Riemann sphere has connections to many fields. We recall the classical

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

What is the Langlands program all about?

What is the Langlands program all about? What is the Langlands program all about? Laurent Lafforgue November 13, 2013 Hua Loo-Keng Distinguished Lecture Academy of Mathematics and Systems Science, Chinese Academy of Sciences This talk is mainly

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Motivation and game plan 1 2. The affine case: three definitions 2 Welcome back to the third quarter! The theme for this quarter, insofar

More information

On the Notion of an Automorphic Representation *

On the Notion of an Automorphic Representation * On the Notion of an Automorphic Representation * The irreducible representations of a reductive group over a local field can be obtained from the square-integrable representations of Levi factors of parabolic

More information

9. Birational Maps and Blowing Up

9. Birational Maps and Blowing Up 72 Andreas Gathmann 9. Birational Maps and Blowing Up In the course of this class we have already seen many examples of varieties that are almost the same in the sense that they contain isomorphic dense

More information

AUTOMORPHIC FORMS NOTES, PART I

AUTOMORPHIC FORMS NOTES, PART I AUTOMORPHIC FORMS NOTES, PART I DANIEL LITT The goal of these notes are to take the classical theory of modular/automorphic forms on the upper half plane and reinterpret them, first in terms L 2 (Γ \ SL(2,

More information

arxiv: v1 [math.ag] 13 Mar 2019

arxiv: v1 [math.ag] 13 Mar 2019 THE CONSTRUCTION PROBLEM FOR HODGE NUMBERS MODULO AN INTEGER MATTHIAS PAULSEN AND STEFAN SCHREIEDER arxiv:1903.05430v1 [math.ag] 13 Mar 2019 Abstract. For any integer m 2 and any dimension n 1, we show

More information

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr )

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr ) MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 43 5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified embedding in a projective space. However, an ample line bundle

More information

The curve and the Langlands program

The curve and the Langlands program The curve and the Langlands program Laurent Fargues (CNRS/IMJ) t'etlp.at µ Îà t.at KozoI 2in spoliais Ü c Gallotta The curve Defined and studied in our joint work with Fontaine Two aspects : compact p-adic

More information

Cohomological Formulation (Lecture 3)

Cohomological Formulation (Lecture 3) Cohomological Formulation (Lecture 3) February 5, 204 Let F q be a finite field with q elements, let X be an algebraic curve over F q, and let be a smooth affine group scheme over X with connected fibers.

More information

The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section

The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 5-16-011 The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section Tolga Karayayla tkarayay@math.upenn.edu

More information

The Moduli Space of Rank 2 Vector Bundles on Projective Curves

The Moduli Space of Rank 2 Vector Bundles on Projective Curves The Moduli Space of Rank Vector Bundles on Projective urves T. Nakamura, A. Simonetti 1 Introduction Let be a smooth projective curve over and let L be a line bundle on. onsider the moduli functor VB (,

More information

DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

More information

2 G. D. DASKALOPOULOS AND R. A. WENTWORTH general, is not true. Thus, unlike the case of divisors, there are situations where k?1 0 and W k?1 = ;. r;d

2 G. D. DASKALOPOULOS AND R. A. WENTWORTH general, is not true. Thus, unlike the case of divisors, there are situations where k?1 0 and W k?1 = ;. r;d ON THE BRILL-NOETHER PROBLEM FOR VECTOR BUNDLES GEORGIOS D. DASKALOPOULOS AND RICHARD A. WENTWORTH Abstract. On an arbitrary compact Riemann surface, necessary and sucient conditions are found for the

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18 CONTENTS 1. Invertible sheaves and divisors 1 2. Morphisms of schemes 6 3. Ringed spaces and their morphisms 6 4. Definition of morphisms of schemes 7 Last day:

More information

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces Algebraic Curves and Riemann Surfaces Rick Miranda Graduate Studies in Mathematics Volume 5 If American Mathematical Society Contents Preface xix Chapter I. Riemann Surfaces: Basic Definitions 1 1. Complex

More information

RIEMANN SURFACES. max(0, deg x f)x.

