# Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0

Size: px
Start display at page:

Download "Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 1 = CP 1 the line λ (1, 0) U 0"

Transcription

1 Algebraic Curves/Fall 2015 Aaron Bertram 1. Introduction. What is a complex curve? (Geometry) It s a Riemann surface, that is, a compact oriented twodimensional real manifold Σ with a complex structure. Each such Σ has a numerical invariant, namely the genus g, which is informally the number of holes, and may be computed by triangulating the surface and computing the topological Euler characteristic χ(σ) = 2 2g. (Algebra) It s a complex projective manifold C of dimension one. As such, it has a field of rational functions K(C) of transcendence degree one over the field C of scalars. The curve can be recovered from the field as the set of discrete valuation rings of K/C, which has the natural structure of a projective manifold. There is a canonical line bundle ω C, whose degree captures the genus via deg(ω C ) = 2g 2. Alternatively, the space of sections of this line bundle has dimension g, and the algebraic Euler characteristic of C is 1 g. There are advantages to both points of view. Algebraically, we can similarly treat curves, possibly with singularities, over any field k whereas the geometric point of view lends itself to applying tools from topology and differential geometry. To see that they define the same thing will take some thought. My bias will be the algebraic viewpoint. The first example is the Riemann sphere. Definition 1.1. The Riemann sphere is the complex manifold: CP 1 = C { } that compactifies the complex numbers by adding a point at infinity. This may be done by identifying C with the slopes of non-vertical lines through the origin in C 2 with the point at as the vertical line. Precisely, let: CP 1 = {lines through the origin in C 2 (with coordinates x 0, x 1 )} and define two subsets of of CP 2 by: U 0 = {lines of the form λ (1, y 1 ) for λ C} U 1 = {lines of the form λ (y 0, 1) for λ C} Each is equal to CP 1 minus one point, which is the origin of the other: (C =) U 0 = CP 1 the line λ (0, 1) U 1 (C =) U 1 = CP 1 the line λ (1, 0) U 0 1

2 2 and on the overlap U 0 U 1, the y-coordinates are transformed via: λ (1, y 1 ) = λ (y 1 1, 1) and λ (y 0, 1) = λ (1, y 1 0 ) Thus two copies of C are glued along the complements of the origin in each by the inverse map y y 1 to obtain CP 1. But this realization of CP 1 as lines through the origin allows for the linear action of a group: Definition 1.2. The projective linear group PGL(2, C) is the quotient: GL(2, C)/C of the group of invertible 2 2 matrices by the multiples of the identity. The standard action of GL(2, C) results in a well-defined action: [ ] [ ] [ ] a b x0 ax0 + bx A = = 1 c d x 1 cx 0 + dx 1 of PGL(2, C) on the lines through the origin in C 2, i.e. points of CP 1. It is convenient to write a line in homogeneous coordinates: (x 0 : x 1 ) = λ (x 0, x 1 ) and then the action above takes (x 0 : x 1 ) to (ax 0 + bx 1 : cx 0 + dx 1 ). Notice that in the coordinate y 0, this action has the following form: ( ) ay0 + b A (y 0 : 1) = cy 0 + d : 1 and is thus only well-defined as a map from C to itself away from the value y = d/c. This rational map is known as a linear fractional transformation of C. This action of PGL(2, C) on CP 1 is transitive. In fact: Exercise 1.1. (a) Any three distinct points: (p 1 : q 1 ), (p 2 : q 2 ), (p 3 : q 3 ) CP 1 may be mapped, in order, to the points: 0 = (0 : 1), 1 = (1 : 1) and = (1 : 0), respectively CP 1 by a uniquely determined element A PGL(2, C). Find this matrix, and apply it to an arbitrary fourth point (p 4 : q 4 ). This is the cross ratio of the four ordered points. (b) What happens to the cross ratio when the points are permuted? For an exercise with a more geometric flavor, Exercise 1.2. What happens to the (real) lines and circles in C when C = U 1 is acted upon by a linear fractional transformation? We may generalize the construction of the Riemann sphere to get:

3 Definition 1.2. Complex projective space CP n is similarly defined as the set of lines through the origin in C n+1 with coordinates x 0,..., x n. Analogous to the description of CP 1 as C { }, here we have: CP n = C n CP n 1 which we may write in coordinates as: CP n = {λ (1, y 1,..., y n )} {(0 : x 1 :... : x n )} The former is our higher-dimensional analogue of U 0 CP 1. The full collection of sets U 0,..., U n CP n and transition functions analogous to y y 1 may be worked out, but they require a better choice of coordinates which we will postpone until later. Projective space is the environment in which projective varieties and, in particular, projective algebraic curves, are found as common zero loci of systems of homogeneous polynomial equations. We will study these in more detail later, but notice that a polynomial F (x 0,..., x n ) that is a linear combination of monomials of the same degree d has the property that F (λ (x 0,..., x n )) = λ d F (x 0,..., x n ), and thus while the value F (x 0 :... : x n ) is not well-defined, the solutions to the equation F (x 0 :... : x n ) = 0 are well-defined as points of CP n. Example 1.1. Consider the maps φ d from CP 1 to CP n given by: φ d (s : t) = (s d : s d 1 t :... : t d ) Remark 1. All such maps are well-defined. Remark 2. Al such maps are injective (in fact, embeddings). Remark 3. The images are cut out by quadratic equations. The Conic. The image of φ 2 is the plane conic: {(s 2 : st : t 2 ) (s : t) CP 1 } CP 2 is precisely the set of solutions to the equation x 0 x 2 x 2 1 = 0. The Twisted Cubic. The image of φ 3 is the twisted cubic: C 3 = {(s 3 : s 2 t : st 2 : t 3 ) (s : t) CP 1 } CP 3 and this requires three quadratic equations to carve it out: 0 = x 0 x 3 x 1 x 2 = x 0 x 2 x 2 1 = x 1 x 3 x 2 2 Any two of these equations will cut out C 3 with an extra line. E.g. 0 = x 0 x 3 x 1 x 2 = x 0 x 2 x 2 1 is the set of points on C 3 L where L is line defined by x 0 = x 1 = 0. 3

4 4 The Rational Normal Curve C d is cut out by quadratic equations obtained by the vanishing of all the 2 2 minors of the matrix: [ x0 x 1 x d 1 x 1 x 2 x d ] More generally, given homogeneous polynomials F 0,..., F n of the same degree in s and t, then as long as the F i do not simultaneously vanish at any point (s : t) CP 1, we may use them to construct a map: φ(s : t) = (F 0 (s, t) : : F n (s : t)) whose image is always carved out by homogeneous equations. However, these maps need not be injective! Exercise 1.3. Find homogeneous cubic polynomials that cut out the images of each of the following maps: φ(s : t) = (s 3 : s 2 t : t 3 ) and ψ(z : w) = (s 3 : s 2 t + st 2 : t 3 ) We turn next to rational functions and divisors. Definition 1.3. The field of rational functions K(CP 1 ) of CP 1 is: C(y 1 ) = C(y 0 ) which are two points of view of the same field. There is useful third point of view of this field in terms of the x 0, x 1 coordinate variables on C 2. Namely, regard y 0 = x 0 /x 1 (or y 1 = x 1 /x 0 ) as a ratio of x variables and homogenize a rational function in y 0 by: φ(y 0 ) = f(y 0) g(y 0 ) = f(x 0/x 1 ) g(x 0 /x 1 ) = f(x 0/x 1 ) x d 1 = F (x 0, x 1 ) g(x 0 /x 1 ) x d 1 G(x 0, x 1 ) where F, G are homogeneous in x 0 and x 1 of the same degree. E.g. y 0 y = x 0 /x 1 (x 0 /x 1 ) = (x 0 /x 1 ) x 2 1 ((x 0 /x 1 ) 2 + 1) x 2 1 Definition 1.4. (a) A divisor on a complex curve C is: n D = d i p i i=1 = x 0x 1 x x 2 1 a formal sum of points p i C with integer coefficients d i which is a sum over all points of C with only finitely many nonzero coefficients. (b) A divisor D is effective if d i 0 for all i. (c) The degree of a divisor D is the finite sum i d i Z. (d) The support of a divisor D is the finite set {p i C d i 0}.

