F(q 2 ) = 1 Q Q = d 3 re i q r ρ(r) d 3 rρ(r),

Size: px
Start display at page:

Download "F(q 2 ) = 1 Q Q = d 3 re i q r ρ(r) d 3 rρ(r),"

Transcription

1 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ Ó Ø ÔÓÒ Ò ÖÐ ÕÙÖ ÑÓÐ ÏÓ ÖÓÒÓÛ ÂÒ ÃÓÒÓÛ ÍÒÚÖ ØÝ ÃÐ ÁÒ ØØÙØ Ó ÆÙÐÖ ÈÝ ÈÆ ÖÓÛ ÛØ º ÊÙÞ ÖÖÓÐ Ò º º ÓÖÓÓÚ ÅÒ¹ÏÓÖ ÓÔ Ð ¾¼½½ ÍÒÖ ØÒÒ ÀÖÓÒ ËÔØÖ Ð ËÐÓÚÒµ ¹½¼ ÂÙÐÝ ¾¼½½ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

2 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ØÐ Ò ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ Ó Ø ÔÓÒ Ò ÖÐ ÕÙÖ ÑÓÐ Ï ÐÜÒÖ º ÓÖÓÓÚ ÒÖÕÙ ÊÙÞ ÖÖÓÐ ÈÊ ¾ ¾¼½¼µ ¼¼¼½ ÖÚ½¼¼º¼ Ô¹Ô Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

3 ÇÙØÐÒ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ½ ¾ ÁÒØÖÓÙØÓÒ ÒØÓÒ ÅÓØÚØÓÒ ÜÐÙ Ú ÔÖÓ ÖÐ ÕÙÖ ÑÓÐ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ Ê ÙÐØ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

4 ØÖÙØÓÒ Ó Ö ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÒØÓÒ ÜÐÙ Ú ÔÖÓ Ρr r Q = d 3 rρ(r), F(q 2 ) = 1 Q d 3 re i q r ρ(r) Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

5 ØÖÙØÓÒ Ó Ö ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÒØÓÒ ÜÐÙ Ú ÔÖÓ Ρr r = 1 Q Q = d 3 rρ(r), F(q 2 ) = 1 d 3 re i q r ρ(r) Q d 3 rρ(r)[1 i q r 1 2 ( q r)2 +...] = 1 q2 d 3 rr 2 ρ(r)+... 6Q r 2 = 6 d dq 2F(q2 ) Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

6 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÒØÓÒ ÜÐÙ Ú ÔÖÓ ÒØÓÒ Ó ØÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÖÐØ ØÓ Ø ØÖÒ ÚÖ ØÝ ÒÖÐÞ ÈÖØÓÒ ØÖÙØÓÒ ÑÜÑÙѹÐØÝ È ÖÐØ ØÓ ÔÒ ØÖÙØÓÒ µ π + (p ) O µνµ 1 µ n 1 T n 1 π + (p) =AS p µ ν i=0 ÚÒ µ1 µi p µ i+1 p µ n 1 Bπ,u Tni (t) m π p = 1 2 (p +p) = p p t = 2 AS ÝÑÑØÖÞØÓÒ Ò ν,...,µ n 1 ÓÐÐÓÛ Ý ÒØ ÝÑÑØÖÞØÓÒ Ò µ,ν ØÖ Ò ÐÐ ÒÜ ÔÖ Ö ÙØÖغ O µνµ 1 µ n 1 T = AS u(0)iσ µν id µ 1...iD µ n 1 u(0) Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

7 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÒØÓÒ ÜÐÙ Ú ÔÖÓ ÒØÓÒ Ó ØÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÖÐØ ØÓ Ø ØÖÒ ÚÖ ØÝ ÒÖÐÞ ÈÖØÓÒ ØÖÙØÓÒ ÑÜÑÙѹÐØÝ È ÖÐØ ØÓ ÔÒ ØÖÙØÓÒ µ π + (p ) O µνµ 1 µ n 1 T n 1 π + (p) =AS p µ ν i=0 ÚÒ µ1 µi p µ i+1 p µ n 1 Bπ,u Tni (t) m π p = 1 2 (p +p) = p p t = 2 AS ÝÑÑØÖÞØÓÒ Ò ν,...,µ n 1 ÓÐÐÓÛ Ý ÒØ ÝÑÑØÖÞØÓÒ Ò µ,ν ØÖ Ò ÐÐ ÒÜ ÔÖ Ö ÙØÖغ O µνµ 1 µ n 1 T = AS u(0)iσ µν id µ 1...iD µ n 1 u(0) π + (p ) u(0)σ µν u(0) π + (p) = AS p µ ν B π,u T10 (t) m π AS π + (p ) u(0)σ µν D µ 1 u(0) π + (p) = AS p µ ν p µ 1 Bπ,u T20 (t) m π Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

8 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÜÐÙ Ú ÔÖÓ Ò É ÒØÓÒ ÜÐÙ Ú ÔÖÓ P 2 N k 2 R q - (a) q R k + 2 RP + 2 N P 2 N k 2 q R - q 0 (b) R k + 2 RP + 2 N ÔÐÝ ÎÖØÙÐ ÓÑÔØÓÒ ËØØÖÒ non-zero momentum transfer to the target, at least one photon virtual L P 2 N R q k 2 T H ` p M p M + ` R k + 2 M RP + 2 N ÀÖ Å ÓÒ ÈÖÓÙØÓÒ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

9 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ØÓÒÖÝ Ó ÑØÖÜ ÐÑÒØ ÒØÓÒ ÜÐÙ Ú ÔÖÓ ÒÖÐ ØÖÙØÙÖ Ó Ø ÓØ ÑØÖÜ ÐÑÒØ A O B ÓÒ¹ÔÖØÐ ØØ ÈÖØÓÒ ØÖÙØÓÒ Ó ÒÐÙ Ú Á˵ ÓÒ¹ÔÖØÐ ØØ ÚÙÙÑ ØÖÙØÓÒ ÑÔÐØÙ µ Ó ÖÓÒ ÓÖÑ ØÓÖ ÀÅȵ ÓÒ¹ÔÖØÐ ØØ Ó ÖÒØ ÑÓÑÒØÙÑ È ÜÐÙ Ú ÁË ÎË ÀÅȵ ÑÒݹÔÖØÐ ØØ ÚÙÙÑ ØÖÒ ØÓÒ ÓÖÑ ØÓÖ µ ÖÒØ ÖÓÒ ØØ µ ÌÖÒ ØÓÒ ØÖÙØÓÒ ÑÔÐØÙ h h γγ ÈÖ ² ËÞÝÑÒÓÛ ¾¼¼µ ººº Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

10 ÄØØ Ö ÙÐØ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÒØÓÒ ÜÐÙ Ú ÔÖÓ ÅÒÝ Ö ÙÐØ Û ÓÑ ÖÓÑ ÐØØ ÔÐÐÝ ÓÖ Ø ÔÓÒ ÛÐÐ ÒÓØ Ð Ò ÔÝ Ð ÜÔÖÑÒØ º Ï ÛÒØ ØÓ ÓÑÔÙØ ØÑ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

11 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÅÓØÚØÓÒ ÉË Ø ÒØÓÒ ÜÐÙ Ú ÔÖÓ Ø ÖÓÑ º ÖÓÑÑÐ Ø Ðº É˵ ÈÊÄ ½¼½ ¾¼¼µ ½¾¾¼¼½ Π,u B n0t n 1 monopole n tgev 2 ÅÓÒÓÔÓÐ Ø m 1 = 760±50 ÅÎ ρµ m 2 = 1120±250 ÅÎ f 2 µ Ñ ÓÒ ÓÑÒÒµ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