RIEMANN SURFACES. max(0, deg x f)x. RIEMANN SURFACES 10. Weeks 11 12: Riemann-Roch theorem and applications 10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact Riemann surface. A divisor is an expression a x x x

More information

Algebra SEP Solutions

Algebra SEP Solutions Algebra SEP Solutions 17 July 2017 1. (January 2017 problem 1) For example: (a) G = Z/4Z, N = Z/2Z. More generally, G = Z/p n Z, N = Z/pZ, p any prime number, n 2. Also G = Z, N = nz for any n 2, since

More information

MA 206 notes: introduction to resolution of singularities

MA 206 notes: introduction to resolution of singularities MA 206 notes: introduction to resolution of singularities Dan Abramovich Brown University March 4, 2018 Abramovich Introduction to resolution of singularities 1 / 31 Resolution of singularities Let k be

More information

Fourier Mukai transforms II Orlov s criterion

Fourier Mukai transforms II Orlov s criterion Fourier Mukai transforms II Orlov s criterion Gregor Bruns 07.01.2015 1 Orlov s criterion In this note we re going to rely heavily on the projection formula, discussed earlier in Rostislav s talk) and

More information

Proof of the Shafarevich conjecture

Proof of the Shafarevich conjecture Proof of the Shafarevich conjecture Rebecca Bellovin We have an isogeny of degree l h φ : B 1 B 2 of abelian varieties over K isogenous to A. We wish to show that h(b 1 ) = h(b 2 ). By filtering the kernel

More information

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u. 5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

More information

arxiv:math/ v3 [math.ag] 17 Oct 2001

arxiv:math/ v3 [math.ag] 17 Oct 2001 ON THE GEOMETRIC LANGLANDS CONJECTURE arxiv:math/00155v3 [math.ag] 17 Oct 001 E. FRENKEL, D. GAITSGORY, AND K. VILONEN Introduction 0.1. Background. Let X be a smooth, complete, geometrically connected

More information

(1)(a) V = 2n-dimensional vector space over a field F, (1)(b) B = non-degenerate symplectic form on V.

(1)(a) V = 2n-dimensional vector space over a field F, (1)(b) B = non-degenerate symplectic form on V. 18.704 Supplementary Notes March 21, 2005 Maximal parabolic subgroups of symplectic groups These notes are intended as an outline for a long presentation to be made early in April. They describe certain

More information

Beilinson s conjectures I

Beilinson s conjectures I Beilinson s conjectures I Akshay Venkatesh February 17, 2016 1 Deligne s conjecture As we saw, Deligne made a conjecture for varieties (actually at the level of motives) for the special values of L-function.

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

KIRILLOV THEORY AND ITS APPLICATIONS

KIRILLOV THEORY AND ITS APPLICATIONS KIRILLOV THEORY AND ITS APPLICATIONS LECTURE BY JU-LEE KIM, NOTES BY TONY FENG Contents 1. Motivation (Akshay Venkatesh) 1 2. Howe s Kirillov theory 2 3. Moy-Prasad theory 5 4. Applications 6 References

More information

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X 2. Preliminaries 2.1. Divisors and line bundles. Let X be an irreducible complex variety of dimension n. The group of k-cycles on X is Z k (X) = fz linear combinations of subvarieties of dimension kg:

More information

Kleine AG: Travaux de Shimura

Kleine AG: Travaux de Shimura Kleine AG: Travaux de Shimura Sommer 2018 Programmvorschlag: Felix Gora, Andreas Mihatsch Synopsis This Kleine AG grew from the wish to understand some aspects of Deligne s axiomatic definition of Shimura

More information

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL In this lecture we discuss a criterion for non-stable-rationality based on the decomposition of the diagonal in the Chow group. This criterion

More information

Math 797W Homework 4

Math 797W Homework 4 Math 797W Homework 4 Paul Hacking December 5, 2016 We work over an algebraically closed field k. (1) Let F be a sheaf of abelian groups on a topological space X, and p X a point. Recall the definition

More information

14 From modular forms to automorphic representations

14 From modular forms to automorphic representations 14 From modular forms to automorphic representations We fix an even integer k and N > 0 as before. Let f M k (N) be a modular form. We would like to product a function on GL 2 (A Q ) out of it. Recall

More information

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23 INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23 RAVI VAKIL Contents 1. More background on invertible sheaves 1 1.1. Operations on invertible sheaves 1 1.2. Maps to projective space correspond to a vector

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

COMPLEX ALGEBRAIC SURFACES CLASS 6

COMPLEX ALGEBRAIC SURFACES CLASS 6 COMPLEX ALGEBRAIC SURFACES CLASS 6 RAVI VAKIL CONTENTS 1. The intersection form 1.1. The Neron-Severi group 3 1.. Aside: The Hodge diamond of a complex projective surface 3. Riemann-Roch for surfaces 4

More information

A Humble Example of Notions of Divisor

A Humble Example of Notions of Divisor A Humble Example of Notions of Divisor Gohan May 16, 2013 I must apologize for my morbid procrastination. Due to my incapability of understanding advanced mathematics, I was rather tortured by my previous

More information

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) IVAN LOSEV In this lecture we will discuss the representation theory of the algebraic group SL 2 (F) and of the Lie algebra sl 2 (F), where F is

More information

Question 1: Are there any non-anomalous eigenforms φ of weight different from 2 such that L χ (φ) = 0?

