Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Size: px
Start display at page:

Download "Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg"

Transcription

1 Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

2 Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias König, Jian Liu, Markus Schäfer Volkmar Hock Alina Novik, Tomas Jungwirth, Jairo Sinova, Ewelina Hankiewicz DFG (SFB 41) ONR

3 Overview - Introduction: HgTe Quantum Wells - Interplay Rashba/Zeeman Splitting - Odd and Even Hall plateaus - Nanostructured Hall bars - Gated H-bars - Aharonov Casher effect

4 HgTe Fabrication: MBE 6. Bandgap vs. lattice constant (at room temperature in zinc blende structure) Bandgap energy (ev) lattice constant a [Å] CT-CREW 1999

5 HgTe: Semimetal or Semiconductor bandstructure zero gap: 1 E (mev) k (.1 ).5 1. fundamental gap D.J. Chadi et al. PRB, 358 (197) E Γ 6 E Γ8 3 mev

6 HgTe Quantum-Well 1 HgTe Hg.3 Cd.68 Te E (mev) VBO 8-5 E (mev) k (.1 ) k (.1 ) well barrier -15 VBO = 57 mev

7 Inverted Bandstructure Γ6 HgCdTe HgTe HgCdTe Γ8 type-iii QW

8 Band Structure of HgTe QWs 4 nm nm QW QW nm nm QW QW normal..15 semiconductor.1 E E..15 inverted semiconductor.1 Energy E(k) (ev) k =(k k =(k x,k x,k y ) y ) k (1,) k (1,) k (1,1) k (1,1) E1 H1 H1 H H H3 L k (.1-1 ) 1 L1 H4 H5 H d HgTe (1 ) k (.1 )

9 High Electron Mobility µ > 3 x 1 5 cm /Vsec 18, q1867 n Hall = 1,79*1 1 cm - n SdH = 1,74*1 1 cm -, 1 µ= 31 cm /Vs R xx (Ω) 1 8 1,5 1, Rxy (kω) 6 4, B (T),

10 Rashba Splitting (Bychkov-Rashba) subband splitting due to macroscopic asymmetric potential spin orbit coupling in an asymetric potential Rashba hamiltonian r h r r = + i E m H * r α ( ) σ Rashba term α: effective mass parameter σ: vector of Pauli spin matrices E: confining electric field energy dispersion ± h k E = Ei + ± αk * m 3... ± βk in case of a hole system E k y k x

11 Rashba Effect in HgTe ( ) (mev) =. V, Sym. Case =. V, Asym. Case (nm -1 ) A. Novik et al., PRB 7, 3531 (5). Y.S. Gui et al., PRB 7, (4). 8 x 8 k p band structure model 1 (mev) =. V (nm -1 ) Rashba splitting energy R, max = 3 mev 1

12 Magnetic QW: Hg 1-x Mn x Te V g Gate Mn concentration Metal Al O Insulator, nm 3 x = Source HgCdTe, x=.68, nm HgCdTe:I, 9nm HgCdTe, 5.5 nm Drain In contact % 7 % HgMnTe well, 11 nm HgCdTe, 5.5 nm HgCdTe: I, 9 nm HgCdTe x=.68 CdTe Buffer 1 % 15 % % CdZnTe(1) Substrate symmetically or asymmetrically doped

13 Interplay of Rashba and Zeeman Effect in Mn-doped Well H = H + H Z + H R H = h m * + V ( z), H Z = g * r r µ σ B, B H R = r r r α ( i E) σ Zeeman splitting subband splitting E g 1 ( + ) δ = hω ± n, ± c n * = adding Mn g* > 1 c [( * hω g B) δ hω µ enhanced g-factor due to sp-d exchange interaction c B + R 1 ] Zeeman Das, Datta, Reifenberger, PRB 41, 878 (199) Rashba

14 Landau Level Crossing two occupied subbands (n 1 n ) result in a beating of SdH SdH amplitude: A cos(πν ) ν = sublevel splitting δ h ω c E F hω c δ Landau level crossing nodes in the SdH oscillations

