dv dv 2 2 dt dt dv dt

Size: px
Start display at page:

Download "dv dv 2 2 dt dt dv dt"

Transcription

1 1/3/14 hapter 8 Second order circuits A circuit with two energy storage elements: One inductor, one capacitor Two capacitors, or Two inductors i Such a circuit will be described with second order differential equation: Equialently: b; () V ; () V 1 d d b; dt dt d () V; () V1 dt We first learn how to sole nd order diff equ. Soling nd order differential equations onsider a second order differential equation b with initial condition: ()=V, ()=V 1 Need to find (t) for all t. In chapter 8, b= corresponds to source free case, b for step response. et = b/ et the roots to s s = (not =b) be s 1, s, s, s 1 For example: s 3s ( s 1)( s ) s1 1; s s s 4s 5 ( s j)( s j) s1, s 1s 5 ( s 5) s1 s 5 The solution will be constructed using the roots. Three cases: ase 1: >, two distinct real roots ase : =, two identical real roots ase 3: <, two distinct complex roots j 1

2 1/3/14 b, (1) () V, () V (I) 1 ase 1: >, two distinct real roots for s s = s, s 1 The solution to (1) is not unique. For any real numbers A 1, A, the following function satisfies (1), s1t st where A b/ t () A Ae Ae 1 This is called the general solution. To erify, t () sae 1 1 sae t () sae 1 1 sae s1t st s1t As e As e ( As e As e ) ( A Ae Ae ) st 1 st st 1 st s1t st st 1 st A1e ( s1 s1) Ae ( s s ) A A b b (t) satisfies (1) for any A 1, and A The solution will be uniquely determined by the initial conditions (I) s t b, (1) () V, () V (I) 1 The general solution t () A Ae Ae s1t st 1 where A b/ There is only one pair of A 1, A that satisfy the I 1 To find A 1, A, use I to form two equations. Recall: Ealuate (t) and (t) at t=: () A A A 1 () s A s A 1 1 To satisfy the I, we obtain A A A V sasa V A V 1 A s1 s A V 1 You may use other methods to sole for A 1 and A. t () sae sae s t s t A V A A s 1 s V 1

3 1/3/14 b, (To compare) Example: Sole 4 36, () 1; () 1 4; 3; b 6 ; 3; ; ase 1, two distinct real roots for. Step 1: Find s 1, s, s1, s 31, s1 1, s 3 A b/ 6/3 The general solution: t 3t t () Ae Ae 1 Step : Find A 1,A, use initial condition () A A 1 (*) 1 () A 3A 1 (**) 1 Sole (*) and (**) to obtain A 1 = ; A =1 s, s 1 Note:, are roots to: , 3 Note: 3 Finally, 3 t () e t e t b, (1) () V, () V (I) 1 An Example: 4 36, () 1; () 1 The general solution: Since, are negatie,, t () Ae Ae t 3t 1 lim A Another way to see /,, lim lim From 1, lim 3

4 1/3/14 ase : = Two identical roots, s 1 =s = to s s = The general solution: t () A ( A Ate ) t, A t Its deriatie: t () Ae ( A Ate ) Use I to find A 1, A. At t =, () A A V 1 t 1 1 () A A V 1 1 A V A 1 A V A 1 1 b/ ase 3: < Two complex roots to s s = et d 1, 1, The general solution: t t () A e ( Bcos tbsin t), 1 d Its deriatie: t t () e ( Bcos tbsin t) Use I to find B 1, B. () A B V 1 d t e ( B sin t B cos t) 1 () B db V 1 1 d 1 d d d d 1 d A B V A b/ B ( V1 B1)/ d 4

5 1/3/14 t t () A e ( Bcos tbsin t) 1 1 d d A t A e M A 5 d ase 3: < A t A e M Example: Sole 8 5,, 1 ompare with Solution:??,?? 4, 5,, case 3, two complex roots : Step 1: Form general solution using roots and. cos sin, Imaginary part of the roots: omplex roots: 43? 5 8?? 8 cos 3 sin 3, General solution Step : Find,, using initial conditions,, 1 4 cos 3 sin 3 3 sin 3 3 cos ; 16 3 Final solution: 8 4cos4t sin 3 5

6 1/3/14 R Practice 1: Sole 5 618, () ; () 4 Practice : Sole 4 48, () 1; () 1 Practice 3: Sole , () 1; () 1 Second order R circuits Example : Find, for t >. 1 General circuit: i 6 6 t = 3V.5H 6 1V c As always,, are continuous function of time. Use the circuit before switch to find,. For t>, satisfies dc dc c b; dt dt dc c() V; () V1 dt We also need Generally, at t=. How to find. is not continuous? 6

7 1/3/14 onerting a circuit problem to a math problem To sole a second order circuit, we need to 1. Derie the differential equation:. Find the initial condition d () (), () ( c ) b dt 8.. Finding initial alues d( ) di( ) We need to find c( ), i( ),, dt dt 1. apacitor oltage and inductor current don t jump Key points: () (), i () i () Use circuit before switch (t<) to find these two. d( ) di( ). For, dt dt onsider the circuit right after switch, i.e., at t = Apply KV to find ( ), then Apply K to find ( ), then di ( ) 1 d ( ) 1 ( ), i ( ), dt dt 1 Example: Find 4 1V d( ) di( ) ( ), i( ),, dt dt.5h t= Use circuit before switch to find At t = i 4 1V.1F ( ), i ( ), 1 ( ) A, 4 4 By continuity,, 4 To find 4 1V onsider t =,.5H.1F V di( ) ( ) A/ s dt ; 4 A 1 d( ) i( ) V / s dt.1 7

8 1/3/14 hapter 8 circuits 1). Source free series R circuits ). Source free parallel R circuits 3). Step response of series R circuits 4). Step response of parallel R circuits 5). Other second order circuits We will focus on 1) and 3). We study 3) first. 1) is a special case of 3) Step response of series R circuits 1 A general circuit Before switch (t<), and may not be in series. Determine, from circuit before switch by considering as short, as open. After switch ( t> ), and in series R By Theenin s theorem, the two terminal circuit can be replaced by a oltage source and a resistor 8

9 1/3/14 By Theenin s theorem, the two terminal circuit can be replaced by a oltage source and a resistor 1 R Rearranging the elements does not change loop current and capacitor Gien We call (, ) Theenin s equialent w.r.t ( ) V, d( ) V dt 1 The equialent circuit: V th R th By KV, R Vth Gien d d R th V dt dt (V th, R th ) : Theenin s equialent w.r.t ; th ( ) V, d( ) V dt hoose as key ariable. We derie diff. equation for Express other ariables in terms of : d i ; dt ; 1 1 Normalize: d Rth d 1 Vth ; dt dt 9

10 1/3/14 Step response of series R circuit: 1 V th R th If V th =, source free R, A special case d Rth d 1 Vth ; d( ) ( ) V, V1 dt dt dt d d As compared with b; dt dt general form Rth 1 Vth b,, b, A th V ( ) The solution: ase 1: ; s, s 1 t () ( ) Ae Ae s1t st 1 ase : ; s1 s t () ( ) ( A Ate ) t 1 ase 3: ;, s, s j d 1 t t () ( ) e ( Bcos tbsin t) 1 d A 1,A,or B 1,B will be determined by initial conditions d d ase 1: 1 ; s, s 1 t () ( ) Ae Ae s t 1 s t 1 Find A 1,A from () ( ) A1 A d( ) s1a1sa dt ase : ; s1 s t () ( ) ( A Ate ) t 1 Find A 1,A from () ( ) A1 d( ) A A dt 1 ase 3: ;, s, s j d 1 t t () ( ) e ( Bcos tbsin t) 1 d d d Find B 1,B from () ( ) B1 d( ) B B dt 1 d 1

11 1/3/14 Key points for step resp. of series R circuits: Obtain, from circuit before switch d Rth d 1 Vth ; dt dt Rth 1,, ( ) For circuit after switch, obtain Theenin s equialent (V th,r th ) w.r.t Assign by passie sign conention i ( ) i () Depending on how is assigned. Then V d( ) i ( ) th dt Then follow straightforward math computation on preious slide Key parameters to obtain: V th R th, from circuit before switch, from circuit after switch. 1 Example 1: Find (t) for t >. t = 4V 5 1H.5F Step 1: find (), () from circuit before switch 4V 5 =4/6=4A = 4V 1 Since, 1 Step : Find V th, R th, w.r.t from circuit after switch 4V 5 V th =4V, R th =5. 1H.5F ( ) = 4V 16/ 1 11

12 1/3/14 Step 3: Math computation R th.5,, ase 1.5 s, s s11, s4 1 1 The general solution: t () 4 Ae Ae t 4t 1 Note: t Find A 1, A from initial condition: () = 4V; d( )/dt= =16 64 t 4 4t Final solution: t () 4 e e V /3, 4/3 Practice 4: Find d( ) di( ) ( ), i( ),, dt dt R1 4 i 3u(t)A.5F V.6H 1

13 1/3/14 Practice 5: Find (t) for t >. R1 t = 6 3V 4 i.f 4.5H Practice 6: The switch is at position a for a long time before swinging to position b at t =. Find i (t), (t) for t >. R1 a b 6V 1 t = 1 16mF i.5h 13

14 1/3/14 Example : Find i(t), (t) for t >. 6 6 t =.5H 6 i 1/8F Step 1: find (), i() from circuit before switch i 3V 1V 3V 1V (3 1) i() 5A 6//(66) 4 A simple circuit in hapter. By oltage diision, 6 6 (3 1) 1 V 66 By KV, ()=V Step : After switch 6 6.5H 6 i 1V 5,? Since, 5 1/8F R th =(66)//6=4, V th =1V = ( ) i 5/1/8 4/ R th =?, V th =? Step 3: math?? Which case? R th 4; 4.5.5/8 ase. General solution: (t) = 1(A 1 A t)e 4t Find A 1,A using (), : () 1 A1 A 1 =1, A = d( ) 4A1 A 4 dt Final solution: = 1 1 e 4t V Find inductor current, = (1/8)*1( 4)e 4t = 5 e 4t A 14

15 1/3/14 For parallel R circuit i By Norton s Theorem I N i R R i i hoose i as key ariable. Derie diff equ. with K di di d i, ir, i dt R dt dt ir i i I di N di i I N Rdt dt di 1 di 1 I 1 1 I N Normalize: i,, b N dt R dt R Same math problem. No parallel R circuits in homework or Final Exam. Example 3: Find (t) for t >. 1V 3u(t)A 6 Recall:, t < ut () 1, t > 6.5H 1 16mF Thus for t<, 3u(t)A=A The current source is turned off. Replace it with open circuit for t< Key parameters to obtain: (), i () from circuit before switch (t<) V th, R th w.r.t. from circuit after switch (t>). Step 1: Find, from circuit for t< 15

16 1/3/14 Step 1: Find, from circuit for t< For t <, 3u(t)A=, current source open, open, short 1V 6 16mF 6 1 Since =, 1V, 6Ω 1Ω in the outer loop are in series By oltage diision: ,, Step : For t>, 3u(t)A=3A. Need to find, w.r.t 1V 3A 6 6.5H 1 16mF 16

17 1/3/14 Step : Fot t>, 3u(t)A=3A. Need to find, w.r.t 1V 3A 6 For 1V 3A 6 3A 6 6.5H 16mF 1 For, turn off 1V with short, turn off 3A with open 6 6 R 66//1 =1Ω 1 6 ( ) 1 By KV, R 3618, by ohms law , Step 3: Math Step : Another way to look at the circuit for t> 1V 6 3A.5H 16mF 6 1 To see connection better, moe 1 Ω to the left 6 1V R 3A 1.5H 16mF 6 61//61Ω Under D condition, 8, 18,

18 1/3/14 Step 3: math From step 1, step, found 1Ω, 8186, 8, 1.5 1; 1 15,.5.16, 3, The general solution: t 6e B cos 5t B sin 5t To satisfy initial condition: Soling equations to get 18; 36 Step response: t 6e 18 cos 5 36 sin 5 18

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis Chapter 4: Techniques of Circuit Analysis This chapter gies us many useful tools for soling and simplifying circuits. We saw a few simple tools in the last chapter (reduction of circuits ia series and

More information

Chapter 2 Resistive Circuits

Chapter 2 Resistive Circuits 1. Sole circuits (i.e., find currents and oltages of interest) by combining resistances in series and parallel. 2. Apply the oltage-diision and current-diision principles. 3. Sole circuits by the node-oltage

More information

1 S = G R R = G. Enzo Paterno

1 S = G R R = G. Enzo Paterno ECET esistie Circuits esistie Circuits: - Ohm s Law - Kirchhoff s Laws - Single-Loop Circuits - Single-Node Pair Circuits - Series Circuits - Parallel Circuits - Series-Parallel Circuits Enzo Paterno ECET

More information

Chapter 2 Resistive Circuits

Chapter 2 Resistive Circuits Chapter esistie Circuits Goal. Sole circuits by combining resistances in Series and Parallel.. Apply the Voltage-Diision and Current-Diision Principles.. Sole circuits by the Node-Voltage Technique.. Sole

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis Chapter 4: Methods of Analysis When SCT are not applicable, it s because the circuit is neither in series or parallel. There exist extremely powerful mathematical methods that use KVL & KCL as its basis

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C1 Introduction. Fundamentals.

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C1 Introduction. Fundamentals. ELETRONI DEVIES Assist. prof. Laura-Nicoleta IVANIU, Ph.D. Introduction.. Introduction.. ontents ourse presentation Desired outcome. Ealuation. Laura-Nicoleta IVANIU, Electronic deices 2 Introduction..

More information

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1 (32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

More information

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator Lecture 5 Phys. 07: Waves and Light Physics Department Yarmouk University 63 Irbid Jordan &KDSWHUElectromagnetic Oscillations and Alternating urrent L ircuit In this chapter you will see how the electric

More information

The RLC circuits have a wide range of applications, including oscillators and frequency filters

The RLC circuits have a wide range of applications, including oscillators and frequency filters 9. The RL ircuit The RL circuits have a wide range of applications, including oscillators and frequency filters This chapter considers the responses of RL circuits The result is a second-order differential

More information

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

CHAPTER 13. Solutions for Exercises

CHAPTER 13. Solutions for Exercises HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Chapter 6: Operational Amplifiers

Chapter 6: Operational Amplifiers Chapter 6: Operational Amplifiers Circuit symbol and nomenclature: An op amp is a circuit element that behaes as a VCVS: The controlling oltage is in = and the controlled oltage is such that 5 5 A where

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

AP Physics C. Inductance. Free Response Problems

AP Physics C. Inductance. Free Response Problems AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

More information

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016 BME/ISE 35 Bioelectronics - Test Six ourse Notes Fall 06 Alternating urrent apacitive & Inductive Reactance and omplex Impedance R & R ircuit Analyses (D Transients, Time onstants, Steady State) Electrical

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything.

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything. Your omments THIS IS SOOOO HAD. I get the concept and mathematical expression. But I do not get links among everything. ery confusing prelecture especially what happens when switches are closed/opened

More information

Source-Free RC Circuit

Source-Free RC Circuit First Order Circuits Source-Free RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits First Order R and RL Transient ircuits Objectives To introduce the transients phenomena. To analyze step and natural responses of first order R circuits. To analyze step and natural responses of first

More information

CAPACITORS / CAPACITANCE ECET11

CAPACITORS / CAPACITANCE ECET11 APAITORS / APAITANE - apacitance - apacitor types - apacitors in series & parallel - R ircuit harging phase - R ircuit Discharging phase - R ircuit Steady State model - Source onversions - Superposition

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Concept Question: Capacitors

Concept Question: Capacitors oncept Question: apacitors Three identical capacitors are connected to a battery. The battery is then disconnected. A How do the charge on A, B & compare before and after the battery B is removed? BEFOE;

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband,

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband, Today in Physics 1: A circuits Solving circuit problems one frequency at a time. omplex impedance of,,. Kirchhoff s rules applied to A circuits. it V in Examples: esonant circuits: i series and parallel.

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

CHAPTER FOUR CIRCUIT THEOREMS

CHAPTER FOUR CIRCUIT THEOREMS 4.1 INTRODUCTION CHAPTER FOUR CIRCUIT THEOREMS The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Phasors: Impedance and Circuit Anlysis. Phasors

Phasors: Impedance and Circuit Anlysis. Phasors Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A. ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified

More information

Chapter 13 Bipolar Junction Transistors

Chapter 13 Bipolar Junction Transistors Chapter 3 ipolar Junction Transistors Goal. ipolar Junction Transistor Operation in amplifier circuits. 2. Load-line Analysis & Nonlinear Distortion. 3. Large-signal equialent circuits to analyze JT circuits.

More information

Chapter 31: AC Circuits

Chapter 31: AC Circuits hapter 31: A ircuits A urrents and Voltages In this chapter, we discuss the behior of circuits driven by a source of A. Recall that A means, literally, alternating current. An alternating current is a

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation. LAPLACE TRANSFORMATION AND APPLICATIONS Laplace transformation It s a transformation method used for solving differential equation. Advantages The solution of differential equation using LT, progresses

More information

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing

More information

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I Physics 3 Jonathan Dowling Lecture 35: FRI 7 APR Electrical Oscillations, LC Circuits, Alternating Current I Nikolai Tesla What are we going to learn? A road map Electric charge è Electric force on other

More information

Lecture Notes. EECS 40 Introduction to Microelectronic Circuits. Prof. C. Chang-Hasnain Spring 2007

Lecture Notes. EECS 40 Introduction to Microelectronic Circuits. Prof. C. Chang-Hasnain Spring 2007 Lecture Notes EES 4 Introduction to Microelectronic ircuits Prof.. hanghasnain Spring 7 EE 4 ourse Oeriew EES 4: One of fie EES core courses (with, 6, 6, and 6) introduces hardware side of EES prerequisite