Question 1: Are there any non-anomalous eigenforms φ of weight different from 2 such that L χ (φ) = 0? May 12, 2003 Anomalous eigenforms and the two-variable p-adic L-function (B Mazur) A p-ordinary p-adic modular (cuspidal) eigenform (for almost all Hecke operators T l with l p and for the Atkin-Lehner

More information

Lecture 4: Abelian varieties (algebraic theory)

Lecture 4: Abelian varieties (algebraic theory) Lecture 4: Abelian varieties (algebraic theory) This lecture covers the basic theory of abelian varieties over arbitrary fields. I begin with the basic results such as commutativity and the structure of

More information

On the geometric Langlands duality

On the geometric Langlands duality On the geometric Langlands duality Peter Fiebig Emmy Noether Zentrum Universität Erlangen Nürnberg Schwerpunkttagung Bad Honnef April 2010 Outline This lecture will give an overview on the following topics:

More information

Raising the Levels of Modular Representations Kenneth A. Ribet

Raising the Levels of Modular Representations Kenneth A. Ribet 1 Raising the Levels of Modular Representations Kenneth A. Ribet 1 Introduction Let l be a prime number, and let F be an algebraic closure of the prime field F l. Suppose that ρ : Gal(Q/Q) GL(2, F) is

More information

U = 1 b. We fix the identification G a (F ) U sending b to ( 1 b

U = 1 b. We fix the identification G a (F ) U sending b to ( 1 b LECTURE 11: ADMISSIBLE REPRESENTATIONS AND SUPERCUSPIDALS I LECTURE BY CHENG-CHIANG TSAI STANFORD NUMBER THEORY LEARNING SEMINAR JANUARY 10, 2017 NOTES BY DAN DORE AND CHENG-CHIANG TSAI Let L is a global

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 RAVI VAKIL CONTENTS 1. Hyperelliptic curves 1 2. Curves of genus 3 3 1. HYPERELLIPTIC CURVES A curve C of genus at least 2 is hyperelliptic if it admits a degree

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

LECTURE 1: OVERVIEW. ; Q p ), where Y K

LECTURE 1: OVERVIEW. ; Q p ), where Y K LECTURE 1: OVERVIEW 1. The Cohomology of Algebraic Varieties Let Y be a smooth proper variety defined over a field K of characteristic zero, and let K be an algebraic closure of K. Then one has two different

More information

Combinatorics and geometry of E 7

Combinatorics and geometry of E 7 Combinatorics and geometry of E 7 Steven Sam University of California, Berkeley September 19, 2012 1/24 Outline Macdonald representations Vinberg representations Root system Weyl group 7 points in P 2

More information

The Local Langlands Conjectures for n = 1, 2

The Local Langlands Conjectures for n = 1, 2 The Local Langlands Conjectures for n = 1, 2 Chris Nicholls December 12, 2014 1 Introduction These notes are based heavily on Kevin Buzzard s excellent notes on the Langlands Correspondence. The aim is

More information

BRIAN OSSERMAN. , let t be a coordinate for the line, and take θ = d. A differential form ω may be written as g(t)dt,

BRIAN OSSERMAN. , let t be a coordinate for the line, and take θ = d. A differential form ω may be written as g(t)dt, CONNECTIONS, CURVATURE, AND p-curvature BRIAN OSSERMAN 1. Classical theory We begin by describing the classical point of view on connections, their curvature, and p-curvature, in terms of maps of sheaves

More information

BIRTHING OPERS SAM RASKIN

BIRTHING OPERS SAM RASKIN BIRTHING OPERS SAM RASKIN 1. Introduction 1.1. Let G be a simply connected semisimple group with Borel subgroup B, N = [B, B] and let H = B/N. Let g, b, n and h be the respective Lie algebras of these

More information

THE SHIMURA-TANIYAMA FORMULA AND p-divisible GROUPS

THE SHIMURA-TANIYAMA FORMULA AND p-divisible GROUPS THE SHIMURA-TANIYAMA FORMULA AND p-divisible GROUPS DANIEL LITT Let us fix the following notation: 1. Notation and Introduction K is a number field; L is a CM field with totally real subfield L + ; (A,

More information

ON A THEOREM OF CAMPANA AND PĂUN

ON A THEOREM OF CAMPANA AND PĂUN ON A THEOREM OF CAMPANA AND PĂUN CHRISTIAN SCHNELL Abstract. Let X be a smooth projective variety over the complex numbers, and X a reduced divisor with normal crossings. We present a slightly simplified

More information