15 Zeeman or Rashba Effect? temperature dependence 1 Q1697; Symmetrically doped QW =. V 4. K node shift due to to strong sp-d exchange interaction.9 K ( ) K g* = g ( E) µ B B max B 5/ 5gMnµ BB kbt ( T + T ) 6.39 K (T) ν = even odd g Mn : g factor for Mn B 5/ : Brillouin function for S=5/ ( E) max : saturation spin splitting energy T : scaling temperature (accounts for spin spin interaction)

16 Zeeman Effect fitting of E Zeeman with g* = g ( E) µ B B max B 5/ 5gMnµ BB k T ( T + T B ) yielding ( E) max = 4.3 ±.5 mev T =.6 ±. 5 K

17 Rashba Effect gate voltage dependent node position 14 Q1697; Symmetrically doped QW T=.38K FFT analysis V.8 1 (1 1 cm - ) ( ) V. V. V 4. V (T) ν = even odd 1/ ( 1( 1 =)) Hall (1 1 cm - ) Hg.98 Mn. Te/Hg.3 Cd.7 Te =1. nm; =.38 K calculation 1 5 (mev) Hall (1 1 cm - ) FFT data QW

18 Total Subband Splitting c R [( * hω g B) δ hω µ c, and (mev) (mev) B Hg.98 Mn. Te/Hg.3 Cd.7 Te R 1 ] (T) QW (V) (mev) R > E S even in the presence of a strong sp-d exchange interaction Y.S. Gui, et al., Europhys. Lett. 65, 393 (4).

19 R (k ) R (k ) R (k ) R (k ) QHE in Magnetic QWs R (k ) xx Ω Q n = 4 x 1 cm 3 µ = 9 x 1 cm /Vs xy Ω R ( ) xx Ω 4 3 Q n = 14 x 1 cm 3 µ = 56 x 1 cm /Vs xy Ω R ( ) xx Ω B (T) 5 Q n = 9 x 1 cm µ = 5 x 1 cm /Vs B (T) xy Ω R ( ) xx Ω Q1714 B (T) n = 43 x 1 cm 3 µ = 43 x 1 cm /Vs B (T) xy Ω

20 Strong Subband Splitting and QHE ν = 3 5 δ = ν = odd even E F E F E F δ hω c δ hω c δ hω c only odd QHE plateaus node in SdH only even QHE plateaus

21 Strong Subband Splitting and QHE Q167 (% Mn) calculated Landau-level fan chart R xx (kω) Q167 d W = 11 nm n s = m - T = 1.3 K Γ =1.5 mev ν=7 ν=5 ν= R xy (kω) 15 finite LL broadening and LL crossingleads to a vanishing of even filling factor QH plateaus above above5 T: T: ν = 3 => => 3 filled filledll LL calculated DOS B (T) E (mev) 5 Q167 H. Buhmann et al., APL 86, 14 (5) A. Novik et al., PRB 7, 3531 (5).. above above8 T: T: ν = => => filled filledll LL B (T) E.G. Novik, HB et al., cond-mat/4h.

22 Strong Subband Splitting and QHE Temperature Effect K 3 K 1 1 calculated LL fan chart R xx (kω) R xy (kω) B (T) DOS 4 E (mev) 1 5 Q167 ν = 4 plateau is recovered! B (T) LL crossing is lifted HB et al., submitted to APL

23 How can this be explained? R xx / kω mk 15 R xy / kω B / T

24 HgTe Nanostructures ballistic transport in HgTe Hall probes sensor for magnetization processes in the Mn system searchforshe gated H-bars HgTe ring structures Aharonov-Casher Phase due to the strong Rashba effect Problem: how to do nano-technology with low thermal budget

25 HgTe-Nanostructures ballistic cross shape structure µ 1 1 m /(Vs) /(Vs) 4 nm 8 nm 4 nm V. Daumer et al., Appl. Phys. Lett. 83, 1376 (3)

