Introduction to Lattice Supersymmetry

Size: px
Start display at page:

Download "Introduction to Lattice Supersymmetry"

Transcription

1 Introduction to Lattice Supersymmetry Simon Catterall Syracuse University Introduction to Lattice Supersymmetry p. 1

2 Motivation Motivation: SUSY theories - cancellations between fermions/bosons soft U.V behavior. Higgs light m 2 H log(λ) More tractable analytically toy models for understanding confinement and chiral symmetry breaking Key component of string theory remove tachyon of bosonic string. Generalizations of AdSCFT (p + 1) SYM and type II strings with Dp-branes. Usually assume symmetry holds at high energy must break nonperturbatively at low energies lattice. Introduction to Lattice Supersymmetry p. 2

3 Problems Extension of Poincare symmetry: {Q,Q} = γ.p. Broken by lattice. Equivalently: Leibniz rule does not hold for difference operators Fermion doubling - n B n F. Wilson terms break SUSY. Consequence: Naively discretized classical action breaks SUSY. Effective action picks up (many) SUSY violating operators. Generically some of relevant. Couplings must be fine tuned as a 0. Introduction to Lattice Supersymmetry p. 3

4 Solutions Just do it. Certain simple cases eg. N = 1 SYM in 4D single counterterm with Wilson fermions. For D < 4 finite number of divergences occuring at small numbers of loops. For special class of theories can find novel discretizations which preserve one or more SUSY s exactly. Two approaches: Orbifold methods. SYM case. Twisted formulations. Equivalent...? Introduction to Lattice Supersymmetry p. 4

5 Overview Motivation/Problems. Witten s SUSYQM. Naive discretization. Fine tuning. Modification to maintain exact SUSY. Nicolai maps. Topological/twisted field theory interpretation. Generalizations. SYMQM, sigma models. Lifting to 2D. Wess Zumino models. Twisting in 2D. Kähler-Dirac fermions. N = 2 SYM. Lifting to 4D. N = 4 SYM. Orbifold constructions Introduction to Lattice Supersymmetry p. 5

6 Witten s SUSYQM S = dt 1 2 ( dφ dt ) P (φ) ψ dψ i i dt + iψ 1ψ 2 P (φ) Invariant under 2 SUSYs: δ A φ = ψ 1 ǫ A δ B φ = ψ 2 ǫ B δ A ψ 1 = dφ dt ǫ A δ B ψ 1 = ip ǫ B δ A ψ 2 = ip ǫ A δ B ψ 2 = dφ dt ǫ B Homework Problem 1: verify these invariances Introduction to Lattice Supersymmetry p. 6

7 Continuum variation Find: δ A S = dt iǫ ( P dψ 2 dt + dφ ) dt P ψ 2 Need to integrate by parts and use Leibniz to get zero. Problem for lattice. Notice that δa 2 = δ2 B = dt d acting on any field. Example of SUSY algebra since H = dt d. Introduction to Lattice Supersymmetry p. 7

8 Naive discretization Place fields on sites of (periodic) 1D lattice. Replace dt t a and replace dt d by (doubler free) backward difference. a µ f x = f(x) f(x µ) Now find: δ A S L = t iǫ ( P ψ 2 + φp ψ 2 ) where rescaled x by a 1 2. Naively invariant as a 0. But expect radiative corrections... Introduction to Lattice Supersymmetry p. 8

9 Boson/fermion masses - naive m F m B 12.0 M=10.0, G= a Figure 1: P = mφ + gφ 3, m = 10.0, g = Introduction to Lattice Supersymmetry p. 9

10 Radiative corrections Points to note: Any Feynman graph which is convergent in U.V can be discretized naively (Reisz theorem). Restrict attention to superficially divergent continuum graphs. In previous example only one of these. One loop fermion contribution to boson mass. Introduction to Lattice Supersymmetry p. 10

11 Radiative corrections II Continuum: Σ cont = 6g π a π a dp 2π ip + m p 2 + m 2 Actually convergent (p p symmetry) ( ) ( ) 1 π 1 Σ cont = 6g π tan 1 6g 2ma 2 + O(ma) Lattice result is Σ latt = 6g L L 1 k=0 2i sin ( πk L )ei( πk L ) + ma sin 2 ( πk L ) + (ma)2 6g! Introduction to Lattice Supersymmetry p. 11

