15.2. Supersymmetric Gauge Theories

Size: px
Start display at page:

Download "15.2. Supersymmetric Gauge Theories"

Transcription

1 LINEAR SIGMA MODELS 15.. Supersymmetric Gauge Theories We will now consider supersymmetric linear sigma models. First we must introduce the supersymmetric version of gauge field, gauge transformation, gauge invariant Lagrangian, etc. We consider here only the case where the gauge group is abelian Vector Multiplet. We first recall how we introduced gauge symmetries and gauge fields. Let us consider a field theory of a complex scalar field φ(x with the Lagrangian (15.18 L = µ φ. This Lagrangian is invariant under the phase rotation (15.19 φ(x e iα φ(x, where α is a constant. If we let α depend on x, the derivative µ φ transforms to e iα ( µ +i µ αφ and the Lagrangian shown in Eq. (15.18 is not invariant under the phase rotation. However, if we introduce a vector field (oneform field v µ that transforms as v µ v µ µ α, the modified derivative D µ φ := ( µ + iv µ φ transforms under the phase rotation as (15.0 D µ φ(x e iα(x D µ φ(x and the Lagrangian (15.1 L = D µ φ is invariant. Now let us consider a supersymmetric field theory of a chiral superfield Φ with the Lagrangian (15. L = d 4 θ ΦΦ, which is invariant under the constant phase rotation Φ e iα Φ. If we replace α by a chiral superfield A = A(x µ, θ ±, θ ±, the transformation (15.3 Φ e ia Φ sends a chiral superfield to a chiral superfield. However, ΦΦ transforms to Φ e ia+ia Φ and the Lagrangian is not invariant. Now, as in the case above, we introduce a real superfield V = V (x µ, θ ±, θ ± that transforms as (15.4 V V + i(a A.

2 15.. SUPERSYMMETRIC GAUGE THEORIES 349 Then the modified Lagrangian (15.5 L = d 4 θ Φ e V Φ is invariant under the transformation Eqs. (15.3 (15.4. A real scalar superfield V that transforms as in Eq. (15.4 under a gauge transformation is called a vector superfield. Using the gauge transformations one can eliminate the lower components of the theta-expansion of V and express it in the form (15.6 V =θ θ (v 0 v 1 + θ + θ + (v 0 + v 1 θ θ + σ θ + θ σ + iθ θ + (θ λ + θ + λ + + iθ + θ (θ λ + θ + λ + + θ θ + θ + θ D. Exercise Show that by a suitable gauge transformation V can be expressed as above. Since V is a Lorentz singlet, v 0 and v 1 define a one-form field, σ defines a complex scalar field, λ ± and λ ± define a Dirac fermion field, and D is a real scalar field. The gauge in which V is represented as Eq. (15.6 is called the Wess Zumino gauge. The residual gauge symmetry (gauge transformations that keep the form Eq. (15.6 is the one with A = α(x µ which transforms (15.7 v µ (x v µ (x µ α(x, with all the other component fields unchanged. The supersymmetry variation is given by δ = ϵ + Q ϵ Q + ϵ + Q + ϵ Q + where Q ± and Q ± are the differential operators given in Eqs. (1.6 (1.7. The Wess Zumino gauge is not in general preserved by this variation. In order to find the supersymmetry transformation of the component fields σ, λ ±, v µ and D, we need to amend it with a gauge transformation that brings δv back into the Wess Zumino gauge. It turns out that the required gauge transformation is the one with (15.8 A =iθ + (ϵ + σ + ϵ (v 0 + v 1 iθ (ϵ σ + ϵ + (v 0 v 1 + θ + θ ( ϵ λ + ϵ + λ +, where + are the derivative terms to make A chiral. In this way we find the following supersymmetry transformation for the component fields