26 y/wmax Ballistic Hall Crosses Non-local resistance: (Landauer-Büttiker) 1. Hall: V I 4 13 = h ( tl tr ) ( t + t ) T ( T + + t + t ) e r l r l. four-terminal: V I 3 14 = h T r l ( T + t + t ) ( t + t ) T + ( t + t ) e r l r l r l t t 3. three-terminal: V I = h e ( t + t )( T + t + t ) r l T r l Monte-Carlo simulations L / W W min t l T r min t r collimation rebound x/wmax L / W

27 Measurements four-terminal resistance: bend-resistance

28 H-bar for detection of Spin-Hall-Effect (electrical detection through inverse SHE) E.M. Hankiewicz et al., PRB 7, R4131 (4)

29 Actual gated H-bar sample HgTe-QW R = 5-15 mev 5 µm Gate- Contact ohmic Contacts

30 First Data Asymmetric HgTe-QW R = 5-15 mev

31 First Data HgTe-QW R = 5-15 mev Signal due to depletion...

32 Other Wafer Symmetric HgTe-QW R = -5 mev -5.E-8-1.E-7 I: 1->4 U:7-1 Signal less than 1-4 U_7-1 [V] -1.5E-7 -.E-7 -.5E-7-3.E V_gate14 [V]

33 Summary - HgTe Quantumwells offer controlable and very large Rashba splitting; moreover Mn-doping possible - Technology cumbersome because of low thermal budget - First nanostructures available: - quasi-ballistic transport; strong QI in small magnetic systems - H-bar: no SHE - AC phase in rings

34 Monte-Carlo Simulation of the diffusive ballistic Transition modelling of the scattering time τ trajectories in a cross-shaped structure 1. Initial parameters:.5 τ=3 W MAX = 7 nm y / W MAX. -.5 τ=.5 * * * τ=1.5 W MIN W MAX W MIN = 35 nm =.5 W MAX n DEG = cm - v F m/s τ = W MAX / v F s R = (h/e ) π / (k F W MAX ) 3 Ω B = m * v F / (e W MAX ).3 T x / W MAX

35 Three- and Four-terminal Resistance N R 3 / (h/e ) N R 4 / (h/e ) Calculation for different τ B/B τ/τ =1. τ/τ =1.4 τ/τ =1.6 N el = 7 τ = W MAX / v F m/s B = m * v F / (e W MAX ).3 T R 4, Ohm comparision with the experiment T = 1.5K -1, -,5,,5 1, B, T Experiment (sample 1819) Calculation: τ/τ =1.3 (B =.35 T, R =18 Ω ) τ/τ =1.35 (B =.38 T, R = Ω) τ = s < τ = trans s

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Spin-related transport phenomena in HgTe-based quantum well structures

Spin-related transport phenomena in HgTe-based quantum well structures Spin-related transport phenomena in HgTe-based quantum well structures Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Overview - HgTe/CdTe bandstructure, quantum spin Hall effect: 2D TI - Dirac surface states of strained bulk HgTe: 3D TI - Topological

More information

Quantum Spin Hall Insulator State in HgTe Quantum Wells

Quantum Spin Hall Insulator State in HgTe Quantum Wells SLAC-PUB-15949 Quantum Spin Hall Insulator State in HgTe Quantum Wells Markus König 1, Steffen Wiedmann 1, Christoph Brüne 1, Andreas Roth 1, Hartmut Buhmann 1, Laurens W. Molenkamp 1,, Xiao-Liang Qi 2

More information

arxiv: v1 [cond-mat.mes-hall] 19 Dec 2008

arxiv: v1 [cond-mat.mes-hall] 19 Dec 2008 Ballistic Intrinsic Spin-Hall Effect in HgTe Nanostructures C. Brüne 1, A. Roth 1, E.G. Novik 1, M. König 1, H. Buhmann 1, E.M. Hankiewicz, W. Hanke, J. Sinova 3, and L. W. Molenkamp 1 1 Physikalisches

More information

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL Markus König 1,2, Matthias Baenninger 1,2, Andrei G. F. Garcia 1, Nahid Harjee 3, Beth L. Pruitt 4, C. Ames

More information

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Cédric Gustin and Vincent Bayot Cermin, Université Catholique de Louvain, Belgium Collaborators Cermin,, Univ. Catholique

