Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Size: px
Start display at page:

Download "Nucleon form factors and moments of GPDs in twisted mass lattice QCD"

Transcription

1 Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T. Korzec, M. Papinutto HEP211, Grenoble July 22, 211

2 A Motivation OUTLINE B Nucleon Generalized Parton Distributions C Evaluation on the Lattice 2pt and 3pt functions Renormalization Cut-off and Volume effects D Nucleon form factors E Nucleon Moments

3 Motivation Characterization of nucleon structure is considered a milestone in hadronic physics many experiments have been carried out to measure form factors and structure functions. New generation experiments using polarized beams and target are yielding high precision data spanning larger Q 2 ranges. They provide ideal probes of the charge and magnetization, determination of shape in analogy to e.g. deuteron and other nuclei Non-relativistically form factors are related to density distribution: F( q 2 ) = d 3 xe i q. x < ψ ρ( x) ψ >

4 Nucleon Generalized Parton Distributions (GPDs) High energy scattering: Formulate in terms of light-cone correlation functions F Γ(x,ξ,q 2 ) = 1 2 ig dλ 2π eixλ p ψ( λn/2)γpe λ/2 λ/2 where q = p p, P = (p + p)/2, n: light-cone vector ( P.n = 1). Choices of operators: Γ = /n 1 ) [/nh(x,ξ,q 2 ) + i nµqνσµν 2ū(p Γ = /nγ 5 1 [ ) 2ū(p Γ = n µσ µν tensor GPDs dαn A(nα) ψ(λn/2) p ] 2m E(x,ξ,q2 ) u(p) ] u(p) /nγ 5 H(x,ξ,q 2 ) + n.qγ5 Ẽ(x,ξ,q 2 ) 2m Expansion of the light cone operator leads to a tower of local twist-2 operators O µ 1...µn Diagonal matrix element P O(x) P (DIS) parton distributions: q(x), q(x), δq(x) twist-2 operators O µ 1...µn = qγ {µ1 id µ2...id µn} q Õ µ 1...µn = qγ 5γ {µ1 id µ2...id µn} q unpolarized x n q = helicity x n q = 1 dxx n [ q(x) ( 1) n q(x) ] 1 dxx n [ q(x) + ( 1) n q(x) ] q = q + q, q = q q,δq = q T + q

5 Nucleon generalized form factors Decomposition of matrix elements into GFFs: contain form factors, parton distributions N(p ) O / n µ 1...µn N(p) = [ ū(p ( n 1 ) A i= ni (q 2 )γ {µ 1 + B ni (q 2 ) iσµ 1 α ) qα q 2m µ 2...q µ i+1 µ P i+2...p µn} even Similarly for O /nγ5 in terms of à ni(q 2 ), B ni(q 2 ) Special cases: n = 1: ordinary nucleon form factors +δ n even C n (q2 ) 1 m q{µ 1...q µn} ]u(p) 1 vector operator = γ µf 1(q 2 )+ iσµνqν 2m F2(q2 ) G E(q 2 ) = F 1(q 2 ) q2 (2m) 2 F 2(q 2 ), G M(q 2 ) = F 1(q 2 )+F 2(q 2 ) 2 axial operator = i [ γ µγ 5G A(q 2 )+ qµγ 5 2m Gp(q2 ) ] τ a 2 n = 2: moments of parton distributions 1 vector operator = A 2(q 2 ), B 2(q 2 ), C 2(q 2 ) x q = A 2(): spin independend moment 2 axial operator = Ã2(q2 ), B2(q 2 ) x q = Ã2(): helicity moment

6 Evaluation on the Lattice Issues to be addressed: Evaluation of three-point correlators and renormalization Choice of operators - avoid mixing, consider iso-vector operators no disconnected contributions Cut-off effects Finite volume effects Chiral expansions - not as developed as in the light meson case Volume and cut-off effects more difficult to assess Extrapolation to physical point more demanding This work focuses on: N F = 2 twisted mass gauge configurations (produced by ETMC) Nucleon form factors Nucleon lower moments of GPDs Dynamical simulations, pion mass m π < 5 MeV, L > 2 fm