3 LINEAR SIGMA MODELS in Wess Zumino gauge: For the vector multiplet fields it is δ v ± = iϵ ± λ ± + iϵ ± λ ±, δσ = iϵ + λ iϵ λ +, δd = ϵ + λ + ϵ + λ + ϵ + λ + + ϵ + λ, δλ + = iϵ + (D + iv 01 + ϵ + σ, δλ = iϵ (D iv 01 + ϵ + σ. For the charged chiral multiplet fields it is δφ = ϵ + ψ ϵ ψ +, δψ + = iϵ (D 0 + D 1 φ + ϵ + F ϵ + σφ, δψ = iϵ + (D 0 D 1 φ + ϵ F + ϵ σφ, δf = iϵ + (D 0 D 1 ψ + iϵ (D 0 + D 1 ψ +ϵ + σψ + ϵ σψ + + i(ϵ λ + ϵ + λ φ, where D µ φ and D µ ψ ± are the covariant derivatives (15.9 D µ := µ + iv µ, with respect to the connection defined by v µ. The superfield (15.30 Σ := D + D V is invariant under the gauge transformation V V + i(a A. twisted chiral superfield It is a (15.31 D + Σ = D Σ = 0 which is expressed as (15.3 Σ = σ(ỹ + iθ + λ + (ỹ iθ λ (ỹ + θ + θ [D(ỹ iv 01 (ỹ], in terms of the component fields in the Wess Zumino gauge as shown by Eq. (15.6. In the above expressions ỹ ± := x ± iθ ± θ ± and v 01 is the field-strength of v µ (or the curvature (15.33 v 01 := 0 v 1 1 v 0. The superfield Σ is called the super-field-strength of V.

4 15.. SUPERSYMMETRIC GAUGE THEORIES Supersymmetric Lagrangians. Let us present a supersymmetric Lagrangian for the vector multiplet V and the charged chiral multiplet Φ. The gauge invariant Lagrangian in Eq. (15.5 is supersymmetric. In terms of the component fields it is written as L kin = d 4 θ Φ e V Φ (15.34 = D µ φd µ φ + iψ (D 0 + D 1 ψ + iψ + (D 0 D 1 ψ + + D φ + F σ φ ψ σψ + ψ + σψ iφλ ψ + + iφλ + ψ + iψ + λ φ iψ λ + φ. This contains the kinetic terms for the fields φ and ψ ±. They are minimally coupled to the gauge field v µ via the covariant derivative in Eq. (15.9. They are also coupled to the scalar and fermionic components of the vector mutiplet. The kinetic terms for the vector multiplet fields can be described in terms of the super-field-strength Σ as (15.35 L gauge = 1 e d 4 θ ΣΣ = 1 e ( µ σ µ σ + iλ ( λ + iλ + ( 0 1 λ + + v 01 + D. Here e is the gauge coupling constant and has dimensions of mass. One can also write twisted F-terms for twisted superpotentials involving Σ. The twisted superpotential that will be important later is the linear one (15.36 WFI,θ = tσ where t is a complex parameter (15.37 t = r iθ. The twisted F-term is written as (15.38 L FI,θ = 1 ( t d θ Σ + c.c. = rd + θv 01. The parameter r is called the Fayet Iliopoulos parameter and θ is called the theta angle. These are dimensionless parameters.

5 LINEAR SIGMA MODELS Now let us consider a supersymmetric and gauge invariant Lagrangian which is simply the sum of the above three terms ( (15.39 L = d 4 θ Φ e V Φ 1 e ΣΣ + 1 ( t d θ Σ + c.c.. This Lagrangian is invariant under the vector and axial R-rotations under assigning the U(1 V U(1 A charges (0, to Σ. Thus the classical system has both U(1 V and U(1 A R-symmetries. The fields D and F have no kinetic term and can be eliminated using the equation of motion. After elimination of these auxiliary fields we obtain the Lagrangian for the other component fields L = D µ φd µ φ + iψ (D 0 + D 1 ψ + iψ + (D 0 D 1 ψ + (15.40 e ( φ r σ φ ψ σψ + ψ + σψ iφλ ψ + + iφλ + ψ + iψ + λ φ iψ λ + φ + 1 ( µ e σ µ σ + iλ ( λ + iλ + ( 0 1 λ + + v01 + θv 01. In particular the potential energy for the scalar fields φ and σ is given by (15.41 U = σ φ + e (. φ r It is straightforward to generalize the above construction to the cases where there are many U(1 gauge groups and many charged matter fields. Suppose the gauge group is U(1 k = k a=1 U(1 a, and there are N matter fields Φ i, i = 1,..., N, with charges Q ia under the group U(1 a (meaning Φ i e iq iaa a Φ i. Then the generalization of the above Langrangian is N L = d 4 θ Φ i e Q iav a 1 Φ i Σ a Σ b (15.4 i=1 + 1 ( d θ e a,b=1 a,b ( t a Σ a + c.c., a=1 where in the exponent of the Φ i kinetic term the sum over a = 1,..., k is assumed. This is invariant under U(1 V U(1 A R-rotations under the charge assignment (0, to each Σ a. If one can find a polynomial W (Φ i of Φ i which is invariant under the gauge transformations, one can also find an