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version Ze-Yang Li 1, Jia-Chen Yu 2 and Shang-Jie Xue 3 December 21, 2015 1 光学所 2 凝聚态所 3 量 材料中 Historical

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Topological Heterostructures by Molecular Beam Epitaxy

Topological Heterostructures by Molecular Beam Epitaxy Topological Heterostructures by Molecular Beam Epitaxy Susanne Stemmer Materials Department, University of California, Santa Barbara Fine Lecture, Northwestern University February 20, 2018 Stemmer Group

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 5 Proc. XXXVII International School of Semiconducting Compounds, Jaszowiec 2008 Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin Transport in InAs-GaSb quantum wells Klaus Ensslin Solid State Physics the material system ambipolar behavior non-local transport inverted bandstructure Zürich Collaborators: S. Müller, M. Karalic, C.

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

arxiv: v2 [cond-mat.mes-hall] 6 Dec 2018

arxiv: v2 [cond-mat.mes-hall] 6 Dec 2018 Spin splitting and switching effect in a four-terminal two-dimensional electron gas nanostructure Zijiang Wang 1, Jianhong He 1,2, Huazhong Guo 1 1 Laboratory of Mesoscopic and Low Dimensional Physics,

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech

Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech Narrow-Gap Semiconductors, Spin Splitting With no Magnetic Field and more.. Giti Khodaparast Department of Physics Virginia Tech Supported by: NFS-DMR-0507866 AFOSR Young Investigator Award University

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

The BTE with a High B-field

The BTE with a High B-field ECE 656: Electronic Transport in Semiconductors Fall 2017 The BTE with a High B-field Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA 10/11/17 Outline 1) Introduction

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12186 S1. WANNIER DIAGRAM B 1 1 a φ/φ O 1/2 1/3 1/4 1/5 1 E φ/φ O n/n O 1 FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square periodic lattice.

More information

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003 Decay of spin polarized hot carrier current in a quasi one-dimensional spin valve structure arxiv:cond-mat/0310245v1 [cond-mat.mes-hall] 10 Oct 2003 S. Pramanik and S. Bandyopadhyay Department of Electrical

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Effect of Spin-Orbit Interaction and In-Plane Magnetic Field on the Conductance of a Quasi-One-Dimensional System

Effect of Spin-Orbit Interaction and In-Plane Magnetic Field on the Conductance of a Quasi-One-Dimensional System ArXiv : cond-mat/0311143 6 November 003 Effect of Spin-Orbit Interaction and In-Plane Magnetic Field on the Conductance of a Quasi-One-Dimensional System Yuriy V. Pershin, James A. Nesteroff, and Vladimir

More information

Quantum Condensed Matter Physics Lecture 17

Quantum Condensed Matter Physics Lecture 17 Quantum Condensed Matter Physics Lecture 17 David Ritchie http://www.sp.phy.cam.ac.uk/drp/home 17.1 QCMP Course Contents 1. Classical models for electrons in solids. Sommerfeld theory 3. From atoms to

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

A BIT OF MATERIALS SCIENCE THEN PHYSICS

A BIT OF MATERIALS SCIENCE THEN PHYSICS GRAPHENE AND OTHER D ATOMIC CRYSTALS Andre Geim with many thanks to K. Novoselov, S. Morozov, D. Jiang, F. Schedin, I. Grigorieva, J. Meyer, M. Katsnelson A BIT OF MATERIALS SCIENCE THEN PHYSICS CARBON

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Phase Coherent Transport Phenomena in HgTe Quantum Well Structures

Phase Coherent Transport Phenomena in HgTe Quantum Well Structures Phase Coherent Transport Phenomena in HgTe Quantum Well Structures Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt

More information

Quantum Wires and Quantum Point Contacts. Quantum conductance

Quantum Wires and Quantum Point Contacts. Quantum conductance Quantum Wires and Quantum Point Contacts Quantum conductance Classification of quasi-1d systems 1. What is quantum of resistance in magnetic and transport measurements of nanostructures? Are these quanta