7 Fermion and Gluon Action N F = 2 Twisted mass fermions (twisted basis) S F = a 4 x χ(x) (1 2 γµ( µ + µ ) ar µ µ 2 + m + iµγ5τ3) χ(x) physical basis at maximal twist ψ= 1 2 [1 + iτ 3 γ 5]χ ψ= χ 1 2 [1 + iτ 3 γ 5] Tree-level Symanzik improved gluons S g = β 3 ( 5 x 3 4 µ,ν=1 1 µ<ν { } 1 Re Tr(U 1 1 x,µ,ν ) µ,ν=1 µ ν { } ) 1 Re Tr(U 1 2 x,µ,ν )

8 Ensembles β a (fm) aµ m π (GeV) L 3 T C. Alexandrou et al. (ETM Collaboration), Phys. Rev. D83 (211) 451 C. Alexandrou et al. (ETM Collaboration), Phys. Rev. D83 (211) 9452 C. Alexandrou et al. (ETM Collaboration), Phys. Rev. D83 (211) C. Alexandrou et al. (ETM Collaboration), Phys. Rev. D83 (211) 1453

9 Evaluation of two-point and three-point functions G( q,t) = xf e i x f q Γ 4 βα Jα( x f,t f )J β () OΓ q = p p G µν (Γ, q,t) = xf, x e i x q Γ βα J α( x f,t f )O µν ( x,t)j β () ( xf, tf) ( x, t) ( xi, ti) Sequential inversion through the sink fix sink-source separation t f t i, final momentum p f =, Γ Smearing techniques improvement of ground state dominance in three-point correlators Ratios: Leading time dependence cancels G(Γ, q,t) R(Γ, q,t) = G( q,t f t)g(,t)g(,t f ) G(,t f ) G(,t f t)g( q,t)g( q,t f ) lim t f t t t lim R(Γ, q,t) Π(Γ, q) i R(Γ, q, t) depends on the indices of current insertion Variational approach, possible improvement on plateaux extend to Q GeV 2 t/a R 1 (Γ,p=(1,1,) R 22 (Γ,p=(,1,) R (Γ,p=(1,,) R (Γ,p=(,,)

10 Renormalization Constants RI -MOM renormalization scheme Fix configurations to Landau gauge. S u (p) = a8 V x,y e ip(x y) u(x)ū(y) G(p) = a12 V x,y,z,z e ip(x y) u(x)ū(z)j(z,z )d(z ) d(y) Amputated vertex functions Γ(p) = (S u (p)) 1 G(p) (S d (p)) 1 Renormalization functions: Z q and Z O Mass independent renormalization scheme need chiral extrapolations Subtract O(a 2 ) perturbatively m π (GeV) Z q Z V Z A Z T Z V Z A (a p) 2

11 Nucleon EM and Axial form factors (m π :3-35MeV) Can we get results at physical point?

12 g A = G A() Nucleon axial charge N F = 2 twisted mass fermions, ETMC N F = Domain wall fermions, RBC-UKQCD N F = hybrid action, LHPC Agreement among recent lattice results - all use non-perturbative Z A Weak light quark mass dependence What can we say about the physical value of g A?

13 g A = G A() Nucleon axial charge - - TMF at 3 β-values Continuum limit of our volume corrections results 1-loop chiral perturbation theory in the small scale expansion (SSE) Fitting volume corrected and extrapolated to the continuum results g A = 1.12(7) Fitting lattice results directly g A = 1.8(8) (black dashed line)

14 Chiral extrapolation of EM form factors Baryon χpt to 1-loop, with d.o.f.(sse) and isovector N coupling included in LO Fit F 1(m π,q 2 ) and F 2(m π,q 2 ) with 5 parameters: κ v, the isovector (c v) and axial N to (g N or c A) couplings and two counterterms

15 Nucleon Moments GFFs: ūγ {µ D ν} u dγ {µ D ν} d and ūγ {µ γ 5 D ν} u dγ {µ γ 5 D ν} d Results given in the MS scheme at µ = 2 GeV.4 TMF: 3 MeV QCDSF: 35MeV Hybrid: 355MeV.4 TMF: 3MeV Hybrid: 355MeV.3.3 A 2.2 ~ A Q 2 (GeV 2 ) Q 2 (GeV 2 ) C 2 B TMF: 3MeV Hybrid: 355MeV QCDSF: 35MeV ~ B TMF: 3MeV Hybrid: 355MeV Q 2 (GeV 2 ) Q 2 (GeV 2 )