6 15.3. RENORMALIZATION AND AXIAL ANOMALY 353 F-term (15.43 L W = d θ W (Φ i + c.c. The Lagrangian L + L W is still U(1 A -invariant but U(1 V -invariance holds only if W (Φ i is quasi-homogeneous. After eliminating the auxiliary fields D a and F i, we obtain the Lagrangian with the potential energy for the scalar fields being U = (15.44 N Q ia σ a φ i + i=1 + W φ i i=1, a,b=1 (e a,b ( Qia φ i ( r a Qjb φ j r b where (e a,b is the inverse matrix of 1/e a,b and the summations over a and i, j are implicit Renormalization and Axial Anomaly Let us consider the simplest model U(1 gauge theory with a single chiral superfield of charge 1. We consider here the effective theory at a high but finite energy scale µ. This is obtained by integrating out the modes of the fields with the frequencies in the range µ k Λ UV, where Λ UV is the ultraviolet cut-off. Let us look at the terms in the Lagrangian involving the D field ( e D + D( φ r 0. Here r 0 is the FI parameter at the cut-off scale. Integrating out the modes of φ, the term D φ is replaced by D φ, where φ is the one-point correlation function of φ. The φ-propagator can be read from the φ- quadratic term in the action 4 1 π d xφ D µ D µ φ and is given by φ(xφ d k π (y = (π k. Thus, the one-point function in question is (15.46 φ d k π = (π k = log µ k Λ UV ( ΛUV µ. 4 We choose the action here to be related to the Lagrangian by S = 1 π d xl.

PROJEKTARBEIT. Low-Energy Dynamics of 2D SUSY Gauge Theories. ausgeführt am. Institut für Theoretische Physik der Technischen Universität Wien

PROJEKTARBEIT. Low-Energy Dynamics of 2D SUSY Gauge Theories. ausgeführt am. Institut für Theoretische Physik der Technischen Universität Wien PROJEKTARBEIT Low-Energy Dynamics of 2D SUSY Gauge Theories ausgeführt am Institut für Theoretische Physik der Technischen Universität Wien unter der Anleitung von Dr. Johanna Knapp Particle Physics Group

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg April 5, 011 1 Lecture 6 Let s write down the superfield (without worrying about factors of i or Φ = A(y + θψ(y + θθf (y = A(x + θσ θ A + θθ θ θ A + θψ + θθ(

More information

1 4-dimensional Weyl spinor

1 4-dimensional Weyl spinor 4-dimensional Weyl spinor Left moving ψ α, α =, Right moving ψ α, α =, They are related by the complex conjugation. The indices are raised or lowerd by the ϵ tensor as ψ α := ϵ αβ ψ β, α := ϵ α β β. (.)

More information

arxiv:hep-th/ v3 18 Feb 1993

arxiv:hep-th/ v3 18 Feb 1993 IASSNS-HEP-93/3 January, 1993 PHASES OF N = 2 THEORIES IN TWO DIMENSIONS arxiv:hep-th/9301042v3 18 Feb 1993 Edward Witten School of Natural Sciences Institute for Advanced Study Olden Lane Princeton, NJ

More information

Supersymmetry: Fundamentals. Michael Dine

Supersymmetry: Fundamentals. Michael Dine Supersymmetry: Fundamentals Michael Dine Prospects in Theoretical Physics, Princeton, 2007 Supersymmetry (SUSY) is a symmetry which relates fermions and bosons, i.e. fields with different spin. That such

More information

Some Useful Formalism for Supersymmetry

Some Useful Formalism for Supersymmetry Preprint typeset in JHEP style - PAPER VERSION Some Useful Formalism for Supersymmetry Patrick J. Fox Theoretical Physics Department, Fermi National Accelerator Laboratory Batavia, IL 60510,USA pjfox@fnal.gov

More information

Vector Superfields. A Vector superfield obeys the constraint:

Vector Superfields. A Vector superfield obeys the constraint: Lecture 5 A Vector superfield obeys the constraint: Vector Superfields Note: still more degrees of freedom than needed for a vector boson. Some not physical! Remember Vector bosons appears in gauge theories!