12 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ Ó ÖÐ ÕÙÖ ÑÓÐ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ F? C 9! A 8 O µνµ1 µn 1 T π(p) π(p ) ÖÓ one-quark-loop, large N c covariant Lagrangian calculation soft regime chiral symmetry breaking NJL, local and nonlocal, instanton-motivated few parameters (traded for f π, m π,... ) numerous processes with pions, γ,... no confinement - careful not to open the qq threshold quark model scale low - need for QCD evolution to higher scales Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

13 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÈÓÒ ÚÐÓÔ ØÖÙØÙÖ Ú Ø ÕÙÖ ÐÓÓÔ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

14 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÈÓÒ ÚÐÓÔ ØÖÙØÙÖ Ú Ø ÕÙÖ ÐÓÓÔ ÔÔÖÓ ÑÓÐ É ÚÓÐÙØÓÒ ÚÓÐÙØÓÒ ÒÖØ ÐÙÓÒ Ò Ø ÕÙÖ Ø Ð ÒÖ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

15 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÈÓÒ ÚÐÓÔ ØÖÙØÙÖ Ú Ø ÕÙÖ ÐÓÓÔ ÔÔÖÓ ÑÓÐ É ÚÓÐÙØÓÒ ÚÓÐÙØÓÒ ÒÖØ ÐÙÓÒ Ò Ø ÕÙÖ Ø Ð ÒÖ ÐÐ ØÙÖ Ø ÙÔÔÓÖØ ÔÓÐÝÒÓÑÐØÝ ÔÓ ØÚØÝ Ö Ò ÑÓÑÒØÙÑ ÙÑ ÖÙÐ ÐÐÒ¹ÖÓ F 2 = 2xF 1 µ º º º µ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

16 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÈÓÒ ÚÐÓÔ ØÖÙØÙÖ Ú Ø ÕÙÖ ÐÓÓÔ ÔÔÖÓ ÑÓÐ É ÚÓÐÙØÓÒ ÚÓÐÙØÓÒ ÒÖØ ÐÙÓÒ Ò Ø ÕÙÖ Ø Ð ÒÖ ÐÐ ØÙÖ Ø ÙÔÔÓÖØ ÔÓÐÝÒÓÑÐØÝ ÔÓ ØÚØÝ Ö Ò ÑÓÑÒØÙÑ ÙÑ ÖÙÐ ÐÐÒ¹ÖÓ F 2 = 2xF 1 µ º º º µ ÆÜØ ÐÓ ÖÝ Ó ÓÙÖ ÓÐ Ö ÙÐØ ÓÛÒ ØØ Ø ÔÔÖÓ Ö ÓÒÐ ÓÖ ÓÑÔÙØÒ ÓØ ÑØÖÜ ÐÑÒØ ÔÔÖÒ Ò ¹ÒÖÝ ÜÔÖÑÒØ Ò ÐØØ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

17 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÈÖØÓÒ ØÖÙØÓÒ ÙÒØÓÒ Ó Ø ÔÓÒ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ NJL gives the constant valence PDF [Davidson, Arriola, 1995]: q(x) = 1 Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

18 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÈÖØÓÒ ØÖÙØÓÒ ÙÒØÓÒ Ó Ø ÔÓÒ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ x qx NJL gives the constant valence PDF [Davidson, Arriola, 1995]: q(x) = 1 LO DGLAP QCD evolution (good at intermediate x) to higher scales Q 0.313, 0.350, 0.4, 1 GeV x constant PDF of the also pion follows from AdS/CFT models [Brodsky, Teramond 2008] BaBar pion-photon transition form factor The question of renormalization scale: momentum sum-rule µ MeV at 2 GeV valence quarks carry 47% of the momentum (Durham), α(µ 0 )/π = 0.68 Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

19 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÎÐÒ È ÖÓÑ ÆÂÄ Ú ½ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ x qx points: Drell-Yan from E615 dashed: reanalysis of the data [Wijesooriya et al., 2005] x band: valence PDF from NJL evolved from the QM scale µ 0 = MeV to µ = 2 GeV of the experiment Ð Ø ÝÖ³ ÒÐÝ Ó Ö ËÖ Ò ÎÓÐ Ò ÒÐÙÒ Ø ÓØ ÐÙÓÒ Ö ÙÑÑØÓÒ ÑÓÚ Ø ØÖÒØ ØÓ ÐÓÛÖ xµ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

20 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÎÐÒ È ÖÓÑ ÆÂÄ Ú º ØÖÒ ÚÖ ÐØØ ØÖÒ ÚÖ ÐØØ ÙÖÖØ ÐÐÝ ÎÒ ËÒ x qx ÔÓÒØ ØÖÒ ÚÖ ÐØØ ÐÐÝ ÎÒ ËÒ ¾¼¼ ÝÐÐÓÛ ÆÂÄ ÚÓÐÚ ØÓ µ = 0.35 Î ÔÒ ÆÂÄ ÚÓÐÚ ØÓ µ = 0.5 Î ÊË ÔÖÑØÖÞØÓÒ Ø µ = 0.5 Î 0.0 x Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

21 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ È ÖÓÑ ÆÂÄ Ú º ½ Ò ÐØØ Ø Φx x points: E791 data from di-jet production in π +A band: NJL evolved to µ = 2 GeV dashed line: asymptotic form (µ ) Φx x points: transverse lattice data [Dalley, Van de Sande, 2003] band: NJL evolved to µ = 0.5 GeV Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

22 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÖÚØØÓÒÐ ÓÖÑ ØÓÖ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ A 10 A tgev 2 tgev ÈÓÒ Ö Ðص Ò Ø ÕÙÖ ÔÖØ Ó Ø ÔÒ¹¾ ÖÚØØÓÒÐ Öص Ò ËÉÅ ÓÐ ÐÒµ Ò ÆÂÄ ÐÒµ Ï Ê ¾¼¼ ÓÑÔÖ ØÓ Ø Ø ÖÑÑÐ Ø Ðº ¾¼¼¹ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

23 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÖÚØØÓÒÐ ÓÖÑ ØÓÖ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ A A tgev tgev 2 ÈÓÒ Ö Ðص Ò Ø ÕÙÖ ÔÖØ Ó Ø ÔÒ¹¾ ÖÚØØÓÒÐ Öص Ò ËÉÅ ÓÐ ÐÒµ Ò ÆÂÄ ÐÒµ Ï Ê ¾¼¼ ÓÑÔÖ ØÓ Ø Ø ÖÑÑÐ Ø Ðº ¾¼¼¹ ÉÙÖ¹ÑÓÐ ÖÐØÓÒ r 2 Θ = 1 2 r2 V ÅØØÖ ÑÓÖ ÓÒÒØÖØ ØÒ Ö ÐØÖ Ð Ó ÓÙÒ Ò ÓعÛÐÐ Ë»Ì Ý ÖÓ Ý Ò ÌÖÑÓÒµ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

