Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Size: px
Start display at page:

Download "Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications"

Transcription

1 KEKPH06 p.1/17 Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications Kentaro Kojima Based on the work with Kenzo Inoue and Koichi Yoshioka (Department of Physics, Kyushu University) KEK Theory Meeting 2006 Particle Physics Phenomenology Plan of the talk Overview Yukawa unification with neutrino Yukawa coupling SO(10) GUT with lopsided texture

2 Ñ Ê Ñ Þ µ Ú À Ó Ý Ê Overview I: t-b- coupling unification in the MSSM MSSM allows t-b- Yukawa coupling unification [Carena, Pokorski, Wagner (1993)] The complete unification of third generation Yukawa couplings SO(10) unifications µ Ý ½ ½ ½¼ À ÉÝ Ø ØÀ Ù ÉÝ À ÄÝ À Ý Ø Å µ Ý Å µ Ý Å µ Ý Å ½¼ ½ Î MSSM renormalization group evolution Ñ Ê Ñ Þ µ Ú À Ò Ý Ê Ñ Þ µ½ Ø Ø Ñ Ê Ñ Þ µ Ú À Ó Ý Ê Ø Ñ Þ µ½ Ñ Þ µ½ µ ÑÊ Ø ØÒ Ê Ñ Ú À ³ ½ Î Ç ¼µ Ø are weak scale SUSY threshold corrections fermion mass estimation µ sparticle spectrum KEKPH06 p.2/17

3 ¼ ½ Å Á ¼ Ø Á Ø KEKPH06 p.3/17 Overview II: large threshold corrections to Ñ can be easily large as Ç ½µ; ³ ØÒ ³ maximum of ], [Å ¾ Ѿ Á Á Ø maximum of ] [ ¾ Ñ ¾ Ø [Hempfling (1994); Hall et al. (1994); Carena et al. (1994)] In order to achieve correct fermion masses, must be much smaller than its naively expected size [Hall, Rattazzi, Sarid (1994); Tobe, Wells (2003)] Suppression of is ensured with approximate symmetries: PQ sym. ( ¾ Å ¾ ËÍË ) R sym. (Å ¾ ½¾ ¾ ¾ Å ¾ ËÍË )

4 Ñ ¾ ½¼ (Higgs), Ѿ ½ (matter), Å ½¾, ¼, ¼ ¾ ¼ Ѿ½¼ Ѿ ½ ¾ Ñ Ñ¾ ½¼ Ѿ ½ Ñ ¾ ½¼ Ѿ ½ Å ¾ Å ËÍ˵³ Ñ À Å ËÍË µ ¾ Ñ ÀÙ Å ËÍË µ ¾ Ñ Þ Å ËÍË µ ¾ KEKPH06 p.4/17 Overview III: difficulties in minimal SO(10) The minimal SO(10): unification of t-b- Yukawa couplings, and the SO(10) symmetric soft terms at Å ; ¼½ ¼¼ Ñ ¾ ¼ ¼½Å ¾ ½¾ ¼¼½¾ ¼ ¼¼ ¼Å ½¾ Ñ ¾ Þ ³ ½¾ ² Ñ ¼ µ large violation of R sym. Å Also is strongly constrained: ¾ ³ Ñ ¾ À Ù Ñ ¾ Þ ¾ ² Å ½¾ µ large violation of PQ sym. [Bando et al.(1992); Carena et al.(1994)] Ç ¼µ: minimal SO(10) cannot lead to correct fermion masses

5 KEKPH06 p.5/17 Our work Sources of the splitting between Ñ ¾ À Ù and Ñ ¾ À are needed previous approaches: SO(10) asymmetric non-universality [Olechowski, Pokorski (1995)] D-term arise from SO(10) SU(5) U(1) [Murayama et al.(1996)]

6 Ñ Ý ¾ Ò ¾ Ú ¾ À ³ Å Our work Sources of the splitting between Ñ ¾ À Ù and Ñ ¾ À are needed To the issue, we include effects expected from neutrino properties, and consider two scenarios in SO(10) unification tiny masses: Yukawa unification with Ý and seesaw mech.: large mixing: the atmospheric large mixing comes from : and have lopsided forms We examined radiative EWSB, fermion masses and constraint, which is severe for large ØÒ KEKPH06 p.6/17