12 Radiative corrections III If take a 0 after doing sum get twice the result! Homework Problem 2. Convince yourself of this! D = D s m W. Would be doublers have mass O(1/a) and make an additional contribution to integral (don t decouple from small loops) Restore SUSY need to add counterterm S L S L + t 3gφ 2 SUSY broken but regained now as a 0. Introduction to Lattice Supersymmetry p. 12

13 Intuitive argument Consider using lattice derivative: D s + r 2 m W Doubler mass M = m + 2r/a. Consider limit where r << 1. Then ma << Ma << 1. Lattice integral is approx: Σ = = 1 π π a π a dp 2π ( tan 1 m p 2 + m 2 + π a π a π 2ma + tan 1 dp 2π M p 2 + M 2 ) π 2Ma Introduction to Lattice Supersymmetry p. 13

14 Masses - counterterm corrected Figure 2: P = mφ + gφ 3, m = 10.0, g = Introduction to Lattice Supersymmetry p. 14

15 Exact SUSY Can do better. Find combination of SUSY s that can be preserved on lattice. Notice that: δ A S L = iδ B P φ δ B S L = iδ A P φ Thus x x (δ A + iδ B )S L = (δ A + iδ B ) O where O = t P φ So can find δs exact of form S exact L = t 1 2 ( φ) P 2 + P φ + ψ( + P )ψ Introduction to Lattice Supersymmetry p. 15

16 Exact SUSY II Where ψ = 1 2 (ψ 1 + iψ 2 ) ψ = 1 2 (ψ 1 iψ 2 ) and the new supersymmetry acts: δφ = ψǫ δψ = 0 δψ = ( φ + P (φ))ǫ Notice: δ 2 = 0 now. No translations. S b L = x ( φ + P (φ) ) 2 Introduction to Lattice Supersymmetry p. 16

17 Masses - exact SUSY bosons fermions m phys 14.0 M=10.0, G= a Figure 3: Boson and fermion masses vs lattice spacing for supersymmetric action Introduction to Lattice Supersymmetry p. 17

18 Nicolai map Partition function: Z = DφDψDψe S = Dφdet ( + P ) e S B Change variables to N = φ + P (φ) Jacobian is ( det Ni φ j ). Cancels fermionic determinant! Z = dn i e N i 2 Details of P(φ) disappeared! Z is a topological invariant. Simple argument: < S B >= 1 2 N d.o.f i Introduction to Lattice Supersymmetry p. 18

19 Ward identities Classical invariance of action replaced by relationships between correlation functions of form Choosing O = ψ x φ y we find < δo >= 0 < ψ x ψ y > + < ( φ + P ) x φ y >= 0 Expect other SUSY δ = 1 2 (δ A iδ B ) broken. Restored in continuum limit without fine tuning. Introduction to Lattice Supersymmetry p. 19

20 ¼º ¼º ¼º ¼º ¼ ¼º½ ¼º¾ ¼º ¼º ¼º ¼º ¼º ¼º ¼º Ward identities II ½ ¼º¼¼ Ï Ö ¹Á ÒØ ØÝ ½ m = 10 g = 800 Ï Ö ¹Á ÒØ ØÝ ¾ m = 10 g = 800 ¼º¼¼ ¼º¼¼¾ R (1) x R (2) x ¼ ¼º¼¼½ ¹¼º¼¼¾ ¹¼º¼¼ ¹¼º¼¼ ¼ ½¼ ½ ¾¼ x ÔÓ ÒØ Ð ØØ Figure 4: m = 10.0, g = 800.0, from Kaestner et al. Introduction to Lattice Supersymmetry p. 20

21 Topological field theory Actually δ 2 = 0 for the field ψ only by using EOM. Can render symmetry nilpotent off-shell by introducing auxiliary field Qφ = ψ Qψ = 0 Qψ = B QB = 0 Note: absorbed ǫ into variation δ and renamed it Q. Also S b L = x B( φ + P ) 1 2 B2 Introduction to Lattice Supersymmetry p. 21