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Anomalous Hall effect in a wide parabolic well

Anomalous Hall effect in a wide parabolic well phys. stat. sol. (c) 1, No. S, S181 S187 (4) / DOI 1.1/pssc.45138 Anomalous Hall effect in a wide parabolic well G. M. Gusev *, A. A. Quivy, T. E. Lamas, and J. R.Leite Departamento de Física de Materiais

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

arxiv: v1 [cond-mat.mtrl-sci] 4 Aug 2016

arxiv: v1 [cond-mat.mtrl-sci] 4 Aug 2016 Strain Engineering of the Band Gap of HgTe Quantum Wells using Superlattice Virtual Substrates Philipp Leubner, Lukas Lunczer, Christoph Brüne, Hartmut Buhmann, and Laurens W. Molenkamp Experimentelle

More information

Electrical Standards based on quantum effects: Part II. Beat Jeckelmann

Electrical Standards based on quantum effects: Part II. Beat Jeckelmann Electrical Standards based on quantum effects: Part II Beat Jeckelmann Part II: The Quantum Hall Effect Overview Classical Hall effect Two-dimensional electron gas Landau levels Measurement technique Accuracy

More information

arxiv: v1 [cond-mat.mes-hall] 9 Aug 2007

arxiv: v1 [cond-mat.mes-hall] 9 Aug 2007 Time reversal Aharonov-Casher effect in mesoscopic rings with Rashba spin-orbital interaction Zhenyue Zhu, Yong Wang, 2 Ke Xia, 2 X. C. Xie,,2 and Zhongshui Ma 3 Department of Physics, Oklahoma State University,

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

High-mobility electron transport on cylindrical surfaces

High-mobility electron transport on cylindrical surfaces High-mobility electron transport on cylindrical surfaces Klaus-Jürgen Friedland Paul-Drude-nstitute for Solid State Electronics, Berlin, Germany Concept to create high mobility electron gases on free standing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

V bg

V bg SUPPLEMENTARY INFORMATION a b µ (1 6 cm V -1 s -1 ) 1..8.4-3 - -1 1 3 mfp (µm) 1 8 4-3 - -1 1 3 Supplementary Figure 1: Mobility and mean-free path. a) Drude mobility calculated from four-terminal resistance

More information

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr 10.1149/05305.0203ecst The Electrochemical Society Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr Institute for

More information

Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime

Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime Effects of Quantum-Well Inversion Asymmetry on Electron- Nuclear Spin Coupling in the Fractional Quantum Hall Regime Katsushi Hashimoto,,2,a Koji Muraki,,b Norio Kumada, Tadashi Saku, 3 and Yoshiro Hirayama,2

More information

Quantum Interference and Decoherence in Hexagonal Antidot Lattices

Quantum Interference and Decoherence in Hexagonal Antidot Lattices Quantum Interference and Decoherence in Hexagonal Antidot Lattices Yasuhiro Iye, Masaaki Ueki, Akira Endo and Shingo Katsumoto Institute for Solid State Physics, University of Tokyo, -1- Kashiwanoha, Kashiwa,

More information

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Piazza San Silvestro 12, 56127 Pisa, Italy e-mail: stefan.heun@nano.cnr.it

More information

Datta-Das type spin-field effect transistor in non-ballistic regime

Datta-Das type spin-field effect transistor in non-ballistic regime Datta-Das type spin-field effect transistor in non-ballistic regime Munekazu Ohno 1, Kanji Yoh 1,2 1 Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo, 060-8628, Japan 2

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

Quantum Transport in InAs/GaSb

Quantum Transport in InAs/GaSb Quantum Transport in InAs/GaSb Wei Pan Sandia National Laboratories Albuquerque, New Mexico, USA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a

More information

arxiv:cond-mat/ v1 17 Jan 1996

arxiv:cond-mat/ v1 17 Jan 1996 Ballistic Composite Fermions in Semiconductor Nanostructures J. E. F. Frost, C.-T. Liang, D. R. Mace, M. Y. Simmons, D. A. Ritchie and M. Pepper Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE,