7 Yukawa unification with Ý KEKPH06 p.7/17

8 Ï ÅËËÅ Ä µ À Ù ½ Ï Å µ ¾ KEKPH06 p.8/17 Yukawa unification with neutrino Yukawa coupling 16 rep. includes a singlet, RH neutrino Ý µ Ý Å µ ³ Å ³ ½¼ ½ Î Ý alters the RG evolution gauge couplings: very small (1-loop RGE s are unchanged) [Casas et al.(2001)] Yukawa couplings: b-tau mass ratio is slightly raised for Ñ fixed ÔÓÐ Ø [Vissani, Smirnov (1994); Allanach, King (1995)] Suppressed is still useful for correct fermion masses We focus on Ý effects on Å ¾

9 ¾ Ѿ ¾ ÑÀ ½¾ Ù ÀÙ ÐÒ É É ÐÒ ½ Å ¾ Å ËÍ˵ ³ Ñ À Å ËÍË µ ¾ Ñ ÀÙ Å ËÍË µ ¾ Ñ Þ Å ËÍË µ ¾ Ñ Ñ Ñ Æ ¾ ½ µ Ñ ¾ ¼ Å Å ¾ ½¾ ¾ ¼ Å ¼ Å ½¾ Ñ ¾ Þ KEKPH06 p.9/17 Novel way of radiative EWSB On the up-type Higgs soft masses: Ý ¾ Ñ ¾ À Ù Ñ ¾ Ä Ñ¾ ¾ µ ÅËËÅ Ñ ¾ À Ù is lowered µ Å ¾ is increased through Ý effects : e.g. Ñ ¾ Ѿ ½ ½ ½µ ÓØÖ ÒÐØ Ê Æ ¾ contributions can became large ¾ Ñ With large Ñ ¾, Å ½¾ Ñ ¼ type EWSB is possible ¾ ½ Ñ ¾ ¼ ½Å ¾ ½¾ : positive and large Ñ ¼ lowers

10 ¾¼ µ ½¼ KEKPH06 p.10/17 Parameter space analysis, fermion masses and constraint Æ ¾ ¼ Å ½¾ ¼¼ Î ¼ ¼ the experimental ranges Ñ ÅË Ñ µ ½ to GeV Approximate R Å sym.: ¼ ¼ Ñ ¼ ½¾ Approximate PQ ¼ sym.; Ñ and Å ½¾ ½ ¼ Suppression of We obtaine allowed values of fermion masses µ and

11 SO(10) unification with lopsided texture KEKPH06 p.11/17

12 KEKPH06 p.12/17 SO(10) GUT with Lopsided Texture Small mixings in the Î ÃÅ and large mixings in the Î ÅÆË One of the attractive approaches: highly asymmetric Yukawa texture, referred to as lopsided ¼ ½ µ µ Ì In SO(10) models, non-minimal field contents are useful to realize the lopsided texture: e.g. ½¼À (others) À [Albright et al.(1998); Nomura, Yanagida (1999); Babu et al.(2000)] SO(10) unification leads quite different picture of radiative EWSB from the third generation Yukawa unifications

13 KEKPH06 p.13/17 Higgs mixing and Fermion masses We consider following Yukawa matrices: ¼ ½ ¼ ½ µ µ Ì Ý Ó Ù µ Ò µ ½ ½ Ý Ó parametrizes the À mixing between ½¼À and others µ the nearly maximal atmospheric mixing angle ² For, ¼, that is ¼, is needed Æ In the wide range of, suppressed is needed to achieve correct bottom mass

14 À ½¼ À µ Ó ½ À µ Ò ¾ ¼ Ñ ¼ ¾ KEKPH06 p.14/17 The model The freedom of is a key ingredient [Nomura, Yanagida (1999)] ¾ Ñ Ñ¼ ¾ Ѿ À Ñ ¾ ¾ ¼ Ó ¾ Ò ¾ À Ù ¾ Ó ¾ Ò ¾ Ñ ¾ ٠Ѿ É Ñ¾ Ѿ ¼ Æ Ñ ¾ Ѿ ¼ Æ ¼ ½ Ñ ¾ ¼ Ñ ¾ Ä Ñ¾ ¾ Ñ parametrizes gaugino dependent RG contribution between Å ÔÐ and Å

15 KEKPH06 p.15/17 Higgs mixing and radiative EWSB Å ¾ Å ËÍ˵ Ñ Ñ Ñ ¾ ¼ Å Å ¾ ½¾ ¾ ¼ Å ¼ Å ½¾ Ñ ¾ Þ Å Large raises even Å ½¾ Ñ ¾ ¼ Positive D-term decreases ; ¾ ¾ ½Å ¾ ½¾ ¾¼ For ² ¼ Æ, approximate PQ and R symmetric spectrum is possible