22 TQFT II Remarkably: S L = Q x ψ( φ P 1 2 B) The action is Q-exact. Like BRST? Consider bosonic model with S(φ) = 0. Invariant under φ φ + ǫ topological symmetry. Quantize: pick gauge function N = 0 and introduce Fadeev-Popov factor Z = Dφdet( N φ )e 1 2α N 2 (φ) Interpret ψ,ψ as ghost fields (α = 1) recover our model! Introduction to Lattice Supersymmetry p. 22

23 Moral of the story Fine tuning problems can be handled in D < 4 by perturbative lattice cals. Even D = 4 N = 1 using chirally improved actions. In some cases can do better find combinations of the supersymmetries in (some) SUSY models which are nilpotent. (Twisted) reformulations are closely connected to construction of TQFT. Actions are Q-exact. Easy to translate to lattice. Simulation can be done with (R)HMC algs. and good agreement with theory Introduction to Lattice Supersymmetry p. 23

Recent developments in lattice supersymmetry

Recent developments in lattice supersymmetry Recent developments in lattice supersymmetry Erich Poppitz Joel Giedt, E.P., hep-th/0407135 [JHEP09(2004)029] Joel Giedt, Roman Koniuk, Tzahi Yavin, E.P., hep-lat/0410041 [JHEP12(2004)033] work in progress

More information

A Lattice Path Integral for Supersymmetric Quantum Mechanics

A Lattice Path Integral for Supersymmetric Quantum Mechanics Syracuse University SURFACE Physics College of Arts and Sciences 8-3-2000 A Lattice Path Integral for Supersymmetric Quantum Mechanics Simon Catterall Syracuse University Eric B. Gregory Zhongshan University

More information

Current Status of Link Approach for Twisted Lattice SUSY Noboru Kawamoto Hokkaido University, Sapporo, Japan

Current Status of Link Approach for Twisted Lattice SUSY Noboru Kawamoto Hokkaido University, Sapporo, Japan Current Status of Link Approach for Twisted Lattice SUSY Noboru Kawamoto Hokkaido University, Sapporo, Japan In collaboration with S.Arianos, A.D adda, A.Feo, I.Kanamori, K.Nagata, J.Saito Plan of talk

More information

Non-renormalization Theorem and Cyclic Leibniz Rule in Lattice Supersymmetry

Non-renormalization Theorem and Cyclic Leibniz Rule in Lattice Supersymmetry 1 Non-renormalization Theorem and Cyclic Leibniz Rule in Lattice Supersymmetry Makoto Sakamoto (Kobe University) in collaboration with Mitsuhiro Kato and Hiroto So based on JHEP 1305(2013)089; arxiv:1311.4962;

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Ω-deformation and quantization

Ω-deformation and quantization . Ω-deformation and quantization Junya Yagi SISSA & INFN, Trieste July 8, 2014 at Kavli IPMU Based on arxiv:1405.6714 Overview Motivation Intriguing phenomena in 4d N = 2 supserymmetric gauge theories:

More information

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations Tests at Colliders Summer School on the SME June 17, 2018 Mike Berger I. Top quark production and decay II. Neutral meson oscillations Collider Physics 1. In principle, one has access (statistically) to

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

Introduction to defects in Landau-Ginzburg models

Introduction to defects in Landau-Ginzburg models 14.02.2013 Overview Landau Ginzburg model: 2 dimensional theory with N = (2, 2) supersymmetry Basic ingredient: Superpotential W (x i ), W C[x i ] Bulk theory: Described by the ring C[x i ]/ i W. Chiral

More information

Techniques for exact calculations in 4D SUSY gauge theories

Techniques for exact calculations in 4D SUSY gauge theories Techniques for exact calculations in 4D SUSY gauge theories Takuya Okuda University of Tokyo, Komaba 6th Asian Winter School on Strings, Particles and Cosmology 1 First lecture Motivations for studying

More information

Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm Syracuse University SURFACE Physics College of Arts and Sciences 12-17-2001 Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm Simon Catterall Syracuse University Sergey Karamov Syracuse University