More information

Supersymmetry and the LHC

Supersymmetry and the LHC ICTP Summer School. Trieste 2011 Department of Physics University of California, Santa Cruz June, 2011 Plan for the Lectures Lecture I: Supersymmetry Introduction 1 Why supersymmetry? 2 Basics of Supersymmetry

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Solution Set 8 Worldsheet perspective on CY compactification

Solution Set 8 Worldsheet perspective on CY compactification MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Solution Set 8 Worldsheet perspective on CY compactification Due: Monday, December 18, 2007

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Supersymmetric Flows for Supersymmetric Field Theories

Supersymmetric Flows for Supersymmetric Field Theories Supersymmetric Flows for Supersymmetric Field Theories A. Wipf Theoretisch-Physikalisches Institut, FSU Jena in collaboration with G. Bergner, H. Gies, J. Braun, F. Synatschke-Czerwonka Phys. Rev. D81

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

Aspects of SUSY Breaking

Aspects of SUSY Breaking Aspects of SUSY Breaking Zohar Komargodski Institute for Advanced Study, Princeton ZK and Nathan Seiberg : arxiv:0907.2441 Aspects of SUSY Breaking p. 1/? Motivations Supersymmetry is important for particle

More information

Anomalies, Conformal Manifolds, and Spheres

Anomalies, Conformal Manifolds, and Spheres Anomalies, Conformal Manifolds, and Spheres Nathan Seiberg Institute for Advanced Study Jaume Gomis, Po-Shen Hsin, Zohar Komargodski, Adam Schwimmer, NS, Stefan Theisen, arxiv:1509.08511 CFT Sphere partition

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Rigid SUSY in Curved Superspace

Rigid SUSY in Curved Superspace Rigid SUSY in Curved Superspace Nathan Seiberg IAS Festuccia and NS 1105.0689 Thank: Jafferis, Komargodski, Rocek, Shih Theme of recent developments: Rigid supersymmetric field theories in nontrivial spacetimes

More information

Instantons in supersymmetric gauge theories. Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 2012

Instantons in supersymmetric gauge theories. Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 2012 Instantons in supersymmetric gauge theories Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 01 References [1] N. Dorey, T. J. Hollowood, V. V. Khoze and M. P. Mattis, The Calculus of many

More information

The N = 2 Gauss-Bonnet invariant in and out of superspace

The N = 2 Gauss-Bonnet invariant in and out of superspace The N = 2 Gauss-Bonnet invariant in and out of superspace Daniel Butter NIKHEF College Station April 25, 2013 Based on work with B. de Wit, S. Kuzenko, and I. Lodato Daniel Butter (NIKHEF) Super GB 1 /

More information

Berry Phase and Supersymmetry

Berry Phase and Supersymmetry Preprint typeset in JHEP style - PAPER VERSION MIT-CTP 3989 Berry Phase and Supersymmetry arxiv:0810.1280v3 [hep-th] 8 Jan 2009 Julian Sonner Center for Theoretical Physics, Massachusetts Institute of

More information

arxiv: v1 [hep-th] 20 Nov 2018

arxiv: v1 [hep-th] 20 Nov 2018 Supersymmetric Born Infeld actions and new Fayet Iliopoulos terms Niccolò Cribiori 1, Fotis Farakos 2 and Magnus Tournoy 2 arxiv:1811.08424v1 [hep-th] 20 Nov 2018 1 Institute for Theoretical Physics, TU

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry 1: Formalism of SUSY M. E. Peskin Maria Laach Herbstschule September, 2004 Among models of electroweak symmetry breaking and physics beyond the Standard Model Supersymmetry

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES Ft. Lauderdale, December 18, 2015 PLAN Philosophical introduction Technical interlude Something completely different (if I have time) 0-0 PHILOSOPHICAL

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Inflation from supersymmetry breaking

Inflation from supersymmetry breaking Inflation from supersymmetry breaking I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, Sorbonne Université, CNRS Paris I. Antoniadis (Athens Mar 018) 1 / 0 In memory of Ioannis Bakas

More information

arxiv:hep-ph/ v3 19 Oct 2001

arxiv:hep-ph/ v3 19 Oct 2001 A Note on Regularization methods in Kaluza-Klein Theories Roberto Contino, Luigi Pilo arxiv:hep-ph/0104130v3 19 Oct 2001 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy & INFN Abstract

More information

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1.1 Algebras 2-component notation for 4d spinors ( ) ψα ψ = χ α (1) C matrix ( ɛαβ 0 C AB = 0 ɛ α β ) ; ɛ αβ = ɛ α β =