24 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÓÖÛÖ ξ = 0µ È Ò ØÖÒ ÚÖ ÐØØ Ï Ò Ê ÁÑÔØ ÔÖÑØÖ ÔÒÒ Ó Ø ÒÖÐÞ ÔÖØÓÒ ØÖÙØÓÒ Ó Ø ÔÓÒ Ò ÖÐ ÕÙÖ ÑÓÐ ÈÄ ¾¼¼ µ Ø ÖÓÑ Ëº ÐÐÝ Èļ ¾¼¼ µ ½½ > O >! B > N b ÓÒÙØ ØÓ ÑÓÑÒØÙÑ ÐÐÒ Ó ÐØØ ÔÐÕÙØØ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

25 N N ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÓÖÛÖ È Ó Ø ÔÓÒ Ò ÆÂÄ Ú ÐØØ ÑÓÐ ÐØØ Ø 5 3 >! B =!! A 8 = " A 8 8 > N & $ " & $ " " $ & = # A 8 " $ & & $ " & $ " " $ & = / A 8 " $ & Ö ÖÑÒØ ÓÖ Ð µ 400 ÅÎ 8 > N & $ " J H = I L A H I A = J J E? A 3 # A 8 5, = A O E > N E > > O > >! B = " $ & Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

26 ÌÅ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÌÅ k T ¹ÙÒÒØÖØ È ÃÛÒ ¾¼¼¾ ÛÖÓÒ ÃÛÒ Ï ¾¼¼ Ê Ï ¾¼¼ ÓÐ ÚÐÒ ÓØØ ÐÙÓÒ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

27 F F ÈÓÒ ÛÚ ÙÒØÓÒ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÈÓÒ ÛÚ ÙÒØÓÒ ÖÓÑ ÐØØ É Ú º ÖÐ ÕÙÖ ÑÓÐ Ï Ëº ÈÖÐÓÚ Äº ËÒØÐ º ÊÙÞ ÖÖÓÐ ÈÄ ¾¼½¼µ ½ ÖÚ¼½½º¼ = > E C # J = G G Ψ PrΨP0 N H J E C # J = / = G G N J F B E N / = P Ψ TrΨT0 Ψ ArΨA A rfm T rfm rfm Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

28 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ º º º ØÓ ØÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

29 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÚÓÐÙØÓÒ Ó ØÖÒ ÚÖ ØÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ Ï Ê ÈÊ ¾¼¼µ ¼¼½ ÄÇ ÄȹÊÄ ÚÓÐÙØÓÒ Ó γ T n = 2C F (3 4 n 1 ) ( ) γ T 1 α(µ) n /(2β 0 ), L n = k α(µ 0) B T10(t;µ) = L 1B T10(t;µ 0) B T20(t;µ) = L 2B T20(t;µ 0) B T30(t;µ) = L 3B T30(t;µ 0) B T32(t;µ) = 1 (L1 L3)BT30(t;µ0)+L3BT32(t;µ0) 5... ÅÙÐØÔÐØÚ ÚÓÐÙØÓÒ ÓÖ B Tn0 ÓÐÙØ ÔÖØÓÒ ÓÖ Ø Ø ÓÖÒ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

30 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÚÓÐÙØÓÒ Ó ØÖÒ ÚÖ ØÝ ÐÓ ÖÝ Ó ÕÙÖ¹ÑÓÐ Ö ÙÐØ ÁÒ ØÒعÓÖÑ ÔÓÒ ÛÚ ÙÒØÓÒ É ÚÓÐÙØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ Ï Ê ÈÊ ¾¼¼µ ¼¼½ ÄÇ ÄȹÊÄ ÚÓÐÙØÓÒ Ó γ T n = 2C F (3 4 n 1 ) ( ) γ T 1 α(µ) n /(2β 0 ), L n = k α(µ 0) B T10(t;µ) = L 1B T10(t;µ 0) B T20(t;µ) = L 2B T20(t;µ 0) B T30(t;µ) = L 3B T30(t;µ 0) B T32(t;µ) = 1 (L1 L3)BT30(t;µ0)+L3BT32(t;µ0) 5... ÅÙÐØÔÐØÚ ÚÓÐÙØÓÒ ÓÖ B Tn0 ÓÐÙØ ÔÖØÓÒ ÓÖ Ø Ø ÓÖÒ γ1 T = 8 3, γt 2 = 8 B T10(t;2 GeV) = 0.75B T10(t;313 MeV) B T20(t;2 GeV) = 0.43B T20(t;313 MeV) Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

31 B T10 Ò B T20 Ò ÆÂÄ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ n 1 m Π 600MeV Π,u B n0t n tgev 2 ÆÂÄ M = 250 ÅÎ m π = 600 ÅÎ ÚÓÐÚ ØÓ Ø ÐØØ Ð Ó ¾ Î Ø ÖÓÑ ÖÓÑÑÐ Ø Ðº ÓÖÖØ ÐÐ¹Ó Ò ÒØÖÐ ÚÐÙ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

32 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ ÌÖÒ ÚÖ ØÝ Ò ÒÓÒÐÓÐ ÑÓÐ Π,u B n0t n 1 m Π 600MeV 0.4 n tgev 2 Ò ØÒØÓÒ¹ ÑÓÐ F = M(k+ 2 )M(k2 ( ) ÓÐ ÀÓÐÓѹÌÖÒÒ¹ÎÖ ÀÌε F = 1 2 M(k 2 + )+M(k ) ) 2 ÈÄ ¾ ½¼µ ½¾ ÀÌÎ Ò ØØÖ ÖÑÒØ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

33 ÀÌÎ Ú ÆÂÄ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ n 1 m Π 600MeV Π,u B n0t n tgev 2 ÓÐ ÐÓÐ ÆÂÄ ÀÌÎ ÀÌÎ ÚÖÝ ÐÓ ØÓ ÐÓÐ ÆÂÄ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

34 ÀÖ ÓÖÑ ØÓÖ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ µ = 313 ÅÎ µ = 2 Î Bni tgev tgev Bni tgev tgev ÓÐ B π,u T10 Bπ,u T20 ÓØØ Bπ,u T30 Óع Bπ,u T32 Ò Ñ ÙÖ ÓÒ Ø ÐØØ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

35 ÌÖÒ ÚÖ ØÝ È ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ ÙÐÐ È È ÒÒØ ÓÐÐØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ 1 1 n 1 dx X n 1 ET π (x,ξ,t) = (2ξ) i BTni π (t) i=0, even Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

36 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ ÚÓÐÙØÓÒ Ó ØÖÒ ÚÖ ØÝ È ξ = 1/3 t = 0 E T S X N E T A X N X ÐÓÐ ÆÂÄ t = 0 ξ = 1/3 µ = 313 ÅÎ 2 Î 1 ÌÎ X Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

37 ËÑ ÓÖ ξ = 0 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ ÐÓÐ ÆÂÄ ÒÓÒÐÓÐ Ò ØÒØÓÒ ÚÖØÜ XET X N X XET X N X ÐÓÐ ÆÂÄ Ú ÒÓÒÐÓÐ Ò ØÒØÓÒ t = 0 ξ = 0 µ = 313 ÅÎ 2 Î 1 ÌÎ ÖÒØ Ò¹ÔÓÒØ ÚÓÖ ÖÐØ ØÓ Ø ÒÓÒ¹ÐÓÐØÝ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