16 ¾¼ µ ½¼ Ñ Correct Ñ ÅË µ is obtained with a small but sizable KEKPH06 p.16/17 Parameter space analysis Æ ¼ Ñ ¼ ¼½ ¼ ¼ the experimental ranges Ñ ÅË Ñ µ ½ to GeV Approximate PQ and R symmetric spectrum suppresses constraint is evaded with relatively heavy sparticles for ¼

17 KEKPH06 p.17/17 Conclusions We investigated the radiative EWSB, fermion masses and constraint in SO(10) models with effects Including Ý the effects, Ñ large and R sym. allow small ¾. raises CP-odd Higgs mass, and PQ In the model with lopsided texture, non-minimal Higgs content and down-type Higgs mixing allow PQ and R symmetric radiative EWSB with ² ¼ Æ, and thus small sizable is achieved In both Ñ cases, Ñ ÅË µ µ and are consistent with experiments.

Proton Decay and Flavor Violating Thresholds in the SO(10) Models

Proton Decay and Flavor Violating Thresholds in the SO(10) Models Proton Decay and Flavor Violating Thresholds in the SO(10) Models Yukihiro Mimura (Texas A&M University) Based on Proton decay in Collaboration with B. Dutta and R.N. Mohapatra Phys. Rev. Lett. 94, 091804

More information

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector Masaki Asano (ICRR, Univ. of Tokyo) arxiv:08104601 Collaborator: Junji Hisano (ICRR), Takashi Okada (ICRR),

More information

The gauge coupling unication is one of the remarkable successes of the minimal supersymmetric standard model (MSSM) [1] and provides us with a strong

The gauge coupling unication is one of the remarkable successes of the minimal supersymmetric standard model (MSSM) [1] and provides us with a strong KUNS-1534 HE(TH)98/15 hep-ph/981004 Right-handed neutrino mass and bottom-tau ratio in strong coupling unication Masako Bando and Koichi Yoshioka y Aichi University, Aichi 470-0, Japan y Department of

More information

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses 20/11/2013@ PASCOS 2013, Taipei Taiwan The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses Hajime Otsuka (Waseda University) with H. Abe and J. Kawamura PTEP 2013 (2013) 013B02, arxiv

More information

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation SUSY2014 @ Manchester University arxiv:1405.0779 (to be appeared in JHEP ) Junichiro Kawamura and Hiroyuki Abe Waseda Univ,

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Flavor violating Z from

Flavor violating Z from Flavor violating Z from SO(10) SUSY GUT model Yu Muramatsu( 村松祐 ) CCNU Junji Hisano(KMI, Nagoya U. & IPMU), Yuji Omura (KMI) & Yoshihiro Shigekami (Nagoya U.) Phys.Lett.B744 (2015) 395, and JHEP 1611 (2016)

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

GUT Scale Fermion Mass Ratios

GUT Scale Fermion Mass Ratios Journal of Physics: Conference Series OPEN ACCESS GUT Scale Fermion Mass Ratios To cite this article: Martin Spinrath 04 J. Phys.: Conf. Ser. 9 000 View the article online for updates and enhancements.

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Institut for Theoretical Physics, University of Heidelberg, 69117 Heidelberg, Germany E-mail: mihaila@thphys.uni-heidelberg.de

More information

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs Singlets at One-Loop Theoretical Particle Physics University of Manchester 5th October 2006 Based on RNH, A. Pilaftsis hep-ph/0612188 Outline

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

arxiv:hep-ph/ v1 5 Oct 2005

arxiv:hep-ph/ v1 5 Oct 2005 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/0510054v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

Radiative Generation of the Higgs Potential

Radiative Generation of the Higgs Potential Radiative Generation of the Higgs Potential 1 EUNG JIN CHUN Based on 1304.5815 with H.M.Lee and S. Jung Disclaimer LHC finds Nature is unnatural. 2 May entertain with Naturally unnatural ideas. EW scale

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC) Yasunori Nomura UC Berkeley; LBNL Based on work with Ryuichiro Kitano (SLAC) hep-ph/0509039 [PLB] hep-ph/0509221 [PLB] hep-ph/0602096 [PRD] We will be living in the Era of Hadron Collider Exploring highest

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

arxiv: v1 [hep-ph] 11 Oct 2013

arxiv: v1 [hep-ph] 11 Oct 2013 Challenging the minimal supersymmetric SU(5) model 1 Borut Bajc,, Stéphane Lavignac and Timon Mede J. Stefan Institute, 1000 Ljubljana, Slovenia Department of Physics, University of Ljubljana, 1000 Ljubljana,

