Lattice QCD and Proton Structure:

Size: px
Start display at page:

Download "Lattice QCD and Proton Structure:"

Transcription

1 Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006

2 How can Lattice QCD Complement Experiment? 1. Quantitative calculation of hadron observables from first principles Direct comparison with experiment Credibility for predictions and guiding experiment. Insight into how QCD works Mechanisms Dependence on parameters 3. Example of complementarity: GPD s

3 Quantitative Calculations Current Calculations Fermion determinant - Full QCD Lattice spacing: Quark mass: a ~ 0.15 fm mπ ~ 350 MeV Large lattice volume L ~ 3.5 fm Cost (mπ)-7 - (mπ)-9 Current world sustained Teraflops for lattice US - DOE 8 Europe + UK 0-5 Japan

4 Observables we can calculate now Masses (discussed by David Richards) Matrix elements of twist operators Note - omit disconnected diagrams, so only isovector exact Form factors: em, transition Moments of structure functions Moments of GPD s - generalized form factors Spin structure, transverse structure pion scattering lengths 4

5 Moments of parton distributions Expansion of O(x) = λ/ λ λ dλ iλx ig λ/ dαn A(αn) ψ( n) e ψ ( n) " npe 4π Generates tower of twist- operators Oq{µ1 µ...µn } = ψ q γ {µ1 idµ... id µn } ψq Diagonal matrix element P Oq{µ1 µ...µn } P " dx xn 1 q(x) Off-diagonal matrix element P Oq{µ1 µ...µn } P " Ani (t), Bni (t), Cn0 (t) " n 1 dx x H(x, ξ, t) ξ i Ani (t) + ξ n Cn0 (t) " n 1 dx x E(x, ξ, t) ξ i Bni (t) ξ n Cn0 (t) [ n nγ5 : A ni (t), B ni (t)] 5

6 u d 1" q Nucleon axial charge ga."$."#. /0 "& :;4< =4>8?5@<=4> 9AB+CD'+EF "% "$ "# "# "$ # # "% "& ' ()*+, 6

7 Putting It All Together Chiral Extrapolation of Moments $U $D DU DD X U D X $U $D X DU DD X $U $D 7

8 F1 Isovector Form Factor Dirac isovector charge radius 0.6 p n sqrt[ r ch r ch] (fm) expt 498 mπ = MeV MeV mπ = MeV mπ = 775 mπ = MeV mπ = 775 MeV 0 0 r "u d (1 + 5gA ) log = a0 (4πfπ ) 0. mπ mπ + Λ mπ 0.4 (GeV) 0.6 " 8

9 Form factor ratio: F / F1 4 F (I=1) / F1 (I=1) mπ = 775 MeV mπ = 498 MeV mπ = 359 MeV Expt: κp - κn Q (GeV ) 9

10 Nucleon spin decomposition 5/ /.- 1/.56)/ "$ ", DS+9ê # "# " "# "$ ' #D "% "& 10

11 ' D Nucleon spin decomposition 565)6/)./ // //..--1/1/.. "$ ", "$ ΔΣu/ DS+9ê # "# "# Lqd " ΔΣd/ -"# "# "# "$ "$ # ## Lqu "% "% "& "& 11

12 Transverse size of light-cone wave function xnav = d r dx x xn 1 q(x, r ) d r dxxn 1 q(x, r ) q(x, r ) model (Burkardt hep-ph/007047) 1

13 Future calculations of present observables Precision calculation - few percent errors Chiral sea and valence fermions Smaller lattice spacing - contiuum limit Larger lattice volume - infinite volume limit Smaller pion mass - chiral regime Renormalization - higher loops and/or nonperturbative Nucleon scattering length Examples Domain wall quarks, 30 Tf-yrs a=.09 fm, mπ ~ 50 MeV, L= 4.5fm Staggered quarks, 37 Tf-yrs a=.06 fm, mπ ~ 140 MeV, L= 5fm 13

14 New observables and theoretical issues Disconnected diagrams Flavor singlet matrix elements Strangeness form factors Gluon distributions Mixing of gluon and flavor singlet operators Operator mixing of higher moments of structure functions and generalized form factors Higher twist operators Distribution amplitudes Neutron electric dipole moment - strong CP and theta angle Polarizabilities Changes between free and interacting nucleon Example: difference between moments of structure functions of free n and p and of deuteron 14

15 Insight into how QCD works Mechanisms Origin of confinement Paths that dominate action Role of instantons and zero modes Variational wave functions Diquark correlations - role of diquarks Dependence on topology Nf mq Gauge group C(r1,r) Dependence on parameters Nc HLL correlation function, 0.8 < cos theta <= 1.0 and R (-3.8 <= R <= 4.), as a function of r Plotting C(r1,r) = <rhou(r1) rhod(r)>/(<rho(r1)> <rho(r)>) r C(r1, r ) = ρ(r1 )ρ(r )" ρ(r1 )"ρ(r )" ρ(r1 )"ρ(r )" 15