38 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ Å ÓÒ ÓÑÒÒ Ó ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ Ö ÔÓÒ m ρ ÖÚØØÓÒÐ ÔÓÒ m f2 (1270) ÔÒ ¾µ m σ ÔÒ ¼µ B π T10 m ρ B π T20 m f 2 (1270) ÅÓÒÓÔÓÐ Ø ØÓ Ø ÐØØ Ø M 1 = 760(50) ÅÎ BT10 π (t = 0) = 0.97(6) M 2 = 1120(250) ÅÎ BT20 π (t = 0) = 0.20(3) ÎÐÙ Ø Ø ÓÖÒ Ö ÑÓÐ ÔÖØÓÒ É ÚÓÐÙØÓÒ Ò ÖÝ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

39 ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ Å ÓÒ ÓÑÒÒ Ñ ØÓ ÛÓÖÒ ÚÖÝ ÛÐÐ Ò ÐÐ ÒÒÐ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

40 σ(600) ÓÑÔÐØÓÒ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ÓÖÑ ØÓÖ ÌÖÒ ÚÖ ØÝ È Å ÓÒ ÓÑÒÒ Particle Data Group Roy equations spectrum, Regge Fit I spectrum, Regge Fit II Π gff, ReggeQCDSF data Π gff, monopoleqcdsf data Ê Ï ÈÊ ½ ¾¼½¼µ ¼¼¼ Ö ÙÐØ ÓÒ ØÒØ ÛØ Ø ÖÒ Ò ÅÖ ÒÐÝ ÊÓÝ ÕÙØÓÒ µ N gff, monopolelhcp data slope of N gff, monopoleqcdsf data m Σ MeV Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

41 ËÙÑÑÖÝ ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÅÓÐ ÚÓÐÙØÓÒ È Ò ÚÖÓÙ ÒÒÐ Ö ÓÐÐØÓÒ Ó ÒÖÐÞ ÓÖÑ ØÓÖ ÓÑÔÙØ ÓÒ Ø ÐØØ ÖÐ ÕÙÖ ÑÓÐ ÓÑÔÖ ÒÐÝ ØÓ ÐØØ Ö ÙÐØ ÐÒ ØÛÒ Ø ¹ Ò ÐÓÛ¹ÒÖÝ ÒÐÝ Ì É ÚÓÐÙØÓÒ Ò ÖÝ Ø ÕÙÖ¹ÑÓÐ Ð µ 0 ÐÓÛ 320 ÅÎ ÒÓ ÐÙÓÒ µ B Tn0 ÚÓÐÚ ÑÙÐØÔÐØÚÐÝ ÓÐÙØ ÔÖØÓÒ ÆÂÄ ÛÓÖ ÖÐ ÝÑÑØÖÝ ÖÒ Ø Ý ÝÒÑÐ ØÓÖ ÓÖ ÓØ ÔÝ ÄØØ ÓÖÑ ØÓÖ Ú Ø Ñ ÓÒ Ñ ÔÖØØÝ ÙÖØÐÝ Å ÓÒ ÓÑÒÒ ÛÓÖ ÖÑÖÐÝ ÛÐÐ ÓÖ Ø ÚØÓÖ ¾ ÖÚØØÓÒÐ Ò ¾ ØÖÒ ÚÖ ØÝ Ø Ð Ó ÛÓÖ Ò Ø ÒÙÐÓÒ ÒÒе ÓÒ ØØÙÒØ ÕÙÖ ÖÓÒ ÙÐØÝ ÐÐ ÛÓÖ Ï ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÙÑÔ ÐØÖ ÓÖ ÙÒÖØÒ ÝÒÑ Ý ØÑ ÛØ ÖÓÔÓÙØ º ÓÐÞ ½ º º ÉÙÚÓ ¾ Áº ÈÖÖÓ ½ ʺ ËÒ ½ ½ ÔÖØÑÒØ Ó ÁÒÙ ØÖÐ ËÝ ØÑ ÒÒÖÒ Ò Ò ÍÒÚÖ ØØ ÂÙÑ Á ØÐÐ ËÔÒ ¾ ËÓÓÐ Ó ÐØÖÐ ÒÒÖÒ

More information

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3 ÈÖÑÙØØÓÒ ÔØØÖÒ Ò Ø ÅÙ ÙÒØÓÒ ÙÖ ØÒ ÎØ ÂÐÒ Ú ÂÐÒÓÚ Ò ÐÜ ËØÒÖÑ ÓÒ ÒÖ Ì ØÛÓµ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ ½ Ì ÔÓ Ø Ó ÔÖÑÙØØÓÒ ÛºÖºØº ÔØØÖÒ ÓÒØÒÑÒØ ½ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ Ì ÒØÖÚÐ [12,2314] ½ ¾ ÓÑÔÙØÒ

More information

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÁÒØÖÐ ÓÙÒÖ Ò Ë»Ì Î ÊÐ ÔÖØÑÒØ Ó ÅØÑØ ÍÒÚÖ ØÝ Ó ÓÖ Á̳½½ ØÝ ÍÒÚÖ ØÝ ÄÓÒÓÒ ÔÖÐ ½ ¾¼½½ ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÇÙØÐÒ ËÙÔÖ ØÖÒ Ò Ë»Ì Ì ØÙÔ ÏÓÖÐ Ø Ë¹ÑØÖÜ ÍÒÖÐÝÒ ÝÑÑØÖ ÁÒØÖÐ ÓÙÒÖ ÁÒØÖÐØÝ Ø Ø ÓÙÒÖÝ» ÖÒ Ò ØÛ Ø ÒÒ Ú»Ú

More information

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò ÝÒÑ Ò Ò Ö Ð Ö Ò Ó Ò Ö ÀÍ ÖÐ Òµ Ó Ò ÛÓÖ Û Ö Ò ÖÓÛÒ Ö Ú ½ ¼¾º ¾½ Û Åº Ä Ö Ö Ú ½ ¼¾º ¼¼ Û Äº Ñ Ò Ëº Ï ÒÞ ÖÐ Å ÒÞ ½ º¼ º¾¼½ ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ

More information

½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾

½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾ ÓÖ ÁÒ ØØÙØ Ó ÌÒÓÐÓÝ ¹ ÇØÓÖ Ø ¾¼½¾ ÓÒ ØØÙØÚ ÑÓÐ ÓÙÔÐÒ Ñ Ò ÔÐ ØØÝ ÓÖ ÙÒ ØÙÖØ ÓÑØÖÐ ËÓÐÒÒ Ä ÈÆË È ËÙÔÖÚ ÓÖ Ñ ÈÇÍ ÖÓÙÞ ÌÅÁÊÁ ½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾ ½

More information

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ½¾ Ù Ö ÓÖ ÖÓÑ Ö ÓÒ Ò ÄÈ ÐØ Ö ½¾ ½¾ ½» ½½ ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ¾ Á b 2 < 4ac Û ÒÒÓØ ÓÖ Þ Û Ö Ð Ó ÒØ Ó Û Ð Ú ÕÙ Ö º ËÓÑ Ñ ÐÐ ÕÙ Ö Ö ÓÒ Ò º Ù Ö ÓÖ ½¾ ÓÖ Ù Ö ÕÙ Ö ÓÖ Ò ØÖ Ò Ö ÙÒØ ÓÒ

More information

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER È Ö Ò Ò Ù Ò Ò Ò ÖÝ ÒÙÐ Ö Ý Ø Ñ Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER Radu.Gherghescu@nipne.ro IFIN-HH, Bucharest-Magurele, Romania and Frankfurt Institute for Advanced Studies, J

More information

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3) Physics Department Royal Holloway University of London PH2510 - Nuclear Physics Laboratory Gamma spectroscopy (NP3) 1 Objectives The aim of this experiment is to demonstrate how γ-ray energy spectra may