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Magnetosubbands of semiconductor quantum wires with Rashba spin-orbit coupling

Magnetosubbands of semiconductor quantum wires with Rashba spin-orbit coupling PHYSICAL REVIEW B 71, 035311 2005 Magnetosubbands of semiconductor quantum wires with Rashba spin-orbit coupling J. Knobbe and Th. Schäpers* Institut für Schichten und Grenzflächen and Center of Nanoelectronic

More information

The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements

The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements The quantum Hall effect under the influence of a top-gate and integrating AC lock-in measurements TOBIAS KRAMER 1,2, ERIC J. HELLER 2,3, AND ROBERT E. PARROTT 4 arxiv:95.3286v1 [cond-mat.mes-hall] 2 May

More information

arxiv: v1 [cond-mat.mes-hall] 20 May 2009

arxiv: v1 [cond-mat.mes-hall] 20 May 2009 Nonlinear magneto-gyrotropic photogalvanic effect H. Diehl, 1 V.A. Shalygin, 2 L.E. Golub, 3 S.A. Tarasenko, 3 S.N. Danilov, 1 V.V. Bel kov, 1,3 E.G. Novik, 4 H. Buhmann, 4 C. Brüne, 4 E.L. Ivchenko, 3

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells arxiv:cond-mat/0611399v1 [cond-mat.mes-hall] 15 Nov 006 Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells B. Andrei Bernevig, 1, Taylor L. Hughes, 1 and Shou-Cheng Zhang 1

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999 Hall potentiometer in the ballistic regime arxiv:cond-mat/9901135v1 [cond-mat.mes-hall] 14 Jan 1999 B. J. Baelus and F. M. Peeters a) Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands A.A.Bykov and A.V.Goran Institute of Semiconductor Physics, Russian

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields Landau quantization, Localization, and Insulator-quantum Hall Transition at Low Magnetic Fields Tsai-Yu Huang a, C.-T. Liang a, Gil-Ho Kim b, C.F. Huang c, C.P. Huang a and D.A. Ritchie d a Department

More information

Lecture 20 - Semiconductor Structures

Lecture 20 - Semiconductor Structures Lecture 0: Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure metal Layer Structure Physics 460 F 006 Lect 0 1 Outline What is a semiconductor Structure? Created

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS B. R. Perkins, Jun Liu, and A. Zaslavsky, Div. of Engineering Brown University Providence, RI 02912, U.S.A.,

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Magneto-Optical Properties of Quantum Nanostructures

Magneto-Optical Properties of Quantum Nanostructures Magneto-optics of nanostructures Magneto-Optical Properties of Quantum Nanostructures Milan Orlita Institute of Physics, Charles University Institute of Physics, Academy of Sciences of the Czech Republic

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

Spatially resolved study of backscattering in the quantum spin Hall state

Spatially resolved study of backscattering in the quantum spin Hall state Spatially resolved study of backscattering in the quantum spin Hall state Markus König 1,2, Matthias Baenninger 1,2, Andrei G. F. Garcia 1, Nahid Harjee 3, Beth L. Pruitt 4, C. Ames 5, Philipp Leubner

More information

Transport Experiments on 3D Topological insulators

Transport Experiments on 3D Topological insulators TheoryWinter School, NHMFL, Jan 2014 Transport Experiments on 3D Topological insulators Part I N. P. Ong, Princeton Univ. 1. Transport in non-metallic Bi2Se3 and Bi2Te3 2. A TI with very large bulk ρ Bi2Te2Se

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Probing Wigner Crystals in the 2DEG using Microwaves

Probing Wigner Crystals in the 2DEG using Microwaves Probing Wigner Crystals in the 2DEG using Microwaves G. Steele CMX Journal Club Talk 9 September 2003 Based on work from the groups of: L. W. Engel (NHMFL), D. C. Tsui (Princeton), and collaborators. CMX

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Crystal structure of 1T -MoTe 2. (a) HAADF-STEM image of 1T -MoTe 2, looking down the [001] zone (scale bar, 0.5 nm). The area indicated by the red rectangle

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information