5 Any non-zero rational function on CP 1 may be put in lowest terms: φ(y 0 ) = f(y 0) g(y 0 ) = c i(y 0 r i ) d i j (y 0 s j ) = c i(x 0 r i x 1 ) d i e j j (x 0 s j x 1 ) e xe d j 1 for some c C and d = d i and e = e j. Then the divisor of zeroes of φ on CP 1 is: div(φ) = i d i (r i : 1) j e j (s j : 1) + (e d) (1 : 0) which is a divisor of degree zero that registers the order of zero or pole of φ at every point of CP 1, including the point at infinity! Looking ahead. A projective non-singular curve C will come equipped with a field of rational functions K(C) and a div map that produces a degree-zero divisor of zeroes and poles of any rational function φ (other than the zero function). Definition 1.5. Divisors D and D of the same degree on a curve C are linearly equivalent if there exists φ K(C) such that: div(φ) = D D The Mittag-Leffler problem on an algebraic curve C is to determine whether, for a given effective divisor D of degree d on C, there is a second effective divisor D such that D D. More generally, we want to know, given D, the full set of effective divisors D satisfying D D. This is the linear series defined by D, which is a projective space. On a Riemann sphere the answer is straightforward. Proposition 1.1. Every pair of effective divisors D and D on CP 1 of the same degree are linearly equivalent. Proof. Write: D = i d i (r i : 1) + a (1 : 0) and D = j Then the rational function: φ = i(y 0 r i ) d i j (y 0 s j ) = e j has the desired property. i(x 0 x 1 r i ) d i j (x 0 x 1 s j ) e j e j (s j : 1) + b (1 : 0) xe d 0 Remark. If D D are a pair of linearly equivalent effective divisors on C with disjoint supports, then φ K(C) solving div(φ) = D D may be viewed as a meromorphic function on C mapping φ : C CP 1 to the Riemann sphere such that φ 1 (0 : 1) = D and φ 1 (1 : 0) = D (after taking multiplicities into account) 5

6 6 More generally, φ 1 (s : t) = D (s:t) are divisors (of degree d) indexed by points of CP 1 that interpolate between D and D. Exhibiting C in this way as a branched cover of CP 1 is analogous to choosing generators and relations for a group. It determines the curve, though (as in the case of a group) it is a highly non-trivial exercise in general to determine whether two curves presented in this way as branched covers of CP 1 are isomorphic. Notice, however, that if: p q on a curve C then the map φ : C CP 1 is a bijection and, in fact, an isomorphism of algebraic curves. The Riemann-Roch theorem will tell us that every genus zero curve has a pair of linearly equivalent effective divisors of degree one, which implies that every genus zero curve is isomorphic to the Riemann sphere CP 1. The situation is completely different in higher genus, in which curves have moduli (continuous families of non-isomorphic curves).

### Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves JWR Tuesday December 11, 2001, 9:03 AM We describe the relation between algebraic curves and Riemann surfaces. An elementary reference for this material is [1]. 1

### div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let:

Algebraic Curves/Fall 015 Aaron Bertram 4. Projective Plane Curves are hypersurfaces in the plane CP. When nonsingular, they are Riemann surfaces, but we will also consider plane curves with singularities.

### Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10

Riemann surfaces Paul Hacking and Giancarlo Urzua 1/28/10 A Riemann surface (or smooth complex curve) is a complex manifold of dimension one. We will restrict to compact Riemann surfaces. It is a theorem

### ABEL S THEOREM BEN DRIBUS

ABEL S THEOREM BEN DRIBUS Abstract. Abel s Theorem is a classical result in the theory of Riemann surfaces. Important in its own right, Abel s Theorem and related ideas generalize to shed light on subjects

### Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, 2010 12. First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool for classifying smooth projective curves, i.e. giving

### The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

The Canonical Sheaf Stefano Filipazzi September 14, 015 These notes are supposed to be a handout for the student seminar in algebraic geometry at the University of Utah. In this seminar, we will go over

### An invitation to log geometry p.1

An invitation to log geometry James M c Kernan UCSB An invitation to log geometry p.1 An easy integral Everyone knows how to evaluate the following integral: 1 0 1 1 x 2 dx. An invitation to log geometry