16 spin-independent moment: A 2() helicity moment: Ã 2()

17 Chiral extrapolation of A 2, B 2, Ã 2, B2 at Q 2 = HBχPT: A combined fit to raw data A 2 and B 2 is carried out (agreement with a results). The mass of the nucleon at the chiral limit is used as input Isovector unpolarized and polarized first moments of quark distribution A 2.2 A ~ B m π (GeV ) B ~ m π (GeV )

18 Proton Spin One also needs the isoscalar moments A u+d 2 and B u+d 2 since the total spin of a quark is J q = 1 ( q A ()) L q : orbital angular momentum Σ q : spin components J q = 1 2 Σq + L q Σ u+d = g u+d A no disconnected contributions.4 CBχPT.4 HBχPT Contributions to nucleon spin J u J d contributions to nucleon spin J u J d m π 2 (GeV 2 ) m π 2 (GeV 2 )

19 Chiral extrapolation using HBχPT left: total angular momentum and total spin component right: Angular momentum and spin carried by u- d- quarks Σ u+d / 2 L u+d contributions to nucleon spin Σ u /2 L d L u Σ d / m π 2 (GeV 2 ) m π (GeV 2 ) Physical points from HERMES 27 analysis

20 Conclusions Nucleon form factors provide a benchmark for lattice QCD beyond hadron masses. Need results at both lower Q 2 extract radii and magnetic moments and higher Q 2 Cut-off effects small for a <.1 fm Finite volume corrections difficult to assess Within current statistical errors of 3% results on G E, G M, G A, < x > q and < x > q are consistent for Lm π > 3.5 Lmπ = 4 Finite volume corrections significant for G p Need to include the disconnected contributions Make a lattice determination of a number of couplings used as input in chiral extrapolations explore GPDs that yield more detailed information on both longitudinal and transverse distributions

21 THANK YOU

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD Nucleon form factors and moments of parton distributions in twisted mass lattice QCD C. Alexandrou (a,b), (a), C. Kallidonis (a), T. Korzec (a,c) (a) Department of Physics, University of Cyprus, P.O. Box

More information

Hadron Structure in Lattice QCD

Hadron Structure in Lattice QCD Hadron Structure in Lattice QCD C. Alexandrou University of Cyprus and Cyprus Institute From Quarks and Gluons to Hadrons and Nuclei Erice, 16-24 September 2011 C. Alexandrou (Univ. of Cyprus & Cyprus

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis Hyperons and charmed baryons axial charges from lattice QCD Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute with C. Alexandrou and K. Hadjiyiannakou Electromagnetic

More information

Lattice QCD and Proton Structure:

Lattice QCD and Proton Structure: Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006 How can Lattice QCD Complement Experiment? 1. Quantitative

More information

Nucleon generalized form factors with twisted mass fermions

Nucleon generalized form factors with twisted mass fermions Nucleon generalized form factors with twisted mass fermions Department of Physics, University of Cyprus, P.O. Box 537, 78 Nicosia, Cyprus, and Computation-based Science and Technology Research Center,

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

to N transition and form factors in Lattice QCD

to N transition and form factors in Lattice QCD to N transition and form factors in Lattice QCD C. Alexandrou University of Cyprus and Cyprus Institute NSTAR 2011, Jefferson Lab, 18 May 2011 C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Resonance FFs

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Higher moments of PDFs in lattice QCD William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Lattice QCD and hadron structure The problem with higher moments (~

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

arxiv: v1 [hep-lat] 19 Jan 2016

arxiv: v1 [hep-lat] 19 Jan 2016 from lattice QCD with nearly physical quark masses arxiv:1601.04818v1 [hep-lat] 19 Jan 2016 Gunnar Bali, a Sara Collins, a Meinulf Göckeler, a, a Andreas Schäfer, a Andre Sternbeck b a Institut für Theoretische

More information

QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD

QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD Nucleon structure from Lattice QCD at nearly physical quark masses Gunnar Bali for RQCD with Sara Collins, Benjamin Gläßle, Meinulf Göckeler, Johannes Najjar, Rudolf Rödel, Andreas Schäfer, Wolfgang Söldner