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

A light singlet at the LHC and DM

A light singlet at the LHC and DM A light singlet at the LHC and DM of the R-symmetric supersymmetric model Jan Kalinowski University of Warsaw in collaboration with P.Diessner, W. Kotlarski and D.Stoeckinger Supported in part by Harmonia

More information

Generic Gravitational Corrections to Gauge Couplings in SUSY SU(5) GUTs

Generic Gravitational Corrections to Gauge Couplings in SUSY SU(5) GUTs HIP-1999-52/TH DPSU-99-6 August, 1999 Generic Gravitational Corrections to Gauge Couplings in SUSY SU(5) GUTs Katri Huitu a, Yoshiharu Kawamura c, Tatsuo Kobayashi a,b, Kai Puolamäki a a Helsinki Institute

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

arxiv:hep-ph/ v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2

arxiv:hep-ph/ v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2 OSU-HEP-00-02 BA-00-19 A Mass Relation for Neutrinos arxiv:hep-ph/0004118v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2 1 Department of Physics, Oklahoma State University Stillwater, OK 74078, USA 2 Bartol

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

Strings and Particle Physics

Strings and Particle Physics Strings and Particle Physics Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Strings and Particle Physics, SUSY07 p.1/33 Questions What can we learn from strings for particle physics?

More information

arxiv:hep-ph/ v3 9 Mar 2000

arxiv:hep-ph/ v3 9 Mar 2000 SPARTICLE MASS SPECTRA FROM SO(1) GRAND UNIFIED MODELS WITH YUKAWA COUPLING UNIFICATION FSU-HEP-9972 UCCHEP/1-99 IFIC/99-48 FTUV/99-46 UH-511-937-99 arxiv:hep-ph/997211v3 9 Mar 2 Howard Baer 1, Marco A.

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

arxiv:hep-ph/ v1 15 May 1998

arxiv:hep-ph/ v1 15 May 1998 HIP-1998-25/TH BONN-TH-98-10 KANAZAWA-98-05 May, 1998 arxiv:hep-ph/9805336v1 15 May 1998 Constraints on Supersymmetric SO(10) GUTs with Sum Rules among Soft Masses Yoshiharu Kawamura a,b 1, Tatsuo Kobayashi

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

arxiv:hep-ph/ v1 17 Nov 2003

arxiv:hep-ph/ v1 17 Nov 2003 TU-702, KYUSHU-HET-69, hep-ph/0311206 Radiative CP Phases in Supergravity Theories arxiv:hep-ph/0311206v1 17 Nov 2003 Motoi Endo a, Masahiro Yamaguchi a and Koichi Yoshioka b a Department of Physics, Tohoku

More information

SUSY with light electroweakino

SUSY with light electroweakino SUSY with light electroweakino Sho IWAMOTO A self introduction 17 Dec. 2014 Joint HEP Seminar @ Tel Aviv University References: * M. Endo, K. Hamaguchi, S. I., and T. Yoshinaga [1303.4256] * S. I., T.

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Proton decay theory review

Proton decay theory review Proton decay theory review Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Lyon, 12 1 Introduction STANDARD MODEL: renormalizable level: accidental B and L conservation (no invariants that violate

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

Supersymmetric Fine-tuning Problem and Little Hierarcy in Mixed Modulus-Anomaly Mediation. Ken-ichi Okumura Department of Physics, Kyushu University

Supersymmetric Fine-tuning Problem and Little Hierarcy in Mixed Modulus-Anomaly Mediation. Ken-ichi Okumura Department of Physics, Kyushu University Supersymmetric Fine-tuning Problem and Little Hierarcy in Mixed Modulus-Anomaly Mediation Ken-ichi Okumura Department of Physics, Kyushu University Discoveries of Higgs and Supersymmetry to Pioneer the

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

High scale parity invariance as a solution to the SUSY CP problem and an explanation of small ffl 0 =ffl Λ

High scale parity invariance as a solution to the SUSY CP problem and an explanation of small ffl 0 =ffl Λ PRAMANA cfl Indian Academy of Sciences Vol. 55, Nos 1 & 2 journal of July & August 2000 physics pp. 289 296 High scale parity invariance as a solution to the SUSY CP problem and an explanation of small

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Unification and fermion mass structure.