### Algebraic Geometry (Math 6130)

Algebraic Geometry (Math 6130) Utah/Fall 2016. 2. Projective Varieties. Classically, projective space was obtained by adding points at infinity to n. Here we start with projective space and remove a hyperplane,

### 1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3

Compact course notes Riemann surfaces Fall 2011 Professor: S. Lvovski transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Structures 2 2 Framework of Riemann surfaces

### Elliptic Curves and Public Key Cryptography (3rd VDS Summer School) Discussion/Problem Session I

Elliptic Curves and Public Key Cryptography (3rd VDS Summer School) Discussion/Problem Session I You are expected to at least read through this document before Wednesday s discussion session. Hopefully,

### Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

Algebraic Geometry Andreas Gathmann Class Notes TU Kaiserslautern 2014 Contents 0. Introduction......................... 3 1. Affine Varieties........................ 9 2. The Zariski Topology......................

### Part II. Riemann Surfaces. Year

Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 96 Paper 2, Section II 23F State the uniformisation theorem. List without proof the Riemann surfaces which are uniformised

### Elliptic Curves and Elliptic Functions

Elliptic Curves and Elliptic Functions ARASH ISLAMI Professor: Dr. Chung Pang Mok McMaster University - Math 790 June 7, 01 Abstract Elliptic curves are algebraic curves of genus 1 which can be embedded

### AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE 1. RATIONAL POINTS ON CIRCLE We start by asking us: How many integers x, y, z) can satisfy x 2 + y 2 = z 2? Can we describe all of them? First we can divide

### Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces Rick Miranda Graduate Studies in Mathematics Volume 5 If American Mathematical Society Contents Preface xix Chapter I. Riemann Surfaces: Basic Definitions 1 1. Complex

### VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN

VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN Abstract. For any field k and integer g 3, we exhibit a curve X over k of genus g such that X has no non-trivial automorphisms over k. 1. Statement

### Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension one and k is a perfect field. 23.1

### AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES DOMINIC L. WYNTER Abstract. We introduce the concepts of divisors on nonsingular irreducible projective algebraic curves, the genus of such a curve,

### Exercises for algebraic curves

Exercises for algebraic curves Christophe Ritzenthaler February 18, 2019 1 Exercise Lecture 1 1.1 Exercise Show that V = {(x, y) C 2 s.t. y = sin x} is not an algebraic set. Solutions. Let us assume that

### Holomorphic line bundles

Chapter 2 Holomorphic line bundles In the absence of non-constant holomorphic functions X! C on a compact complex manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e., rank

### where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

### 12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

### Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Contents 7 Affine Varieties 1 7.1 The polynomial ring....................... 1 7.2 Hypersurfaces........................... 1 7.3 Ideals...............................

### Projective Varieties. Chapter Projective Space and Algebraic Sets

Chapter 1 Projective Varieties 1.1 Projective Space and Algebraic Sets 1.1.1 Definition. Consider A n+1 = A n+1 (k). The set of all lines in A n+1 passing through the origin 0 = (0,..., 0) is called the

### MODULI SPACES OF CURVES

MODULI SPACES OF CURVES SCOTT NOLLET Abstract. My goal is to introduce vocabulary and present examples that will help graduate students to better follow lectures at TAGS 2018. Assuming some background

### RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2015/2016.

RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2015/2016. A PRELIMINARY AND PROBABLY VERY RAW VERSION. OLEKSANDR IENA Contents Some prerequisites for the whole lecture course. 5 1. Lecture 1 5 1.1. Definition

### Riemann s goal was to classify all complex holomorphic functions of one variable.

Math 8320 Spring 2004, Riemann s view of plane curves Riemann s goal was to classify all complex holomorphic functions of one variable. 1) The fundamental equivalence relation on power series: Consider

### 10. Smooth Varieties. 82 Andreas Gathmann

82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

### EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms

EQUIVARIANT COHOMOLOGY MARTINA LANINI AND TINA KANSTRUP 1. Quick intro Let G be a topological group (i.e. a group which is also a topological space and whose operations are continuous maps) and let X be

### Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

Algebraic Geometry Andreas Gathmann Notes for a class taught at the University of Kaiserslautern 2002/2003 CONTENTS 0. Introduction 1 0.1. What is algebraic geometry? 1 0.2. Exercises 6 1. Affine varieties

### Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Contents 4 Curves in the projective plane 1 4.1 Lines................................ 1 4.1.3 The dual projective plane (P 2 )............. 2 4.1.5 Automorphisms of P

### Riemann surfaces with extra automorphisms and endomorphism rings of their Jacobians

Riemann surfaces with extra automorphisms and endomorphism rings of their Jacobians T. Shaska Oakland University Rochester, MI, 48309 April 14, 2018 Problem Let X be an algebraic curve defined over a field

### Exercise Sheet 3 - Solutions

Algebraic Geometry D-MATH, FS 2016 Prof. Pandharipande Exercise Sheet 3 - Solutions 1. Prove the following basic facts about algebraic maps. a) For f : X Y and g : Y Z algebraic morphisms of quasi-projective

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 RAVI VAKIL CONTENTS 1. Hyperelliptic curves 1 2. Curves of genus 3 3 1. HYPERELLIPTIC CURVES A curve C of genus at least 2 is hyperelliptic if it admits a degree

### Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) February 5, 2014 Let k be an algebraically closed field, let X be a algebraic curve over k (always assumed to be smooth and complete), and

### COMPLEX MULTIPLICATION: LECTURE 13

COMPLEX MULTIPLICATION: LECTURE 13 Example 0.1. If we let C = P 1, then k(c) = k(t) = k(c (q) ) and the φ (t) = t q, thus the extension k(c)/φ (k(c)) is of the form k(t 1/q )/k(t) which as you may recall

### Abelian Varieties and Complex Tori: A Tale of Correspondence

Abelian Varieties and Complex Tori: A Tale of Correspondence Nate Bushek March 12, 2012 Introduction: This is an expository presentation on an area of personal interest, not expertise. I will use results

### NOTES ON DIVISORS AND RIEMANN-ROCH

NOTES ON DIVISORS AND RIEMANN-ROCH NILAY KUMAR Recall that due to the maximum principle, there are no nonconstant holomorphic functions on a compact complex manifold. The next best objects to study, as

### Introduction to Arithmetic Geometry

Introduction to Arithmetic Geometry 18.782 Andrew V. Sutherland September 5, 2013 What is arithmetic geometry? Arithmetic geometry applies the techniques of algebraic geometry to problems in number theory

### 3. The Sheaf of Regular Functions

24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

### Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices:

Mathematics I Exercises with solutions Linear Algebra Vectors and Matrices.. Let A = 5, B = Determine the following matrices: 4 5, C = a) A + B; b) A B; c) AB; d) BA; e) (AB)C; f) A(BC) Solution: 4 5 a)

### 1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

### 0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

### Algebraic Geometry. Question: What regular polygons can be inscribed in an ellipse?

Algebraic Geometry Question: What regular polygons can be inscribed in an ellipse? 1. Varieties, Ideals, Nullstellensatz Let K be a field. We shall work over K, meaning, our coefficients of polynomials

### DIVISOR THEORY ON TROPICAL AND LOG SMOOTH CURVES

DIVISOR THEORY ON TROPICAL AND LOG SMOOTH CURVES MATTIA TALPO Abstract. Tropical geometry is a relatively new branch of algebraic geometry, that aims to prove facts about algebraic varieties by studying

### RIEMANN SURFACES. max(0, deg x f)x.

RIEMANN SURFACES 10. Weeks 11 12: Riemann-Roch theorem and applications 10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact Riemann surface. A divisor is an expression a x x x

### Review 1 Math 321: Linear Algebra Spring 2010

Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

### Algebraic Varieties. Chapter Algebraic Varieties

Chapter 12 Algebraic Varieties 12.1 Algebraic Varieties Let K be a field, n 1 a natural number, and let f 1,..., f m K[X 1,..., X n ] be polynomials with coefficients in K. Then V = {(a 1,..., a n ) :

### Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

### Let X be a topological space. We want it to look locally like C. So we make the following definition.

February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

### Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

### Riemann Surfaces Mock Exam

Riemann Surfaces Mock Exam Notes: 1. Write your name and student number **clearly** on each page of written solutions you hand in. 2. You are expected to give solutions in English or Dutch. 3. You are