16 Complementarity of experiment and lattice Once lattice technology is verified by agreement with measured observables, use as tool to calculate unmeasured observables. Example: GPD s Experiment - convolution Lattice - moments Combine for more information than either gives alone Strategy: phenomenological parameterizations 16

17 Comparison with Phenomenology 5 $ ><8) : # ; B61# B?1 5 $ <68) : # ; B61# B?1 6 1#?4 5 $ <68 ) : " ; 1#?34 1#? 1#1>4 1#14 1# #?4 5 $ 4<68 ) : " ; 1#?34 1#? 1#1>4 1#14 1#134 5 $ 4<68) : # ; 5 $ 7<=8 ) : " ; 5 $ 7<=8) : # ; B61#B?1 6 1#?4 5 $ ><8 ) : " ; 1#?34 1#? 1#1>4 1#14 1#134 B61#B?1 *)(C5CDE*F *)G:(@G H*I5 J%-K8LJ-$HI* *E@CIG IH$AMMG 1#?4 1#?34 1#? 1#1>4 1#14 1#134 % 61 O N % 61 O N $ $$P")*) %?1 O N &?1 O N % 61 O N $ # $" " 3 # O " + % $ 1+ N XI5WE*);$@I$WE*E5)@*CVE@CIDK EDGE@V$UF$.C)"(+$M)(;5EDD+ RETIU+$S*I(($QR-$3114 *)5E*TEU()$IY)*E(( E'*))5)D@$E@$5' & 4118)9 Diehl, Feldmann, Jakob, Kroll EPJC 005 # )9 + : " ;1#= 1 5 1#3 1#7+ 311# A)9 3 " "? # )9 + : # ;1#=?#3 15 1#3 1#7+ 311# A)9 3 "??#3 "#$%&'()*+$,-./

18 Resources Computational resources Sustained Petaflops in next 5 years Partnership between NP, HEP, ASCR, SciDAC, NNSA Theorists Innovative ideas Mastery of theoretical physics and computational science As in all nuclear theory, need theory initiatives to attract and mentor outstanding theorists 18

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Hadron Structure with DWF (II)

Hadron Structure with DWF (II) Yale University 3rd International Lattice Field Theory Network Workshop Jefferson Lab, Newport News, VA LHPC Hadron Structure project on USQCD resources Dru Renner University of Arizona Ronald Babich,

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab),

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Electromagnetic Form Factors

Electromagnetic Form Factors Electromagnetic Form Factors Anthony W. Thomas Workshop on Exclusive Reactions, JLab : May 24 th 2007 Electron Scattering Provides an Ideal Microscope for Nuclear Physics Electrons are point-like The interaction

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

arxiv: v1 [hep-lat] 19 Jan 2016

arxiv: v1 [hep-lat] 19 Jan 2016 from lattice QCD with nearly physical quark masses arxiv:1601.04818v1 [hep-lat] 19 Jan 2016 Gunnar Bali, a Sara Collins, a Meinulf Göckeler, a, a Andreas Schäfer, a Andre Sternbeck b a Institut für Theoretische

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD Nucleon form factors and moments of parton distributions in twisted mass lattice QCD C. Alexandrou (a,b), (a), C. Kallidonis (a), T. Korzec (a,c) (a) Department of Physics, University of Cyprus, P.O. Box

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday

Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday A good physicist wide knowledge, deep intuition, full of innovative ideas, up-todate in theory and experiment Visionary For example:

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Complex Systems of Hadrons and Nuclei

Complex Systems of Hadrons and Nuclei 1 European Graduate School Complex Systems of Hadrons and Nuclei Copenhagen - Giessen - Helsinki - Jyväskylä -Torino Measuring transverse size with virtual photons In-Medium Effects in Hadronic and Partonic

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu August 16 19, 018 Four Lectures The 3 rd WHEPS, August 16-4, 018, Weihai, Shandong q The Goal: The plan for my four lectures To understand the strong

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics? Gluon Spin Basics hvordan man bruger astrologi med tibetanske medicin Winter 2004 R.L. Jaffe The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 Real and virtual Compton scattering experiments at MAMI and Jefferson Lab S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 1 Reminder: polarizability of atoms and molecules Neutral atom in external

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Higher moments of PDFs in lattice QCD William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Lattice QCD and hadron structure The problem with higher moments (~

More information

Cascades on the Lattice

Cascades on the Lattice Cascade Physics - Jlab 2005 Cascades on the Lattice Kostas Orginos College of William and Mary - JLab LHP Collaboration LHPC collaborators R. Edwards (Jlab) G. Fleming (Yale) P. Hagler (Vrije Universiteit)

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Baryon semi-leptonic decay from lattice QCD with domain wall fermions

Baryon semi-leptonic decay from lattice QCD with domain wall fermions 4th ILFTN Workshop at Hayama, Mar. 8-11, 2006 Baryon semi-leptonic decay from lattice QCD with domain wall fermions Shoichi Sasaki (RBRC/U. of Tokyo) in collabration with Takeshi Yamazaki (RBRC) Baryon

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

arxiv: v1 [hep-ph] 18 Aug 2011

arxiv: v1 [hep-ph] 18 Aug 2011 GPD and PDF modeling in terms of effective light-cone wave functions Dieter Mueller 1 and Dae Sung Hwang ariv:1108.3869v1 [hep-ph] 18 Aug 011 Nuclear Science Division, Lawrence Berkeley National Laboratory,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

What is Orbital Angular Momentum?