More information

Lecture 16: Modern Classification (I) - Separating Hyperplanes

Lecture 16: Modern Classification (I) - Separating Hyperplanes Lecture 16: Modern Classification (I) - Separating Hyperplanes Outline 1 2 Separating Hyperplane Binary SVM for Separable Case Bayes Rule for Binary Problems Consider the simplest case: two classes are

More information

INRIA Sophia Antipolis France. TEITP p.1

INRIA Sophia Antipolis France. TEITP p.1 ÌÖÙ Ø ÜØ Ò ÓÒ Ò ÓÕ Ä ÙÖ ÒØ Ì ÖÝ INRIA Sophia Antipolis France TEITP p.1 ÅÓØ Ú Ø ÓÒ Ï Ý ØÖÙ Ø Ó ÑÔÓÖØ ÒØ Å ÒÐÝ ÈÖÓÚ Ò ÌÖÙØ Ø Ò ÑÔÐ Ã Ô ÈÖÓÚ Ò ÌÖÙ Ø È Ó ÖÖÝ Ò ÈÖÓÓ µ Ò Ö ØÝ ÓÑ Ò ËÔ ÔÔÐ Ø ÓÒ TEITP p.2 ÇÙØÐ

More information

2 Hallén s integral equation for the thin wire dipole antenna

2 Hallén s integral equation for the thin wire dipole antenna Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾ ¾¼½½µ ½ ¹½ ¾ ÆÙÑ Ö Ð Ñ Ø Ó ÓÖ Ò ÐÝ Ó Ö Ø ÓÒ ÖÓÑ Ø Ò Û Ö ÔÓÐ ÒØ ÒÒ Ëº À Ø ÑÞ ¹Î ÖÑ ÞÝ Ö Åº Æ Ö¹ÅÓ Êº Ë Þ ¹Ë Ò µ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò

More information

Proving observational equivalence with ProVerif

Proving observational equivalence with ProVerif Proving observational equivalence with ProVerif Bruno Blanchet INRIA Paris-Rocquencourt Bruno.Blanchet@inria.fr based on joint work with Martín Abadi and Cédric Fournet and with Vincent Cheval June 2015

More information

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most ÁÑÔÖÓÚ ÇÒÐÒ ÐÓÖØÑ ÓÖ Ù«Ö ÅÒÑÒØ Ò ÉÓË ËÛØ ÅÖ ÖÓ ÏÓ ÂÛÓÖ ÂÖ ËÐÐ Ý ÌÓÑ ÌÝ Ý ØÖØ We consider the following buffer management problem arising in QoS networks: packets with specified weights and deadlines arrive

More information

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, 202 Abstracts ÁÒÚ Ö Ð Ñ Ø Ó Ø¹Ú ÐÙ ÙÒØ ÓÒ ÁÞØÓ Ò ÞØÓ º Ò ÙÒ ¹Ñ º ÙÐØÝ Ó Æ ØÙÖ Ð Ë Ò Ò Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó Å Ö ÓÖ ÃÓÖÓ ½ ¼ Å Ö ÓÖ ¾¼¼¼

More information

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 ÓÑÔÙØ Ö Ü Ö Ì ÓÓØ ØÖ Ô Ð ÓÖ Ø Ñ Ò Ý Ò Ò ÐÝ In this exercise we will

More information

arxiv:hep-ph/ v1 10 May 2001

arxiv:hep-ph/ v1 10 May 2001 New data and the hard pomeron A Donnachie Department of Physics, Manchester University P V Landshoff DAMTP, Cambridge University DAMTP-200-38 M/C-TH-0/03 arxiv:hep-ph/005088v 0 May 200 Abstract New structure-function

More information

A Glimpse into the Special Theory of Relativity

A Glimpse into the Special Theory of Relativity A Glimpse into the Special Theory of Relativity Siim Ainsaar January 013 1 Why relativity?...1 4.6 Light-cones, simultaneity and Postulates of special relativity... causality...6 3 Basic thought experiments...

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¼¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ½ ¾¼½ Problem (From the reservoir to the grid) The causality diagram of the

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ËÓÐÙØ ÓÒ ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ¾ ¾¼½ Problem 1 (From the reservoir to the grid) The causality diagram

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations

More information

arxiv: v1 [math.dg] 17 Nov 2009

arxiv: v1 [math.dg] 17 Nov 2009 arxiv:0911.3294v1 [math.dg] 17 Nov 2009 ½ ÓÒÓÖÑÐ Ð Ò Ø ØÐØÝ Ó ÐÚ ÛØ ÓÒ ØÒØ Ö ÓÖÖ ÑÒ ÙÖÚØÙÖ ÃÖÞÝ ÞØÓ ÒÖÞÛ Ò ÈÛ º ÏÐÞ ØÖØ ÁÒ Ø ÔÔÖ Û ØÙÝ ÙÑÒÓÐ ÛØ ÓÒ ØÒØ rø ÑÒ ÙÖ¹ ÚØÙÖ S r º Ï ÒÚ ØØ Ø ØÐØÝ Ó Ù ÙÑÒÓÐ Ò Ø

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

j j ( ϕ j ) p (dd c ϕ j ) n < (dd c ϕ j ) n <.

j j ( ϕ j ) p (dd c ϕ j ) n < (dd c ϕ j ) n <. ÆÆÄË ÈÇÄÇÆÁÁ ÅÌÀÅÌÁÁ ½º¾ ¾¼¼µ ÓÒÖÒÒ Ø ÒÖÝ Ð E p ÓÖ 0 < p < 1 Ý ÈÖ ËÙÒ ÚÐе Ê ÞÝ ÃÖÛµ Ò È º Ñ ÀÓÒ À º Ô ÀÒÓµ ØÖغ Ì ÒÖÝ Ð E p ØÙ ÓÖ 0 < p < 1º ÖØÖÞØÓÒ Ó Ö¹ ØÒ ÓÙÒ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ Ò ØÖÑ Ó F p Ò Ø ÔÐÙÖÓÑÔÐÜ

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Information Systems 2, summer term 2010 0/29 Information Systems 2 Information Systems 2 5. Business Process Modelling I: Models Lars Schmidt-Thieme Information Systems and Machine Learning Lab

More information

Non-Stationary Spatial Modeling

Non-Stationary Spatial Modeling BAYESIAN STATISTICS 6, pp. 000 000 J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (Eds.) Oxford University Press, 1998 Non-Stationary Spatial Modeling D. HIGDON, J. SWALL, and J. KERN Duke

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x), ÛÜØ Þ ÜÒ Ô ÚÜ Ô Ü Ñ Ü Ô Ð Ñ Ü ÜØ º½ ÞÜ Ò f Ø ÚÜ ÚÛÔ Ø Ü Ö ºÞ ÜÒ Ô ÚÜ Ô Ð Ü Ð Þ Õ Ô ÞØÔ ÛÜØ Ü ÚÛÔ Ø Ü Ö L(f) = f(x)dx ÚÜ Ô Ü ÜØ Þ Ü Ô, b] Ö Û Þ Ü Ô Ñ ÒÖØ k Ü f Ñ Df(x) = f (x) ÐÖ D Ü Ü ÜØ Þ Ü Ô Ñ Ü ÜØ Ñ

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Solution of Nonlinear Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

dz k dz j. ω n = 1. supφ 1.

dz k dz j. ω n = 1. supφ 1. ÆÆÄË ÈÇÄÇÆÁÁ ÅÌÀÅÌÁÁ ½º¾ ¾¼¼µ ÖÐÐ Ð ÓÒ ÓÑÔØ ÃÐÖ ÑÒÓÐ Ý ËÛÓÑÖ ÒÛ ÃÖÛµ ØÖغ Ï ØÙÝ ÖÐÐ Ð ÓÒ ÓÑÔØ ÃÐÖ ÑÒÓÐ º ÇÙÖ Ö ÙÐØ Ò¹ ÖÐÞ ÓÑ ØÓÖÑ Ó Ù Ò Ö ÖÓÑ Ø ØØÒ Ó ÙÖ ØÓ ÖØÖÖÝ ÑÒÓÐ µ Ò Ò ÛÖ ÓÑ ÓÔÒ ÕÙ ØÓÒ ÔÓ Ý ØѺ ½º

More information

Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model

Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model J. At. Mol. Sci. doi: 10.4208/jams.011511.022111a Vol. x, No. x, pp. 1-5 xxx 2011 ½ ¾ ½¼ Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model J. F. Peng a, P.