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Hadron structure in Lattice QCD

Hadron structure in Lattice QCD Hadron structure in Lattice QCD C. Alexandrou University of Cyprus and Cyprus Institute Hadrons from Quarks and Gluons International Workshop XLII on Gross Properties of Nuclei and Nuclear Excitations

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

arxiv: v1 [hep-lat] 6 Nov 2012

arxiv: v1 [hep-lat] 6 Nov 2012 HIM-2012-5 Excited state systematics in extracting nucleon electromagnetic form factors arxiv:1211.1282v1 [hep-lat] 6 Nov 2012 S. Capitani 1,2, M. Della Morte 1,2, G. von Hippel 1, B. Jäger 1,2, B. Knippschild

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Nucleon matrix elements

Nucleon matrix elements Nucleon matrix elements Constantia Alexandrou University of Cyprus and The Cyprus Institute Symposium on Effective Field Theories and Lattice Gauge Theory May 20, 2016 C. Alexandrou (Univ. of Cyprus &

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Hadron Structure James Zanotti The University of Adelaide Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Lecture 3 Neutron beta decay Nucleon axial charge, ga Deep Inelastic Scattering Structure

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

What is Orbital Angular Momentum?

What is Orbital Angular Momentum? What is Orbital Angular Momentum? Matthias Burkardt burkardt@nmsu.edu New Mexico State University What is Orbital Angular Momentum? p.1/22 Motivation polarized DIS: only 30% of the proton spin due to quark

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Flavor Twisting for Isovector Form Factors

Flavor Twisting for Isovector Form Factors Flavor Twisting for Isovector Form Factors Brian C. Tiburzi Duke University LHP2006, August 1 st TwBCs & Form Factors p.1 Outline Flavor Twisted Boundary Conditions and Isovector Form Factors Quantized

More information

Omega baryon electromagnetic form factors from lattice QCD

Omega baryon electromagnetic form factors from lattice QCD Omega baryon electromagnetic form factors from lattice QCD C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2057, 1678 Nicosia, Cyprus and Computation-based Science and Technology Research

More information

Recent Progress on Nucleon Structure with Lattice QCD

Recent Progress on Nucleon Structure with Lattice QCD Recent Progress on Nucleon Structure with Lattice QCD Huey-Wen Lin University of Washington Outline Lattice gauge theory Nucleon matrix elements on the lattice: systematics Building a picture of nucleons

More information

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation a, M. Deka b,c, T. Doi d, Y.B. Yang e, B. Chakraborty a, Y. Chen e, S.J. Dong a, T. Draper a, M. Gong a, H.W. Lin f, D. Mankame

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany Hadron structure from lattice QCD A. Schäfer

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD André Sternbeck a,b On behalf of the RQCD collaboration (Regensburg) a Friedrich-Schiller-Universität Jena, Germany b SFB/TRR 55 Hadron Physics from Lattice QCD September

More information

Hadron Structure with DWF (II)

Hadron Structure with DWF (II) Yale University 3rd International Lattice Field Theory Network Workshop Jefferson Lab, Newport News, VA LHPC Hadron Structure project on USQCD resources Dru Renner University of Arizona Ronald Babich,

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Probing Nucleon Resonances on the Lattice

Probing Nucleon Resonances on the Lattice Probing Nucleon Resonances on the Lattice Benjamin Owen Supervisors: Derek Leinweber, Waseem Kamleh April 7th, 2014 Benjamin Owen (Adelaide Uni) April 7th, 2014 1 / 27 Outline 1 Accessing states on the

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment A Dissertation By Hidekazu Tanaka February 25 Department of Physics Tokyo Institute of Technology Abstract

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Nucleon Structure at Twist-3

Nucleon Structure at Twist-3 Nucleon Structure at Twist-3 F. Aslan, MB, C. Lorcé, A. Metz, B. Pasquini New Mexico State University October 10, 2017 Outline 2 Motivation: why twist-3 GPDs twist-3 GPD G q 2 Lq twist 3 PDF g 2(x) force

More information

The N-tο- (1232) transition from Lattice QCD :

The N-tο- (1232) transition from Lattice QCD : The N-tο-(13) transition from Lattice QCD : Electromagnetic, Axial and Pseudoscalar Form Factors with N F = +1 domain wall fermions Antonios Tsapalis Hellenic Naval Academy & National Technical University

More information

What is Orbital Angular Momentum?

What is Orbital Angular Momentum? What is Orbital Angular Momentum? Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab What is Orbital Angular Momentum? p.1/23 Motivation polarized DIS: only 30% of the proton

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta Yoshifumi Nakamura(NIC/DESY) for the theta collaboration S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D.

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers

The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers Karl Jansen Introduction Status of present Lattice calculations Hadron structure on the lattice Moments of parton distribution

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

arxiv: v1 [hep-lat] 23 Dec 2010

arxiv: v1 [hep-lat] 23 Dec 2010 arxiv:2.568v [hep-lat] 23 Dec 2 C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2537, 678 Nicosia, Cyprus and Computation-based Science and Technology Research Center, Cyprus Institute,

More information

Currents and scattering

Currents and scattering Chapter 4 Currents and scattering The goal of this remaining chapter is to investigate hadronic scattering processes, either with leptons or with other hadrons. These are important for illuminating the

More information

Moments of generalized parton distribution functions viewed from chiral effective field theory.

Moments of generalized parton distribution functions viewed from chiral effective field theory. Moments of generalized parton distribution functions viewed from chiral effective field theory. Marina Dorati Universita di Pavia, Dipartimento di Fisica Nucleare e Teorica Technische Universität München,

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

Complex Systems of Hadrons and Nuclei

Complex Systems of Hadrons and Nuclei 1 European Graduate School Complex Systems of Hadrons and Nuclei Copenhagen - Giessen - Helsinki - Jyväskylä -Torino Measuring transverse size with virtual photons In-Medium Effects in Hadronic and Partonic

More information

The structure of a bound nucleon

The structure of a bound nucleon The structure of a bound nucleon Ian Cloët (University of Washington) Collaborators Wolfgang Bentz Anthony Thomas (Tokai University) (Adelaide University) Tony s 60 Fest 5 9 Feburary 200 Theme Gain insights

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

arxiv: v1 [hep-lat] 8 Oct 2007

arxiv: v1 [hep-lat] 8 Oct 2007 arxiv:71.1517v1 [hep-lat] 8 Oct 27 Lattice QCD with two light Wilson quarks and maximally twisted mass Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool

More information

Lattice-based Studies of QCD.

Lattice-based Studies of QCD. Lattice-based Studies of QCD. David Richards Jefferson Laboratory QCD and Hadron Physics Town Meeting, Temple, Sept. 13-15, 2014!!!!! Thanks: R. Briceno, W. Detmold, M. Engelhardt, K-F Liu, S. Meinel,

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Hyeon-Dong Son Inha University In collaboration with Prof. H.-Ch. Kim

Hyeon-Dong Son Inha University In collaboration with Prof. H.-Ch. Kim Energy-momentum Tensor Form Factors and Transverse Charge Densities of the Pion and the Kaon from the Instanton Vacuum Hyeon-Dong Son Inha University In collaboration with Prof. H.-Ch. Kim APFB 2014 April

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab),

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Computation of parton distributions from the quasi-pdf approach at the physical point

Computation of parton distributions from the quasi-pdf approach at the physical point EPJ Web of Conferences 75, 48 (8) Lattice 7 https://doi.org/.5/epjconf/87548 Computation of parton distributions from the quasi-pdf approach at the physical point Constantia Alexandrou,, Simone Bacchio,3,

More information

Implications of G p E(Q 2 )/G p M(Q 2 ).

Implications of G p E(Q 2 )/G p M(Q 2 ). Implications of G p E(Q 2 )/G p M(Q 2 ). S. Dubnička 1, A. Z. Dubničková 2, OUTLINE: 1. JLab proton polarization data puzzle 2. Existence of two different G p E(t) behaviors in spacelike region 3. Consequences

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

Nucleon Structure & GPDs

Nucleon Structure & GPDs Nucleon Structure & GPDs Matthias Burkardt New Mexico State University August 15, 2014 Outline 2 GPDs: Motivation impact parameter dependent PDFs angular momentum sum rule physics of form factors DVCS

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt New Mexico State University August 31, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation L q JM Lq Ji = change in OAM as quark leaves

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information