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

arxiv: v1 [hep-lat] 11 Oct 2016

arxiv: v1 [hep-lat] 11 Oct 2016 DAMTP-2016-69 arxiv:1610.0327v1 [hep-lat] 11 Oct 2016 D Maximally Supersymmetric Yang-Mills on the Lattice Department of Applied Mathematics and Theoretical Physics (DAMTP) Centre for Mathematical Sciences

More information

Numerical simulation of the N = 2 Landau Ginzburg model

Numerical simulation of the N = 2 Landau Ginzburg model Numerical simulation of the N = 2 Landau Ginzburg model Okuto Morikawa Collaborator: Hiroshi Suzuki Kyushu University 2017/9/28 SSI2017 @Yamaguchi Okuto Morikawa (Kyushu University) N = 2 Landau Ginzburg

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

Supersymmetry Highlights. Kevin Hambleton

Supersymmetry Highlights. Kevin Hambleton Supersymmetry Highlights Kevin Hambleton Outline SHO Example Why SUSY? SUSY Fields Superspace Lagrangians SUSY QED MSSM i Warm Up A Hint Of SUSY... Remember Quantum Simple Harmonic Oscillator... Canonical

More information

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Instanton effective action in - background and D3/D(-1)-brane system in R-R background Instanton effective action in - background and D3/D(-1)-brane system in R-R background Speaker : Takuya Saka (Tokyo Tech.) Collaboration with Katsushi Ito, Shin Sasaki (Tokyo Tech.) And Hiroaki Nakajima

More information

3-dimensional topological σ-model

3-dimensional topological σ-model 3-dimensional topological σ-model arxiv:hep-th/0201006v1 2 Jan 2002 Bogus law Broda Department of Theoretical Physics University of Lódź Pomorska 149/153 PL 90-236 Lódź Poland February 28, 2008 Abstract

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

arxiv:hep-ph/ v3 19 Oct 2001

arxiv:hep-ph/ v3 19 Oct 2001 A Note on Regularization methods in Kaluza-Klein Theories Roberto Contino, Luigi Pilo arxiv:hep-ph/0104130v3 19 Oct 2001 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy & INFN Abstract

More information

Defining Chiral Gauge Theories Beyond Perturbation Theory

Defining Chiral Gauge Theories Beyond Perturbation Theory Defining Chiral Gauge Theories Beyond Perturbation Theory Lattice Regulating Chiral Gauge Theories Dorota M Grabowska UC Berkeley Work done with David B. Kaplan: Phys. Rev. Lett. 116 (2016), no. 21 211602

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization

Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization Christian Wozar Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz, 07743 Jena, Germany

More information

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory 't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory 1 MOHAMED ANBER BASED ON ARXIV:1807.00093, 1811.10642 WITH ERICH POPPITZ (U OF TORONTO) Outline Overview on

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

arxiv:hep-th/ v2 31 Jul 2000

arxiv:hep-th/ v2 31 Jul 2000 Hopf term induced by fermions Alexander G. Abanov 12-105, Department of Physics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A. arxiv:hep-th/0005150v2 31 Jul 2000 Abstract We derive an effective

More information

Holographic Anyons in the ABJM theory

Holographic Anyons in the ABJM theory Seminar given at NTHU/NTS Journal lub, 010 Sep. 1 Holographic Anyons in the ABJM theory Shoichi Kawamoto (NTNU, Taiwan) with Feng-Li Lin (NTNU) Based on JHEP 100:059(010) Motivation AdS/FT correspondence

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

From Susy-QM to Susy-LT

From Susy-QM to Susy-LT From Susy-QM to Susy-LFT Andreas Wipf, TPI Jena Hamburg, 24. April, 2005 in collaboration with: A. Kirchberg, D. Länge, T. Kästner Outline: Generalities From Susy-QM to Susy-LT vacuum sector susy vs. lattice

More information

Vector Superfields. A Vector superfield obeys the constraint:

Vector Superfields. A Vector superfield obeys the constraint: Lecture 5 A Vector superfield obeys the constraint: Vector Superfields Note: still more degrees of freedom than needed for a vector boson. Some not physical! Remember Vector bosons appears in gauge theories!