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) 1 / 43 Outline 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear Regression Ordinary Least Squares Statistical

More information

Chebyshev Spectral Methods and the Lane-Emden Problem

Chebyshev Spectral Methods and the Lane-Emden Problem Numer. Math. Theor. Meth. Appl. Vol. 4, No. 2, pp. 142-157 doi: 10.4208/nmtma.2011.42s.2 May 2011 Chebyshev Spectral Methods and the Lane-Emden Problem John P. Boyd Department of Atmospheric, Oceanic and

More information

Monodic Temporal Resolution

Monodic Temporal Resolution Monodic Temporal Resolution ANATOLY DEGTYAREV Department of Computer Science, King s College London, London, UK. and MICHAEL FISHER and BORIS KONEV Department of Computer Science, University of Liverpool,

More information

Multi-electron and multi-channel effects on Harmonic Generation

Multi-electron and multi-channel effects on Harmonic Generation Multi-electron and multi-channel effects on Harmonic Generation Contact abrown41@qub.ac.uk A.C. Brown and H.W. van der Hart Centre for Theoretical Atomic, Molecular and Optical Physics, Queen s University

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) Fall, 2017 1 / 40 Outline Linear Model Introduction 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear

More information

PARTON DISTRIBUTIONS AT THE DAWN OF THE LHC

PARTON DISTRIBUTIONS AT THE DAWN OF THE LHC PARTON DISTRIBUTIONS AT THE DAWN OF THE LHC STEFANO FORTE UNIVERSITÀ DI MILANO & INFN ICHEP PARIS, JULY, PDFS FOR THE SPS (984) PDFS: 5 YEARS OF PROGRESS YEARS OF VALENCE PDFS.5.5 post-hera EHLQ84 DuOw84

More information

Elastic scattering of positron by gold atom

Elastic scattering of positron by gold atom J. At. Mol. Sci. doi: 208/jams.022633a Vol. 2, No. 4, pp. 294-304 November 20 Elastic scattering of positron by gold atom Kapil K. Sharma a,, Neerja b, and R. P. Vats a a Department of Physics, M.S (P.G)

More information

HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, 2010

HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, 2010 HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, SUMMARY SMALL Ü RESUMMATION: WHERE DO WE STAND? ß Ö ÙÑÑ Ø ÓÒ Ó Ä È ÚÓÐÙØ

More information

I118 Graphs and Automata

I118 Graphs and Automata I8 Graphs and Automata Takako Nemoto http://www.jaist.ac.jp/ t-nemoto/teaching/203--.html April 23 0. Û. Û ÒÈÓ 2. Ø ÈÌ (a) ÏÛ Í (b) Ø Ó Ë (c) ÒÑ ÈÌ (d) ÒÌ (e) É Ö ÈÌ 3. ÈÌ (a) Î ÎÖ Í (b) ÒÌ . Û Ñ ÐÒ f

More information

Elastoviscoplastic Finite Element analysis in 100 lines of Matlab

Elastoviscoplastic Finite Element analysis in 100 lines of Matlab J. Numer. Math., Vol., No. 3, pp. 57 92 (22) c VSP 22 Elastoviscoplastic Finite Element analysis in lines of Matlab C. Carstensen and R. Klose Received 3 July, 22 Abstract This paper provides a short Matlab

More information

Seminar to the lecture Computer-based Engineering Mathematics

Seminar to the lecture Computer-based Engineering Mathematics Seminar to the lecture Computer-based Engineering Mathematics N T S Prof. Dr.-Ing. A. Czylwik Mohammad Abdelqader, M.Sc. Room: BA 249, Tel: +49-203-379-3474 E-Mail: abdelqader@nts.uni-duisburg-essen.de

More information

A projection preconditioner for solving the implicit immersed boundary equations

A projection preconditioner for solving the implicit immersed boundary equations NUMERICAL MATHEMATICS: Theory, Methods and Applications Numer. Math. Theor. Meth. Appl., Vol. xx, No. x, pp. -27 (200x) A projection preconditioner for solving the implicit immersed boundary equations

More information

519.8 ýý ½ ¹¼½¹¾¼¼ ¼º üº üº þ üº º Á ¹ ÇÊž¼½ µ ¾¾ ¾ ¾¼½ º º Á» º º üº üº þ üº º º º ü ¾¼½ º º ÁË Æ þ Á ¹ º ¹ º ºþº ¹ ú û ü ü µ ¹ µ ¹ ü ü µ ¹ µ

519.8 ýý ½ ¹¼½¹¾¼¼ ¼º üº üº þ üº º Á ¹ ÇÊž¼½ µ ¾¾ ¾ ¾¼½ º º Á» º º üº üº þ üº º º º ü ¾¼½ º º ÁË Æ þ Á ¹ º ¹ º ºþº ¹ ú û ü ü µ ¹ µ ¹ ü ü µ ¹ µ þ ü þ þ º þº þü ü þü ú ü ü üþ û ü ü ü þ ¹ ý üþ ü ý þ þü ü ü ý þ þü ü Á ÇÊž¼½ µ ¾¾ ¾ ¾¼½ Á Á ÅÓ ÓÛ ÁÒØ ÖÒ Ø ÓÒ Ð ÓÒ Ö Ò ÓÒ ÇÔ Ö Ø ÓÒ Ê Ö ÇÊž¼½ µ ÅÓ ÓÛ ÇØÓ Ö ¾¾¹¾ ¾¼½ ÈÊÇ ÁÆ Ë ÎÇÄÍÅ Á þü ¾¼½ 519.8 ýý 22.18

More information

Mean, Median, Mode, More. Tilmann Gneiting University of Washington

Mean, Median, Mode, More. Tilmann Gneiting University of Washington Mean, Median, Mode, More ÓÖ ÉÙ ÒØ Ð ÇÔØ Ñ Ð ÈÓ ÒØ ÈÖ ØÓÖ Tilmann Gneiting University of Washington Mean, Median, Mode, More or Quantiles as Optimal Point Predictors Tilmann Gneiting University of Washington

More information

On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows

On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0229 Vol. 23, No. 3, pp. 846-876 March 2018 On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SKMM 3023 Applied Numerical Methods Ordinary Differential Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Ordinary

More information

arxiv: v1 [hep-ph] 4 Apr 2008

arxiv: v1 [hep-ph] 4 Apr 2008 Generalized parton distributions of the pion Wojciech Broniowski, Enrique Ruiz Arriola and Krzysztof Golec-Biernat arxiv:0804.078v [hep-ph] 4 Apr 008 The H. Niewodniczański Institute of Nuclear Physics

More information

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

Green s function, wavefunction and Wigner function of the MIC-Kepler problem Green s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa

More information

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications KEKPH06 p.1/17 Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications Kentaro Kojima Based on the work with Kenzo Inoue and Koichi Yoshioka (Department of Physics,

More information

Study of coherentπ 0 photoproduction on the deuteron

Study of coherentπ 0 photoproduction on the deuteron J. At. Mol. Sci. oi:.428/jams.8.22a Vol. 2, o. 3, pp. 87-22 August 2 Stuy of coherent photoprouction on the euteron E. M. Darwish a,b,,. Akopov c, an M. A. El-Zohry a Applie Physics Department, Faculty

More information

Lecture 2. Distributions and Random Variables

Lecture 2. Distributions and Random Variables Lecture 2. Distributions and Random Variables Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers March 2013. Click on red text for extra material.