Unification and fermion mass structure. Unification and fermion mass structure. Graham G. Ross and Mario Serna Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP May 29, 2018 arxiv:0704.1248v2

More information

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Carlos E.M. Wagner EFI and KICP, University of Chicago HEP Division, Argonne National Lab. Work done in collaboration with

More information

Conformal Electroweak Symmetry Breaking and Implications for Neutrinos and Dark matter

Conformal Electroweak Symmetry Breaking and Implications for Neutrinos and Dark matter Conformal Electroweak Symmetry Breaking and Implications for Neutrinos and Dark matter Manfred Lindner Mass 2014, Odense, May 19-22, 2014 M. Lindner, MPIK Mass 2014 1 Introduction Physics Beyond the Standard

More information

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University Flavor Violation at the LHC Bhaskar Dutta Texas A&M University Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016, June 13th, 2016 1 Outline 1. Colored, Non colored

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Proton Decay Without GUT Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Outline Why We Expect Proton Decay Story with Supersymmetry A Very Ambitious Model More on GUTs Conclusions Hitoshi Murayama UCLA 2003 2

More information

Phenomenology of 5d supersymmetry

Phenomenology of 5d supersymmetry Phenomenology of 5d supersymmetry p. 1 Phenomenology of 5d supersymmetry Gautam Bhattacharyya Saha Institute of Nuclear Physics, Kolkata G.B., Tirtha Sankar Ray, JHEP 05 (2010) 040, e-print:arxiv:1003.1276

More information

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson M. Carena* Theory Division, CERN, 1211 Geneva 23, Switzerland S. Mrenna Physics

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

SUSY GUTs, DM and the LHC

SUSY GUTs, DM and the LHC SUSY GUTs, DM and the LHC Smaragda Lola Dept. of Physics, University of Patras Collaborators [JCAP 1603 (2016) and in progress] R. de Austri, M.Canonni, J.Ellis, M. Gomez, Q. Shafi Outline Ø No SUSY signal

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University Supersymmetry, Baryon Number Violation and a Hidden Higgs David E Kaplan Johns Hopkins University Summary LEP looked for a SM Higgs and didn t find it. Both electroweak precision measurements and supersymmetric

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Conformal Extensions of the Standard Model

Conformal Extensions of the Standard Model Conformal Extensions of the Standard Model Manfred Lindner 1 The SM: A true Success Story èsm is a renormalizable QFT like QED w/o hierarchy problem ècutoff L has no meaning è triviality, vacuum stability

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Wang Kai DEPARTMENT OF PHYSICS OKLAHOMA STATE UNIVERSITY In Collaboration with Dr. K.S. Babu and Ts. Enkhbat November 25, 2003 1

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Integrability in QCD and beyond

Integrability in QCD and beyond Integrability in QCD and beyond Vladimir M. Braun University of Regensburg thanks to Sergey Derkachov, Gregory Korchemsky and Alexander Manashov KITP, QCD and String Theory Integrability in QCD and beyond

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

Higgs Boson and New Particles at the LHC

Higgs Boson and New Particles at the LHC Higgs Boson and New Particles at the LHC Qaisar Shafi Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Adeel Ajaib, Howard Baer, Ilia Gogoladze,

More information

Non-Minimal SUSY Computation of observables and fit to exp

Non-Minimal SUSY Computation of observables and fit to exp Non-Minimal SUSY Computation of observables and fit to experimental data + Peter Athron, Alexander Voigt Dresden Fittino Workshop, 24th November 2010, DESY Outline 1 Introduction 2 Motivation 3 Outline

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

arxiv:hep-ph/ v1 13 Jul 1998

arxiv:hep-ph/ v1 13 Jul 1998 UQAM-PHE-98/07 December, 013 Higgs-mediated FCNC in Supersymmetic Models with Large tanβ. arxiv:hep-ph/9807350v1 13 Jul 1998 C. Hamzaoui 1, M. Pospelov and M. Toharia 3 Département de Physique, Université

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

SUSY Higgs Physics at the LHC.

SUSY Higgs Physics at the LHC. SUSY Higgs Physics at the LHC. D.J. Miller Dresden, 3 rd July 2008 Outline: Introduction: The SM Higgs Sector The minimal SUSY Higgs sector The NMSSM The mnssm A Local Peccei-Quinn Symmetry (and the E

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

String Unification, Spaghetti Diagrams and Infra-Red Fixed Points

String Unification, Spaghetti Diagrams and Infra-Red Fixed Points RAL 97-007 SHEP 97-0 hep-ph/970393 String Unification, Spaghetti Diagrams and Infra-Red Fixed Points B. C. Allanach and S. F. King. Rutherford Appleton Laboratory, Chilton, Didcot, OX 0QX, U.K.. Department

More information

Deflected Mirage Mediation

Deflected Mirage Mediation Deflected Mirage Mediation A Framework for Generalized SUSY Breaking Based on PRL101:101803(2008) (arxiv:0804.0592), JHEP 0808:102(2008) (arxiv:0806.2330) in collaboration with L.Everett, P.Ouyang and

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information