### 2. Intersection Multiplicities

2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Application of cohomology: Hilbert polynomials and functions, Riemann- Roch, degrees, and arithmetic genus 1 1. APPLICATION OF COHOMOLOGY:

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23 RAVI VAKIL Contents 1. More background on invertible sheaves 1 1.1. Operations on invertible sheaves 1 1.2. Maps to projective space correspond to a vector

### LECTURE 7, WEDNESDAY

LECTURE 7, WEDNESDAY 25.02.04 FRANZ LEMMERMEYER 1. Singular Weierstrass Curves Consider cubic curves in Weierstraß form (1) E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6, the coefficients a i

### ROST S DEGREE FORMULA

ROST S DEGREE FORMULA ALEXANDER MERKURJEV Some parts of algebraic quadratic form theory and theory of simple algebras with involutions) can be translated into the language of algebraic geometry. Example

### Explicit Examples of Strebel Differentials

Explicit Examples of Strebel Differentials arxiv:0910.475v [math.dg] 30 Oct 009 1 Introduction Philip Tynan November 14, 018 In this paper, we investigate Strebel differentials, which are a special class

### ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

### arxiv:math/ v1 [math.ag] 18 Oct 2003

Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

### Isogeny invariance of the BSD conjecture

Isogeny invariance of the BSD conjecture Akshay Venkatesh October 30, 2015 1 Examples The BSD conjecture predicts that for an elliptic curve E over Q with E(Q) of rank r 0, where L (r) (1, E) r! = ( p

### Elliptic Curves and Public Key Cryptography

Elliptic Curves and Public Key Cryptography Jeff Achter January 7, 2011 1 Introduction to Elliptic Curves 1.1 Diophantine equations Many classical problems in number theory have the following form: Let

### 1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps Solutions Last updated: March 17 2011 Problem 1 The state of the planar pendulum is entirely defined by the position of its moving end in the plane R 2 Since

### Math 213br HW 12 solutions

Math 213br HW 12 solutions May 5 2014 Throughout X is a compact Riemann surface. Problem 1 Consider the Fermat quartic defined by X 4 + Y 4 + Z 4 = 0. It can be built from 12 regular Euclidean octagons

### Homework 5 M 373K Mark Lindberg and Travis Schedler

Homework 5 M 373K Mark Lindberg and Travis Schedler 1. Artin, Chapter 3, Exercise.1. Prove that the numbers of the form a + b, where a and b are rational numbers, form a subfield of C. Let F be the numbers

### Draft: January 2, 2017 INTRODUCTION TO ALGEBRAIC GEOMETRY

Draft: January 2, 2017 INTRODUCTION TO ALGEBRAIC GEOMETRY MATTHEW EMERTON Contents 1. Introduction and overview 1 2. Affine space 2 3. Affine plane curves 3 4. Projective space 7 5. Projective plane curves

### z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

### Representations and Linear Actions

Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

### Linear Algebra. Min Yan

Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

### Structure of elliptic curves and addition laws

Structure of elliptic curves and addition laws David R. Kohel Institut de Mathématiques de Luminy Barcelona 9 September 2010 Elliptic curve models We are interested in explicit projective models of elliptic

### ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

### Mini-Course on Moduli Spaces

Mini-Course on Moduli Spaces Emily Clader June 2011 1 What is a Moduli Space? 1.1 What should a moduli space do? Suppose that we want to classify some kind of object, for example: Curves of genus g, One-dimensional

### CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

### ALGEBRAIC GEOMETRY HOMEWORK 3

ALGEBRAIC GEOMETRY HOMEWORK 3 (1) Consider the curve Y 2 = X 2 (X + 1). (a) Sketch the curve. (b) Determine the singular point P on C. (c) For all lines through P, determine the intersection multiplicity

### Plane Algebraic Curves

Plane Algebraic Curves Andreas Gathmann Class Notes TU Kaiserslautern 2018 Contents 0. Introduction......................... 3 1. Affine Curves......................... 6 2. Intersection Multiplicities.....................