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Supersymmetric Skyrme Model. Muneto Nitta (Keio U.,Jp)

Supersymmetric Skyrme Model. Muneto Nitta (Keio U.,Jp) Supersymmetric Skyrme Model June 20/2016 @ Krakow SIG V - 20-23 June 2016: Skyrmions - from atomic nuclei to neutron stars Muneto Nitta (Keio U.,Jp) Shin Sasaki (Kitasato U., Jp) Sven Bjarke Gudnason (Lanzhou,

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

Near BPS Wilson loop in AdS/CFT Correspondence

Near BPS Wilson loop in AdS/CFT Correspondence Near BPS Wilson loop in AdS/CFT Correspondence Chong-Sun Chu Durham University, UK Based on paper arxiv:0708.0797[hep-th] written in colaboration with Dimitrios Giataganas Talk given at National Chiao-Tung

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Lecture 1. Supersymmetry: Introduction

Lecture 1. Supersymmetry: Introduction Outline Lecture 1. Supersymmetry: Introduction Briefly, the Standard Model What is supersymmetry (SUSY)? Motivations for SUSY The Wess-Zumino model SUSY gauge theories SUSY breaking Howard Baer Florida

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Topological Field Theory and Conformal Quantum Critical Points

Topological Field Theory and Conformal Quantum Critical Points Topological Field Theory and Conformal Quantum Critical Points One might expect that the quasiparticles over a Fermi sea have quantum numbers (charge, spin) of an electron. This is not always true! Charge

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Rigid SUSY in Curved Superspace

Rigid SUSY in Curved Superspace Rigid SUSY in Curved Superspace Nathan Seiberg IAS Festuccia and NS 1105.0689 Thank: Jafferis, Komargodski, Rocek, Shih Theme of recent developments: Rigid supersymmetric field theories in nontrivial spacetimes

More information

Théorie des cordes: quelques applications. Cours II: 4 février 2011

Théorie des cordes: quelques applications. Cours II: 4 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours II: 4 février 2011 Résumé des cours 2009-10: deuxième partie 04 février 2011 G. Veneziano,

More information

Complete action of open superstring field theory

Complete action of open superstring field theory Complete action of open superstring field theory Yuji Okawa The University of Tokyo, Komaba Based on arxiv:1508.00366 in collaboration with Hiroshi Kunitomo November 12, 2015 at the YITP workshop Developments

More information

Roni Harnik LBL and UC Berkeley

Roni Harnik LBL and UC Berkeley Roni Harnik LBL and UC Berkeley with Daniel Larson and Hitoshi Murayama, hep-ph/0309224 Supersymmetry and Dense QCD? What can we compare b/w QCD and SQCD? Scalars with a chemical potential. Exact Results.

More information

hep-lat/ Dec 94

hep-lat/ Dec 94 IASSNS-HEP-xx/xx RU-94-99 Two dimensional twisted chiral fermions on the lattice. Rajamani Narayanan and Herbert Neuberger * School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,

More information

Extracting Black Hole Physics from the Lattice

Extracting Black Hole Physics from the Lattice Syracuse University SURFACE Physics College of Arts and Sciences 9-27-2009 Extracting Black Hole Physics from the Lattice Simon Catterall Syracuse University Toby Wiseman Imperial College Follow this and

More information

Solution Set 8 Worldsheet perspective on CY compactification

Solution Set 8 Worldsheet perspective on CY compactification MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Solution Set 8 Worldsheet perspective on CY compactification Due: Monday, December 18, 2007

More information

BRST renormalization

BRST renormalization BRST renormalization Peter Lavrov Tomsk State Pedagogical University Dubna, SQS 11, 23 July 2011 Based on PL, I. Shapiro, Phys. Rev. D81, 2010 P.M. Lavrov (Tomsk) BRST renormalization Dubna 2011 1 / 27

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model Ginsparg-Wilson Fermions and the DESY Zeuthen 14th September 2004 Ginsparg-Wilson Fermions and the QCD predictions Perturbative QCD only applicable at high energy ( 1 GeV) At low energies (100 MeV - 1