More information

Temperature profiles with bi-static Doppler-RASS and their correction

Temperature profiles with bi-static Doppler-RASS and their correction Atmos. Meas. Tech., 5, 1399 148, 212 www.atmos-meas-tech.net/5/1399/212/ doi:1.5194/amt-5-1399-212 Author(s) 212. CC Attribution 3. License. Atmospheric Measurement Techniques Temperature profiles with

More information

Integrability in QCD and beyond

Integrability in QCD and beyond Integrability in QCD and beyond Vladimir M. Braun University of Regensburg thanks to Sergey Derkachov, Gregory Korchemsky and Alexander Manashov KITP, QCD and String Theory Integrability in QCD and beyond

More information

Subspace angles and distances between ARMA models

Subspace angles and distances between ARMA models ÔÖØÑÒØ ÐØÖÓØÒ Ë̹ËÁËÌ»ÌÊ ß ËÙ Ô ÒÐ Ò ØÒ ØÛÒ ÊÅ ÑÓÐ ÃØÖÒ Ó Ò ÖØ ÅÓÓÖ ÅÖ ÈÙÐ Ò ÈÖÓÒ Ó Ø ÓÙÖØÒØ ÁÒØÖÒØÓÒÐ ËÝÑÔÓ ÙÑ Ó ÅØÑØÐ ÌÓÖÝ Ó ÆØÛÓÖ Ò ËÝ ØÑ ÅÌÆË µ ÈÖÔÒÒ ÖÒ ÂÙÒ ß Ì ÖÔÓÖØ ÚÐÐ Ý ÒÓÒÝÑÓÙ ØÔ ÖÓÑ ØÔº غÙÐÙÚÒºº

More information

Electroweak Precision Physics from LEP to LHC and ILC

Electroweak Precision Physics from LEP to LHC and ILC Electroweak Precision Physics from LEP to LHC and ILC 50th Anniversary Particle and Nuclear Physics at KIT W. HOLLIK MAX-PLANCK-INSTITUT ÜR PHYSIK, MÜNCHEN undamental questions of particle physics: constituents

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

Standard Model or New Physics?

Standard Model or New Physics? Σ + pµ + µ Standard Model or New Physics? Jusak Tandean National Taiwan University in collaboration with XG He & G Valencia High Energy Physics Seminar National Tsing Hua University 25 September 2008 Outline

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Nuclear Structure III: What to Do in Heavy Nuclei

Nuclear Structure III: What to Do in Heavy Nuclei Nuclear Structure III: What to Do in Heavy Nuclei J. Engel University of North Carolina June 15, 2005 Outline 1 Hartree-Fock 2 History 3 Results 4 Collective Excitations Outline 1 Hartree-Fock 2 History

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Ordinary Differential Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

N 1 N 1 + N 2. Pr(I = I 0 ) = ˆπ(A) π(a) Pr(I A Ē) + Pr(E) π(a) Ω + δ A

N 1 N 1 + N 2. Pr(I = I 0 ) = ˆπ(A) π(a) Pr(I A Ē) + Pr(E) π(a) Ω + δ A 8 CHAPTER 1. SAMPLING AND COUNTING Thus Pr(I = ) 2/3 as required. (d) This is clearly true if V =. If V and v = maxv I 0 then, by induction Pr(I = I 0 ) = and similarly Pr(I = I 0 ) = φ if v / I 0. N 1

More information

18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang 8.06 Quiz 2 April 7, 200 Professor Strang Your PRINTED name is:. Your recitation number or instructor is 2. 3.. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line in the

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Outline. Calorimeters. E.Chudakov 1. 1 Hall A, JLab. JLab Summer Detector/Computer Lectures http: // gen/talks/calor lect.

Outline. Calorimeters. E.Chudakov 1. 1 Hall A, JLab. JLab Summer Detector/Computer Lectures http: //  gen/talks/calor lect. Outline Calorimeters E.Chudakov 1 1 Hall A, JLab JLab Summer Detector/Computer Lectures http: //www.jlab.org/ gen/talks/calor lect.pdf Outline Outline 1 Introduction 2 Physics of Showers 3 Calorimeters

More information

New BaBar Results on Rare Leptonic B Decays

New BaBar Results on Rare Leptonic B Decays New BaBar Results on Rare Leptonic B Decays Valerie Halyo Stanford Linear Accelerator Center (SLAC) FPCP 22 valerieh@slac.stanford.edu 1 Table of Contents Motivation to look for and Analysis Strategy Measurement

More information

Journal of Singularities

Journal of Singularities Journal of Singularities Volume 12 2015 Singularities in Geometry and Applications III, 2-6 September 2013, Edinburgh, Scotland Editors: Jean-Paul Brasselet, Peter Giblin, Victor Goryunov ISSN: # 1949-2006

More information

Periodic monopoles and difference modules

Periodic monopoles and difference modules Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential

More information

pnrqcd determination of E1 radiative transitions

pnrqcd determination of E1 radiative transitions pnrqcd determination of E radiative transitions Sebastian Steinbeißer Group T3f Department of Physics Technical University Munich IMPRS talk 3.3.7 In collaboration with: Nora Brambilla, Antonio Vairo and

More information

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics GEOMETRY AND PHYSICS II Institut Henri Poincaré, Nov. 8 &9, 013 Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics H.G.Dosch Institut für Theoretische Physik der

More information

Multi-agent learning

Multi-agent learning Multi-agent learning Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Gerard Vreeswijk, Intelligent Systems Group, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands. Gerard Vreeswijk. Last modified

More information

Meson Form Factors and the BaBar Puzzle

Meson Form Factors and the BaBar Puzzle Meson Form Factors and the BaBar Puzzle Nils Offen Universität Regensburg Séminaire Particule Orsay 17.November 211 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay 17.11.11 1 / 3 1 Introduction:

More information

x f(t) 1 + t 1 + t 1 + u k e uk du = f(0) k Γ 1

x f(t) 1 + t 1 + t 1 + u k e uk du = f(0) k Γ 1 ½ ÌÇÌÌÆ ËÇÄÍÌÁÇÆË Ì Ö Ø ÓÐÙØÓÒ ØÓ Ø ÔÐ ØÓÒ Ó ÔÖÓÐÑ ÔÔÖÒ Ò Ø ËÔØÑÖ ¾¼¼ Ù Ò Ø ØÓ Ø ÑÑÓÖÝ Ó ÂÑ ÌÓØØÒº ÌÇÌÌÆß¼½º ¾¼¼ ¾¼ ¾¾ ÈÖÓÔÓ Ý Ó ÑÒ ÈÓÓØ ÌÙÓÖ ÎÒÙ ÆØÓÒÐ ÓÐÐ ÙÖ Ø ÊÓÑÒº ÄØ H Ø ÓÖØÓÒØÖ Ó ØÖÒÐ ABC Ò ÐØ P Ø

More information

Finite volume effects for masses and decay constants

Finite volume effects for masses and decay constants Finite volume effects for masses and decay constants Christoph Haefeli University of Bern Exploration of Hadron Structure and Spectroscopy using Lattice QCD Seattle, March 27th, 2006 Introduction/Motivation

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso January 8, 7 R-Process Abundances Nuclear Landscape

More information

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete ÍÒ Ú Ö ØÝ Ó Ö Ø ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ È Ö ÓÒ Ð Þ Ò Ð Ö Ø Ú Ê Ô Ö Ò ÈÓÐ ÓÖ ÙÖ Ø Ã ÁÓ ÒÒ ÊÓÙ Å Ø Ö³ Ì À Ö Ð ÓÒ Ñ Ö ¾¼½¼ È Æ ÈÁËÌÀÅÁÇ ÃÊÀÌÀË ËÉÇÄÀ Â ÌÁÃÏÆ Ã Á Ì ÉÆÇÄÇ ÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÈÁËÌÀÅÀË ÍÈÇÄÇ ÁËÌÏÆ

More information

Turbulence and Aeroacoustics Research Team of the Centre Acoustique Laboratoire des Fluides et d Acoustique UMR CNRS 5509, Ecole Centrale de Lyon MUSAF II Colloquium Toulouse, September 2013 Ö Ø ÓÑÔÙØ

More information

Modal Logics of Topological Relations

Modal Logics of Topological Relations Ö Ò ÍÒÚÖ ØÝ Ó ÌÒÓÐÓÝ ÁÒ ØØÙØ ÓÖ ÌÓÖØÐ ÓÑÔÙØÖ ËÒ Ö ÓÖ ÙØÓÑØ ÌÓÖÝ ÄÌËßÊÔÓÖØ Modal Logics of Topological Relations Carsten Lutz and Frank Wolter LTCS-Report 04-05 ÄÖ ØÙÐ ĐÙÖ ÙØÓÑØÒØÓÖ ÁÒ ØØÙØ ĐÙÖ ÌÓÖØ ÁÒÓÖÑØ

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Tools for SUSY Summary and Outlook

Tools for SUSY Summary and Outlook Tools for SUSY Summary and Outlook Fawzi BOUDJEMA OUTLINE LAPTH-Annecy, France What s a tool and what it takes to make one How tools should talk to each other Talks and Issues discussed in Barcelona Organising

More information

Stochastic invariances and Lamperti transformations for Stochastic Processes

Stochastic invariances and Lamperti transformations for Stochastic Processes Stochastic invariances and Lamperti transformations for Stochastic Processes Pierre Borgnat, Pierre-Olivier Amblard, Patrick Flandrin To cite this version: Pierre Borgnat, Pierre-Olivier Amblard, Patrick

More information

Second Harmonic Generation. Study of Equatorial Electrojet. Pulsations of Cosmic Medium. Study of Ionospheric Irregularities

Second Harmonic Generation. Study of Equatorial Electrojet. Pulsations of Cosmic Medium. Study of Ionospheric Irregularities Online ISSN : 49-466 Print ISSN : 0975-5896 DOI : 10.17406/GJSFR Study of Equatorial Electrojet Second Harmonic Generation Pulsations of Cosmic Medium Study of Ionospheric Irregularities VOLUME 17 ISSUE

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1 Õ 83-25 Þ ÛÐ Þ Ð ÚÔÜØ Þ ÝÒ Þ Ô ÜÞØ ¹ 3 Ñ Ð ÜÞ u x + u y = x u u(x, 0) = e x2 ÝÒ Þ Ü ÞØ º½ dt =, dt = x = t + c, y = t + c 2 We can choose c to be zero without loss of generality Note that each characteristic

More information

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Final exam: Automatic Control II (Reglerteknik II, 1TT495) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Automatic Control II (Reglerteknik II, TT495) Date: October 22, 2 Responsible examiner:

More information

Visit our WWW site:

Visit our WWW site: For copies of this Booklet and of the full Review to be sent to addresses in the Americas, Australasia, or the Far East, visit http://pdg.lbl.gov/pdgmail or write to Particle Data Group MS 50R6008 Lawrence

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Improving the Berlekamp algorithm for binomials x n a

Improving the Berlekamp algorithm for binomials x n a Improving the Berlekamp algorithm for binomials x n a Ryuichi Harasawa Yutaka Sueyoshi Aichi Kudo Nagasaki University July 19, 2012 1 2 3 Idea Example Procedure after applying the proposed mehod 4 Theoretical

More information

arxiv:astro-ph/ v1 12 Feb 2004

arxiv:astro-ph/ v1 12 Feb 2004 Extreme Kuiper Belt Object 2001 QG 298 and the Fraction of Contact Binaries Scott S. Sheppard and David Jewitt 1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 sheppard@ifa.hawaii.edu,

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

hal , version 1-27 Mar 2014

hal , version 1-27 Mar 2014 Author manuscript, published in "2nd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2005), New York, NY. : United States (2005)" 2 More formally, we denote by

More information

Uniform approximation of sgnx by polynomials and entire functions

Uniform approximation of sgnx by polynomials and entire functions arxiv:math/64324v1 [math.ca] 13 Apr 26 Uniform approximation of sgnx by polynomials and entire functions Alexandre Eremenko and Peter Yuditskii 2nd February 28 In 1877, E. I. Zolotarev [19, 2] found an

More information

A Language for Task Orchestration and its Semantic Properties

A Language for Task Orchestration and its Semantic Properties DEPARTMENT OF COMPUTER SCIENCES A Language for Task Orchestration and its Semantic Properties David Kitchin, William Cook and Jayadev Misra Department of Computer Science University of Texas at Austin

More information

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University ukyang@snu.ac.kr Un-ki Yang - DIS 1 Elastic and Inelastic scattering Electron-Proton Scattering P Electron-proton

More information

Physics Letters B. Generalized form factors and spin structures of the kaon. Seung-il Nam a,b, Hyun-Chul Kim c,a, article info abstract

Physics Letters B. Generalized form factors and spin structures of the kaon. Seung-il Nam a,b, Hyun-Chul Kim c,a, article info abstract Physics Letters B 707 ) 546 55 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Generalized form factors and spin structures of the kaon Seung-il Nam

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

Introduction to Lattice Supersymmetry

Introduction to Lattice Supersymmetry Introduction to Lattice Supersymmetry Simon Catterall Syracuse University Introduction to Lattice Supersymmetry p. 1 Motivation Motivation: SUSY theories - cancellations between fermions/bosons soft U.V

More information

Thermodynamic properties of Zr 2 Al under high pressure from first-principles calculations

Thermodynamic properties of Zr 2 Al under high pressure from first-principles calculations J. At. Mol. Sci. doi: 10.4208/jams.071011.080511a Vol. 3, No. 2, pp. 160-170 May 2012 Thermodynamic properties of Zr 2 Al under high pressure from first-principles calculations X. L. Yuan a,b, D. Q. Wei

More information