### Oral exam practice problems: Algebraic Geometry

Oral exam practice problems: Algebraic Geometry Alberto García Raboso TP1. Let Q 1 and Q 2 be the quadric hypersurfaces in P n given by the equations f 1 x 2 0 + + x 2 n = 0 f 2 a 0 x 2 0 + + a n x 2 n

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48 RAVI VAKIL CONTENTS 1. A little more about cubic plane curves 1 2. Line bundles of degree 4, and Poncelet s Porism 1 3. Fun counterexamples using elliptic curves

### What is a (compact) Riemann surface?

What is a (compact) Riemann surface? Irwin Kra SUNY @ Stony Brook irwinkra@gmail.com Wednesday, March 5, 2014 Math CLUB talk. To help you make a decision about topics to study (in graduate school)? Irwin

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS. ANDREW SALCH. More about some claims from the last lecture. Perhaps you have noticed by now that the Zariski topology

### Atiyah-Singer Revisited

Atiyah-Singer Revisited Paul Baum Penn State Texas A&M Universty College Station, Texas, USA April 1, 2014 From E 1, E 2,..., E n obtain : 1) The Dirac operator of R n D = n j=1 E j x j 2) The Bott generator

February 1, 2005 INTRODUCTION TO p-adic NUMBERS JASON PRESZLER 1. p-adic Expansions The study of p-adic numbers originated in the work of Kummer, but Hensel was the first to truly begin developing the

### 1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps Solutions Last updated: February 16 2012 Problem 1 a The projection maps a point P x y S 1 to the point P u 0 R 2 the intersection of the line NP with the x-axis

### Handlebody Decomposition of a Manifold

Handlebody Decomposition of a Manifold Mahuya Datta Statistics and Mathematics Unit Indian Statistical Institute, Kolkata mahuya@isical.ac.in January 12, 2012 contents Introduction What is a handlebody

### EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

EXERCISES IN MODULAR FORMS I (MATH 726) EYAL GOREN, MCGILL UNIVERSITY, FALL 2007 (1) We define a (full) lattice L in R n to be a discrete subgroup of R n that contains a basis for R n. Prove that L is

### Algebraic varieties. Chapter A ne varieties

Chapter 4 Algebraic varieties 4.1 A ne varieties Let k be a field. A ne n-space A n = A n k = kn. It s coordinate ring is simply the ring R = k[x 1,...,x n ]. Any polynomial can be evaluated at a point

### Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Vector bundles in Algebraic Geometry Enrique Arrondo Notes(* prepared for the First Summer School on Complex Geometry (Villarrica, Chile 7-9 December 2010 1 The notion of vector bundle In affine geometry,

### Math 418 Algebraic Geometry Notes

Math 418 Algebraic Geometry Notes 1 Affine Schemes Let R be a commutative ring with 1. Definition 1.1. The prime spectrum of R, denoted Spec(R), is the set of prime ideals of the ring R. Spec(R) = {P R

### Elliptic curves over function fields 1

Elliptic curves over function fields 1 Douglas Ulmer and July 6, 2009 Goals for this lecture series: Explain old results of Tate and others on the BSD conjecture over function fields Show how certain classes

### The moduli space of binary quintics

The moduli space of binary quintics A.A.du Plessis and C.T.C.Wall November 10, 2005 1 Invariant theory From classical invariant theory (we refer to the version in [2]), we find that the ring of (SL 2 )invariants

### B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

### Local properties of plane algebraic curves

Chapter 7 Local properties of plane algebraic curves Throughout this chapter let K be an algebraically closed field of characteristic zero, and as usual let A (K) be embedded into P (K) by identifying

### GEOMETRY FINAL CLAY SHONKWILER

GEOMETRY FINAL CLAY SHONKWILER 1 Let X be the space obtained by adding to a 2-dimensional sphere of radius one, a line on the z-axis going from north pole to south pole. Compute the fundamental group and

### Tropical Constructions and Lifts

Tropical Constructions and Lifts Hunter Ash August 27, 2014 1 The Algebraic Torus and M Let K denote a field of characteristic zero and K denote the associated multiplicative group. A character on (K )

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 RAVI VAKIL CONTENTS 1. Quasicoherent sheaves of ideals, and closed subschemes 1 2. Invertible sheaves (line bundles) and divisors 2 3. Some line bundles on projective

### fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical