Multiscale modelling challenges for transport problems

Size: px
Start display at page:

Download "Multiscale modelling challenges for transport problems"

Transcription

1 Warwick, June 015 Multiscale modelling callenges for transport problems Neopytos Neopytou Scool of Engineering, University of Warwick, Coventry, U.K.

2 Empirical metods WCPM page

3 Multiscale features at te nanoscale quantum wells CNT nanowires nanocomposites Source Top Gate Insulator Drain nanotubes Ucida et al., IEDM 03 Substrate Trivedi, Nano Lett. 011 Delft group S Gate Insulator: 4nm HfO (k=16) D Gate.5 nm Doping: N D = 10 9 /m 5 nm Intrinsic.5 nm Doping: N D = 10 9 /m How electrons/ponons flow in multi-scale disordered systems? 3

4 Nanomaterials Modeling callenges Atomistic to continuum details 1) Atoms are countable ) Material variations 3) Interfaces 4) Dimensionality issues Ucida et al., IEDM 03 Trivedi et al., Nano Lett nm 5 nm ~ μm, million atoms 4

5 Empirical metods to obtain band structure Tigt binding Valence Force Fields Force constants NN sp 3 d 5 s*-so 1 st Electronic Brillouin Zone of Si Ponon bandstructure of bulk Ponon bandstructure of grapene Map parameters to BULK data: Genetic algoritm (TB), optical data, etc 5

6 Hamiltonian construction towards nanostructures Te Hamiltonian is directly been built from te geometry and bonding info N N E aa i, j i, j s, p, p, p, s*, x y z d, d, d, x y, z r xy yz zx B ac gi, j V ac i, j 1. Connecting atoms. Passivated 3. Periodic BCs 6

7 Low-dimensional bandstructure examples (100), (110), (11) (100), (110), (111) <100>, <110> Source Cannel Drain [100] [110] [111] [100] [110] [111] NN sp 3 d 5 s*-so Conduction band Valence band 1 st Brillouin Zone 7

8 MVFF: Low-dimensional ponon spectrum optical quasiacoustic acoustic 1D nanowire D ultra-tin layer 8

9 Approac transport NEGF for ponons G( E) E I D 1 1 Landauer D Dl exp iq. R ( q) q ( q) l E Tp ( ) Trace 1G G T p ( ) M ( ) p 1 n Kl Tp d T 0 9

10 Linearized Boltzmann transport v v k g k k k v 0 k ( ) f0 0 kt E B R q d 0 R S kb 0 R q R 1 0 At all κ-point, subbands: velocity density of states v g n n 1D E E E k 1 n x 1 1 v E n e k T q R 1 B R 0 0 R 10

11 Were it migt fail? Problems: We can scale te computation, still atomistically to large sizes, but.. 1) How transferable are te parameters at te nanoscale? ) Do te parameters apply at te edges/interfaces? ) Wat appens if you ave material variations? 3) Varying strain fields? 4) Dimensionality mixing? 5) Amorpous regions? Typical problems tat reviewers raise all te time.. Opportunities ere: Can we modify tese parameters to accommodate better description? 11

12 Force constant metod 1

13 Force constant metod Pononic structure: Fourt nearest-neigbor force constant metod LO LA, TA ZO LA, TA, ZA R. Saito et al., Pysical Properties of Carbon Nanotubes,

14 Approac Force constant metod Pononic structure: Fourt nearest-neigbor force constant metod ij U Dmn, i, j N A and m, n[ x, y, z] i j r r m n D D D ij ij ij xx xy xz ij ij ij ij yx yy yz ij ij ij Dzx Dzy Dzz D D D D D U K U 1 ( ij) ij m 0 m K ( N ) r ( ij) ( N ) 0 ti ( N ) to cosij sinij 0 sin cos U m ij ij D 1 D i j D i j ij ( ij) [ D33 ] MM il i j li R. Saito et al., Pysical Properties of Carbon Nanotubes,

15 Valence force field metod 15

16 Modified Valence Force Field Metod (MVFF) Keating Modified U ij bs 3 8 r ij dij d ij bond-stretcing U jik bsbs 3 8 rij dij rik dik dd ij ik cross bond stretcing U jik bb jik 3 8 dd ij ik bond-bending U jik bsbb 3 8 rij dij jik dd ij ik cross bond stretcing/ bending U jikl bbbb 3 8 jik ikl d d d ij ik kl coplanar bond bending 16

17 Modified Valence Force Field Metod (MVFF) Keating Modified jk 1 U U U U U U j k l ij jik jik jik jikl bs bb bsbs bsbb bbbb in A jnni j, knni j, k, lcop i D ij ij ij Dxx Dxy D xz U ij ij ij Dij yx yy yz D D D ij ij ij Dzx Dzy D zz ij ij mn mn i j rm rn l D D exp iq. R q I 0 l l 17

18 Tigt-Binding 18

19 Tigt binding multiscale opportunities Eac of te sp 3 d 5 s * -SO orbital, as an overlap wit te oter orbitals Need a large set of fitting parameters - ~0-30 Usually we average te parameters wen we create an alloy Good Si parameters are available, for III-Vs, D materials, so and so.. People use DFT to extract parameters nowadays N N E aa i, j i, j B ac gi, j V ac i, j s, p, p, p, s*, x y z d, d, d, x y, z r xy yz zx 1. Connecting atoms. Passivated 3. Periodic BCs 19

20 Conclusions Electrons: sp 3 d 5 s * bandstructure model: Ponons: Modified Valence Force Field metod (MVFF) Force constant metod Several possible opportunities for multiscale/multipysics improvements 0

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner Integrated Systems Laboratory ETH Zurich, Switzerland Outline Motivation Electron

More information

Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method

Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method Journal of ELECTRONIC MATERIALS DOI:.7/s664-3-533-z Ó 3 TMS Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method HOSSEIN KARAMITAHERI,,,4 NEOPHYTOS NEOPHYTOU,,5

More information

3. Semiconductor heterostructures and nanostructures

3. Semiconductor heterostructures and nanostructures 3. Semiconductor eterostructures and nanostructures We discussed before ow te periodicity of a crystal results in te formation of bands. or a 1D crystal, we obtained: a (x) x In 3D, te crystal lattices

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics Journal of Computational Electronics X: YYY-ZZZ,? 6 Springer Science Business Media, Inc. Manufactured in The Netherlands An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics HASSAN

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Third order Approximation on Icosahedral Great Circle Grids on the Sphere. J. Steppeler, P. Ripodas DWD Langen 2006

Third order Approximation on Icosahedral Great Circle Grids on the Sphere. J. Steppeler, P. Ripodas DWD Langen 2006 Tird order Approximation on Icosaedral Great Circle Grids on te Spere J. Steppeler, P. Ripodas DWD Langen 2006 Deasirable features of discretisation metods on te spere Great circle divisions of te spere:

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Thermoelectric Properties Modeling of Bi2Te3

Thermoelectric Properties Modeling of Bi2Te3 Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen Jet propulsion Laboratory, California Institute of Technology Funded by DARPA PROM program Overview Introduce EZTB a modeling

More information

Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy defects

Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy defects Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 6-1-2007 Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy

More information

Theoretical Concepts of Spin-Orbit Splitting

Theoretical Concepts of Spin-Orbit Splitting Chapter 9 Theoretical Concepts of Spin-Orbit Splitting 9.1 Free-electron model In order to understand the basic origin of spin-orbit coupling at the surface of a crystal, it is a natural starting point

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 8-18-28 OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices Mathieu Luisier

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Quantization of electrical conductance

Quantization of electrical conductance 1 Introduction Quantization of electrical conductance Te resistance of a wire in te classical Drude model of metal conduction is given by RR = ρρρρ AA, were ρρ, AA and ll are te conductivity of te material,

More information

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires J Comput Electron 202) :29 44 DOI 0.007/s0825-02-0383- Numerical study of the thermoelectric power factor in ultra-thin Si nanowires Neophytos Neophytou Hans Kosina Published online: 26 January 202 Springer

More information

Current flow paths in deformed graphene and carbon nanotubes

Current flow paths in deformed graphene and carbon nanotubes Current flow paths in deformed graphene and carbon nanotubes Cuernavaca, September 2017 Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto

More information

SIMG-713 Homework 5 Solutions

SIMG-713 Homework 5 Solutions SIMG-73 Homework 5 Solutions Spring 00. Potons strike a detector at an average rate of λ potons per second. Te detector produces an output wit probability β wenever it is struck by a poton. Compute te

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

Cherenkov emission in a nanowire material

Cherenkov emission in a nanowire material Lisboa 16/11/2012 Cerenkov emission in a nanowire material David E. Fernandes, Stanislav I. Maslovski, Mário G. Silveirina Departamento de Engenaria Electrotécnica e de Computadores Instituto de Telecomunicações

More information

Manipulator Dynamics (1) Read Chapter 6

Manipulator Dynamics (1) Read Chapter 6 Manipulator Dynamics (1) Read Capter 6 Wat is dynamics? Study te force (torque) required to cause te motion of robots just like engine power required to drive a automobile Most familiar formula: f = ma

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Analytic study on cold field electron emission from metallic nanowall array *

Analytic study on cold field electron emission from metallic nanowall array * Analytic study on cold field electron emission from metallic nanowall array * Xizou Qin, Weiliang Wang and Zibing Li a) State Key Laboratory of Optoelectronic aterials and Tecnologies, Scool of Pysics

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Miniaturization of Electronic System and Various Characteristic lengths in low dimensional systems

Miniaturization of Electronic System and Various Characteristic lengths in low dimensional systems Miniaturization of Electronic System and Various Caracteristic lengts in low dimensional systems R. Jon Bosco Balaguru Professor Scool of Electrical & Electronics Engineering SASTRA University B. G. Jeyaprakas

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.2, March 213 NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS Abderrazzak

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

On my honor as a student, I have neither given nor received unauthorized assistance on this exam.

On my honor as a student, I have neither given nor received unauthorized assistance on this exam. HW2 (Overview of Transport) (Print name above) On my onor as a student, I ave neiter given nor received unautorized assistance on tis exam. (sign name above) 1 Figure 1: Band-diagram before and after application

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Haplotyping. Biostatistics 666

Haplotyping. Biostatistics 666 Haplotyping Biostatistics 666 Previously Introduction to te E-M algoritm Approac for likeliood optimization Examples related to gene counting Allele frequency estimation recessive disorder Allele frequency

More information

Forces, centre of gravity, reactions and stability

Forces, centre of gravity, reactions and stability Forces, centre of gravity, reactions and stability Topic areas Mecanical engineering: Centre of gravity Forces Moments Reactions Resolving forces on an inclined plane. Matematics: Angles Trigonometric

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Computational Model of Edge Effects in Graphene Nanoribbon Transistors

Computational Model of Edge Effects in Graphene Nanoribbon Transistors Nano Res (2008) 1: 395 402 DOI 10.1007/s12274-008-8039-y Research Article 00395 Computational Model of Edge Effects in Graphene Nanoribbon Transistors Pei Zhao 1, Mihir Choudhury 2, Kartik Mohanram 2,

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES Song Mei, Zlatan Aksamija, and Irena Knezevic Electrical and Computer Engineering Department University of Wisconsin-Madison This work was supported

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

Modeling Transport in Heusler-based Spin Devices

Modeling Transport in Heusler-based Spin Devices Modeling Transport in Heusler-based Spin Devices Gautam Shine (Stanford) S. Manipatruni, A. Chaudhry, D. E. Nikonov, I. A. Young (Intel) Electronic Structure Extended Hückel theory Application to Heusler

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage"

GECP Hydrogen Project: Nanomaterials Engineering for Hydrogen Storage GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage" PI: KJ Cho Students and Staff Members: Zhiyong Zhang, Wei Xiao, Byeongchan Lee, Experimental Collaboration: H. Dai, B. Clemens, A.

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach» - k.p method I.3. Effectie mass approximation - Electrons - Holes I.4. train effect on band structure - Introduction:

More information

MANY scientific and engineering problems can be

MANY scientific and engineering problems can be A Domain Decomposition Metod using Elliptical Arc Artificial Boundary for Exterior Problems Yajun Cen, and Qikui Du Abstract In tis paper, a Diriclet-Neumann alternating metod using elliptical arc artificial

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

Robotic manipulation project

Robotic manipulation project Robotic manipulation project Bin Nguyen December 5, 2006 Abstract Tis is te draft report for Robotic Manipulation s class project. Te cosen project aims to understand and implement Kevin Egan s non-convex

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Bandstructure Effects in Silicon Nanowire Electron Transport

Bandstructure Effects in Silicon Nanowire Electron Transport Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 6-15-2008 Bandstructure Effects in Silicon Nanowire Electron Transport Neophytos Neophytou Purdue University - Main

More information

Strain-Induced Band Profile of Stacked InAs/GaAs Quantum Dots

Strain-Induced Band Profile of Stacked InAs/GaAs Quantum Dots Engineering and Physical Sciences * Department of Physics, Faculty of Science, Ubon Ratchathani University, Warinchamrab, Ubon Ratchathani 490, Thailand ( * Corresponding author s e-mail: w.sukkabot@gmail.com)

More information

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Defects and diffusion in metal oxides: Challenges for first-principles modelling Defects and diffusion in metal oxides: Challenges for first-principles modelling Karsten Albe, FG Materialmodellierung, TU Darmstadt Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm FUNDING: ICTP Workshop

More information

Basic 8 Micro-Nano Materials Science. and engineering

Basic 8 Micro-Nano Materials Science. and engineering Basic 8 Micro-Nano Materials Science and Analysis Atomistic simulations in materials science and engineering Assistant Prof. Y. Kinoshita and Prof. N. Ohno Dept. of Comp. Sci. Eng. and Dept. of Mech. Sci.

More information

6. Non-uniform bending

6. Non-uniform bending . Non-uniform bending Introduction Definition A non-uniform bending is te case were te cross-section is not only bent but also seared. It is known from te statics tat in suc a case, te bending moment in

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS Modeling Overview Strain Effects Thermal Modeling TCAD Modeling Outline FLOOPS / FLOODS Introduction Progress on GaN Devices Prospects for Reliability

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

CARBON NANOTUBE ELECTRONICS: MODELING, PHYSICS, AND APPLICATIONS. A Thesis. Submitted to the Faculty. Purdue University. Jing Guo

CARBON NANOTUBE ELECTRONICS: MODELING, PHYSICS, AND APPLICATIONS. A Thesis. Submitted to the Faculty. Purdue University. Jing Guo 0 CARBON NANOTUBE ELECTRONICS: MODELING, PHYSICS, AND APPLICATIONS A Thesis Submitted to the Faculty of Purdue University by Jing Guo In Partial Fulfillment of the Requirements for the Degree of Doctor

More information

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails: Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails: An atomistic mode space NEGF quantum transport study. A. Afzalian TSMC, Leuven, Belgium (Invited)

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

The Column and Row Hilbert Operator Spaces

The Column and Row Hilbert Operator Spaces Te Column and Row Hilbert Operator Spaces Roy M Araiza Department of Matematics Purdue University Abstract Given a Hilbert space H we present te construction and some properties of te column and row Hilbert

More information

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Wu and Childs Nanoscale es Lett, 6:6 http://www.nanoscalereslett.com/content/6//6 NANO EXPE Open Access Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Y Wu, PA Childs * Abstract

More information