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012 San Jose State University Department of Electrical Engineering Exam Solution EE 98-MIT 6.x Fall 1 losed Book, losed Notes, and no electronic devices. Instructions: There are six problems. Interpretation

More information

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015 BME/ISE 35 Bioelectronics - Test Five Review Notes Fall 205 Test Five Topics: RMS Resistive Power oss (I 2 R) A Reactance, Impedance, Power Factor R ircuit Analysis alculate Series R Impedance alculate

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

Physics 1c practical, 2015 Homework 5 Solutions

Physics 1c practical, 2015 Homework 5 Solutions Physics c practical, 05 Homework 5 Solutions Serway 33.4 0.0 mh, = 0 7 F, = 0Ω, V max = 00V a The resonant frequency for a series L circuit is f = π L = 3.56 khz At resonance I max = V max = 5 A c Q =

More information

The process of analysing a circuit using the Laplace technique can be broken down into a series of straightforward steps:

The process of analysing a circuit using the Laplace technique can be broken down into a series of straightforward steps: Analysis of a series RLC circuit using Laplace Transforms Part. How to do it. The process of analysing a circuit using the Laplace technique can be broken down into a series of straightforward steps:.

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ECE 1270 HOMEWORK #6 Solution Summer 2009 1. After being closed a long time, the switch opens at t = 0. Find i(t) 1 for t > 0. t = 0 10kΩ

More information

Problem Solving 8: Circuits

Problem Solving 8: Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics OBJECTIVES Problem Solving 8: Circuits 1. To gain intuition for the behavior of DC circuits with both resistors and capacitors or inductors.

More information

EIT Quick-Review Electrical Prof. Frank Merat

EIT Quick-Review Electrical Prof. Frank Merat CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

Physics 212. Lecture 9. Electric Current

Physics 212. Lecture 9. Electric Current Physics 212 Lecture 9 Electric Current Exam Here, Tuesday, June 26, 8 9:30 AM Will begin at 7:30 for those who must leave by 9. Office hours 1-7 PM, Rm 232 Loomis Bring your ID! Physics 212 Lecture 9,

More information

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz Physics 1 / Summer 9 Name: ANSWER KEY h. 6 Quiz As shown, there are three negatie charges located at the corners of a square of side. There is a single positie charge in the center of the square. (a) Draw

More information

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax .5.1: Second Order ircuits Revision: June 11, 010 15 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview Second order systems are, by definition, systems whose input-output relationship

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 1-3 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model

More information

Circuit Analysis with Dependent Sources A)Node Equations B)Equivalent Sources C)Amplifier Parameters: Gain, R IN, R OUT D)Non-Ideal Op-Amp Model

Circuit Analysis with Dependent Sources A)Node Equations B)Equivalent Sources C)Amplifier Parameters: Gain, R IN, R OUT D)Non-Ideal Op-Amp Model Lecture 13: October 15, 2001 Lecture 14: 10/15/01 A.. Neureuther Circuit Analysis with Dependent Sources A)Node Equations B)Equialent Sources C)Amplifier Parameters: Gain,, OUT D)NonIdeal OpAmp Model The

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 7-4: CONSERVATION OF ENERGY AND MOMENTUM IN COLLISIONS LSN 7-5: ELASTIC COLLISIONS IN ONE DIMENSION LSN 7-6: INELASTIC COLLISIONS Questions From

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

ECE Spring 2015 Final Exam

ECE Spring 2015 Final Exam ECE 20100 Spring 2015 Final Exam May 7, 2015 Section (circle below) Jung (1:30) 0001 Qi (12:30) 0002 Peleato (9:30) 0004 Allen (10:30) 0005 Zhu (4:30) 0006 Name PUID Instructions 1. DO NOT START UNTIL

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING RUTGERS UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING RUTGERS UNIVERSITY DEPARTMENT OF EECTRICA AND COMPUTER ENGINEERING RUTGERS UNIVERSITY 330:222 Principles of Electrical Engineering II Spring 2002 Exam 1 February 19, 2002 SOUTION NAME OF STUDENT: Student ID Number (last

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

More information

Transmission lines using a distributed equivalent circuit

Transmission lines using a distributed equivalent circuit Cambridge Uniersity Press 978-1-107-02600-1 - Transmission Lines Equialent Circuits, Electromagnetic Theory, and Photons Part 1 Transmission lines using a distributed equialent circuit in this web serice

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

ENGR 2405 Chapter 8. Second Order Circuits

ENGR 2405 Chapter 8. Second Order Circuits ENGR 2405 Chapter 8 Second Order Circuits Overview The previous chapter introduced the concept of first order circuits. This chapter will expand on that with second order circuits: those that need a second

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information