More information

Covariant Gauges in String Field Theory

Covariant Gauges in String Field Theory Covariant Gauges in String Field Theory Mitsuhiro Kato @ RIKEN symposium SFT07 In collaboration with Masako Asano (Osaka P.U.) New covariant gauges in string field theory PTP 117 (2007) 569, Level truncated

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

N=1 Global Supersymmetry in D=4

N=1 Global Supersymmetry in D=4 Susy algebra equivalently at quantum level Susy algebra In Weyl basis In this form it is obvious the U(1) R symmetry Susy algebra We choose a Majorana representation for which all spinors are real. In

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry 1: Formalism of SUSY M. E. Peskin Maria Laach Herbstschule September, 2004 Among models of electroweak symmetry breaking and physics beyond the Standard Model Supersymmetry

More information

Supergravity in Quantum Mechanics

Supergravity in Quantum Mechanics Supergravity in Quantum Mechanics hep-th/0408179 Peter van Nieuwenhuizen C.N. Yang Institute for Theoretical Physics Stony Brook University Erice Lectures, June 2017 Vienna Lectures, Jan/Feb 2017 Aim of

More information

t Hooft Loops and S-Duality

t Hooft Loops and S-Duality t Hooft Loops and S-Duality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Introduction to the Idea of Twisted SUSY Nonlinear Sigma Model

Introduction to the Idea of Twisted SUSY Nonlinear Sigma Model Introduction to the Idea of Twisted SUSY Nonlinear Sigma Model WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This note is prepared for the

More information

Perturbative Integrability of large Matrix Theories

Perturbative Integrability of large Matrix Theories 35 th summer institute @ ENS Perturbative Integrability of large Matrix Theories August 9 th, 2005 Thomas Klose Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Germany

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Anomaly and gaugino mediation

Anomaly and gaugino mediation Anomaly and gaugino mediation Supergravity mediation X is in the hidden sector, P l suppressed couplings SUSY breaking VEV W = ( W hid (X) + W vis ) (ψ) f = δj i ci j X X ψ j e V ψ 2 i +... Pl τ = θ Y

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

15.2. Supersymmetric Gauge Theories

15.2. Supersymmetric Gauge Theories 348 15. LINEAR SIGMA MODELS 15.. Supersymmetric Gauge Theories We will now consider supersymmetric linear sigma models. First we must introduce the supersymmetric version of gauge field, gauge transformation,

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

THE MASTER SPACE OF N=1 GAUGE THEORIES

THE MASTER SPACE OF N=1 GAUGE THEORIES THE MASTER SPACE OF N=1 GAUGE THEORIES Alberto Zaffaroni CAQCD 2008 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh, Zaffaroni, arxiv 0705.2771

More information

A supermatrix model for ABJM theory

A supermatrix model for ABJM theory A supermatrix model for ABJM theory Nadav Drukker Humboldt Universität zu Berlin Based on arxiv:0912.3006: and arxiv:0909.4559: arxiv:0912.3974: N.D and D. Trancanelli A. Kapustin, B. Willett, I. Yaakov

More information

Anomalies and SPT phases

Anomalies and SPT phases Anomalies and SPT phases Kazuya Yonekura, Kavli IPMU Review (mainly of [1508.04715] by Witten) [1607.01873] KY [1610.07010][1611.01601] collaboration with Yuji Tachikawa Introduction What is the most general

More information

arxiv:hep-lat/ v1 26 Feb 2004

arxiv:hep-lat/ v1 26 Feb 2004 Preprint typeset in JHEP style - HYPER VERSION UPRF-004-04 arxiv:hep-lat/040034v1 6 Feb 004 Wess-Zumino model with exact supersymmetry on the lattice Marisa Bonini and Alessandra Feo Dipartimento di Fisica,

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Smooth Wilson Loops and Yangian Symmetry in Planar N = 4 SYM

Smooth Wilson Loops and Yangian Symmetry in Planar N = 4 SYM Smooth Wilson Loops and Yangian Symmetry in Planar N = 4 SYM ITP, Niklas Beisert Workshop on Hidden symmetries and integrability methods in super Yang Mills theories and their dual string theories Centre