What is Orbital Angular Momentum? What is Orbital Angular Momentum? Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab What is Orbital Angular Momentum? p.1/23 Motivation polarized DIS: only 30% of the proton

More information

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis Hyperons and charmed baryons axial charges from lattice QCD Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute with C. Alexandrou and K. Hadjiyiannakou Electromagnetic

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Nucleon Deformation from Lattice QCD Antonios Tsapalis Nucleon Deformation from Lattice QCD Antonios Tsapalis National Technical University of Athens School of Applied Mathematics and Physical Sciences & Hellenic Naval Academy 5 th Vienna Central European

More information

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA THE QUARK AND MESON STRUCTURE IN THE INSTANTON AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Shuryak, SUNY Stony Brook, Stony Brook, NY 11794,

More information

Lattice-based Studies of QCD.

Lattice-based Studies of QCD. Lattice-based Studies of QCD. David Richards Jefferson Laboratory QCD and Hadron Physics Town Meeting, Temple, Sept. 13-15, 2014!!!!! Thanks: R. Briceno, W. Detmold, M. Engelhardt, K-F Liu, S. Meinel,

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Parton Physics and Large Momentum Effective Field Theory (LaMET)

Parton Physics and Large Momentum Effective Field Theory (LaMET) Parton Physics and Large Momentum Effective Field Theory (LaMET) XIANGDONG JI UNIVERSITY OF MARYLAND INT, Feb 24, 2014 Outline Wilson s unsolved problem Large-momentum effective field theory (LaMET) An

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Recent Progress on Nucleon Structure with Lattice QCD

Recent Progress on Nucleon Structure with Lattice QCD Recent Progress on Nucleon Structure with Lattice QCD Huey-Wen Lin University of Washington Outline Lattice gauge theory Nucleon matrix elements on the lattice: systematics Building a picture of nucleons

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Quark Orbital Angular Momentum in the Model

Quark Orbital Angular Momentum in the Model Quark Orbital Angular Momentum in the Model Barbara Pasquini, Feng Yuan Pavia, INFN, Italy LBNL and RBRC-BNL, USA Ref: Pasquini, Yuan, work in progress 9/22/2010 1 Proton Spin Sum Quark spin ~30% DIS,

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany Hadron structure from lattice QCD A. Schäfer

More information

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Hadron Structure James Zanotti The University of Adelaide Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Lecture 3 Neutron beta decay Nucleon axial charge, ga Deep Inelastic Scattering Structure

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

The structure of a bound nucleon

The structure of a bound nucleon The structure of a bound nucleon Ian Cloët (University of Washington) Collaborators Wolfgang Bentz Anthony Thomas (Tokai University) (Adelaide University) Tony s 60 Fest 5 9 Feburary 200 Theme Gain insights

More information

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions of weeks 8 and 9 of the INT program Gluons and the quark sea at high energy: distributions, polarization,

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Next-generation nuclear physics with JLab12 and EIC

Next-generation nuclear physics with JLab12 and EIC Next-generation nuclear physics with JLab12 and EIC Topical Workshop, Florida International University, 10 13 Feb 2016 W. Brooks, R. Dupre, Ch. Hyde, M. Sargsian, C. Weiss (Organizers) Welcome! Physics

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Polarized parton distributions: present status and prospects

Polarized parton distributions: present status and prospects QCD@Work 23 - International Workshop on QCD, Conversano, Italy, 14 18 June 23 Polarized parton distributions: present status and prospects Giovanni Ridolfi a a INFN Sezione di Genova, Via Dodecaneso 33,

More information

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Nucleon structure from 2+1-flavor dynamical DWF ensembles Nucleon structure from 2+1-flavor dynamical DWF ensembles Michael Abramczyk Department of Physics, University of Connecticut, Storrs, CT 06269, USA E-mail: michael.abramczyk@uconn.edu Meifeng Lin Computational

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

arxiv: v1 [hep-ph] 4 Apr 2008

arxiv: v1 [hep-ph] 4 Apr 2008 Generalized parton distributions of the pion Wojciech Broniowski, Enrique Ruiz Arriola and Krzysztof Golec-Biernat arxiv:0804.078v [hep-ph] 4 Apr 008 The H. Niewodniczański Institute of Nuclear Physics

More information