More information

Aspects of SUSY Breaking

Aspects of SUSY Breaking Aspects of SUSY Breaking Zohar Komargodski Institute for Advanced Study, Princeton ZK and Nathan Seiberg : arxiv:0907.2441 Aspects of SUSY Breaking p. 1/? Motivations Supersymmetry is important for particle

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

Chiral Symmetry in the String Representation of the Large N QCD

Chiral Symmetry in the String Representation of the Large N QCD Chiral Symmetry in the String Representation of the Large N QCD Vikram Vyas Scientific Resource Centre The Ajit Foundation, Jaipur, India Email: visquare@satyam.net.in Abstract We use the worldline representation

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg April 5, 011 1 Lecture 6 Let s write down the superfield (without worrying about factors of i or Φ = A(y + θψ(y + θθf (y = A(x + θσ θ A + θθ θ θ A + θψ + θθ(

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012 dario.rosa@mib.infn.it Dipartimento di Fisica, Università degli studi di Milano Bicocca Milano, Thursday, September 27th, 2012 1 Holomorphic Chern-Simons theory (HCS) Strategy of solution and results 2

More information

Chiral Fermions on the Lattice:

Chiral Fermions on the Lattice: Chiral Fermions on the Lattice: A Flatlander s Ascent into Five Dimensions (ETH Zürich) with R. Edwards (JLab), B. Joó (JLab), A. D. Kennedy (Edinburgh), K. Orginos (JLab) LHP06, Jefferson Lab, Newport

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Emergent spin. Michael Creutz BNL. On a lattice no relativity can consider spinless fermions hopping around

Emergent spin. Michael Creutz BNL. On a lattice no relativity can consider spinless fermions hopping around Emergent spin Michael Creutz BNL Introduction quantum mechanics + relativity spin statistics connection fermions have half integer spin On a lattice no relativity can consider spinless fermions hopping

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Lattice simulation of supersymmetric gauge theories

Lattice simulation of supersymmetric gauge theories Lattice simulation of supersymmetric gauge theories Hiroshi Suzuki Theoretical Physics Laboratory, RIKEN 25 Sept. 2010 @ RIKEN D. Kadoh and H.S., Phys. Lett. B 682 (2010) 466 [arxiv:0908.2274 [hep-lat]].

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

Some Useful Formalism for Supersymmetry

Some Useful Formalism for Supersymmetry Preprint typeset in JHEP style - PAPER VERSION Some Useful Formalism for Supersymmetry Patrick J. Fox Theoretical Physics Department, Fermi National Accelerator Laboratory Batavia, IL 60510,USA pjfox@fnal.gov

More information

The Fermion Bag Approach

The Fermion Bag Approach The Fermion Bag Approach Anyi Li Duke University In collaboration with Shailesh Chandrasekharan 1 Motivation Monte Carlo simulation Sign problem Fermion sign problem Solutions to the sign problem Fermion

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011 NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS based on [1104.3986] and [1105.3935] Hannover, August 1, 2011 WHAT IS WRONG WITH NONINTEGER FLUX? Quantization of Dirac monopole

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Think Globally, Act Locally

Think Globally, Act Locally Think Globally, Act Locally Nathan Seiberg Institute for Advanced Study Quantum Fields beyond Perturbation Theory, KITP 2014 Ofer Aharony, NS, Yuji Tachikawa, arxiv:1305.0318 Anton Kapustin, Ryan Thorngren,

More information

Anomalies, Conformal Manifolds, and Spheres

Anomalies, Conformal Manifolds, and Spheres Anomalies, Conformal Manifolds, and Spheres Nathan Seiberg Institute for Advanced Study Jaume Gomis, Po-Shen Hsin, Zohar Komargodski, Adam Schwimmer, NS, Stefan Theisen, arxiv:1509.08511 CFT Sphere partition

More information

Supersymmetry on the Lattice: Theory and Applications of N = 4 Yang Mills

Supersymmetry on the Lattice: Theory and Applications of N = 4 Yang Mills Supersymmetry on the Lattice: Theory and Applications of N = 4 Yang Mills Anosh Joseph Theoretical Division Los Alamos National Laboratory JLab Theory Seminar February 25, 2013 OUTLINE Construction of

More information