More information

Partial spontaneous breaking of two-dimensional supersymmetry

Partial spontaneous breaking of two-dimensional supersymmetry ITP-UH-38/00 JINR-E2-2000-290 hep-th/0012199 December 2000 Partial spontaneous breaking of two-dimensional supersymmetry E. Ivanov a,1,s.krivonos a,2, O. Lechtenfeld b,3, B. Zupnik a,4 a Bogoliubov Laboratory

More information

2d N = (2, 2) supersymmetry with U(1) RV in curved space

2d N = (2, 2) supersymmetry with U(1) RV in curved space 2d N = (2, 2) supersymmetry with U(1) RV in curved space Stefano Cremonesi Imperial College London SUSY 2013, ICTP Trieste August 27, 2013 Summary Based on: C. Closset, SC, to appear. F. Benini, SC, Partition

More information

The Landau-Ginzburg/Calabi-Yau Phase Transition

The Landau-Ginzburg/Calabi-Yau Phase Transition The Landau-Ginzburg/Calabi-Yau Phase Transition Anirbit UIUC (Dated: May 11, 2012) In this article we shall explain how the Abelian N = 2 twisted supergauge theory in 1 + 1 dimensions shows phase-transition

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lectures 1, 2 Motivations, the problem of mass hierarchy, main BSM proposals Supersymmetry: formalism transformations, algebra,

More information

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 1/ 53 Supersymmetry I A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 2/ 53 Outline 1 Introduction

More information

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University Katrin Becker, Texas A&M University Strings 2016, YMSC,Tsinghua University ± Overview Overview ± II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory

More information

Introduction to defects in Landau-Ginzburg models

Introduction to defects in Landau-Ginzburg models 14.02.2013 Overview Landau Ginzburg model: 2 dimensional theory with N = (2, 2) supersymmetry Basic ingredient: Superpotential W (x i ), W C[x i ] Bulk theory: Described by the ring C[x i ]/ i W. Chiral

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

String theory and the 4D/3D reduction of Seiberg duality. A Review

String theory and the 4D/3D reduction of Seiberg duality. A Review arxiv:1611.04883v2 [hep-th] 21 Aug 2017 String theory and the 4D/3D reduction of Seiberg duality. A Review Antonio Amariti, Domenico Orlando and Susanne Reffert Albert Einstein Center for Fundamental Physics

More information

Anomaly and gaugino mediation

Anomaly and gaugino mediation Anomaly and gaugino mediation Supergravity mediation X is in the hidden sector, P l suppressed couplings SUSY breaking VEV W = ( W hid (X) + W vis ) (ψ) f = δj i ci j X X ψ j e V ψ 2 i +... Pl τ = θ Y

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Exact Results in D=2 Supersymmetric Gauge Theories And Applications Exact Results in D=2 Supersymmetric Gauge Theories And Applications Jaume Gomis Miami 2012 Conference arxiv:1206.2606 with Doroud, Le Floch and Lee arxiv:1210.6022 with Lee N = (2, 2) supersymmetry on

More information

arxiv:hep-th/ v1 21 May 1996

arxiv:hep-th/ v1 21 May 1996 ITP-SB-96-24 BRX-TH-395 USITP-96-07 hep-th/xxyyzzz arxiv:hep-th/960549v 2 May 996 Effective Kähler Potentials M.T. Grisaru Physics Department Brandeis University Waltham, MA 02254, USA M. Roče and R. von

More information

Lecture 1. Supersymmetry: Introduction

Lecture 1. Supersymmetry: Introduction Outline Lecture 1. Supersymmetry: Introduction Briefly, the Standard Model What is supersymmetry (SUSY)? Motivations for SUSY The Wess-Zumino model SUSY gauge theories SUSY breaking Howard Baer Florida

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING. J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA

LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING. J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA October, 1987 IASSNS-HEP-87/57 LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA ABSTRACT We study the symmetries

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

Lecture 5 The Renormalization Group

Lecture 5 The Renormalization Group Lecture 5 The Renormalization Group Outline The canonical theory: SUSY QCD. Assignment of R-symmetry charges. Group theory factors: bird track diagrams. Review: the renormalization group. Explicit Feynman

More information

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5)

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5) Konishi Anomaly Consider the SQED with massless charged fields A and B. Classically, it has an axial symmetry A e +iϕ A, B e +iϕ B and hence a conserved axial current J ax = Ae +2gV A + B e 2gV B, () D

More information

N=1 Global Supersymmetry in D=4

N=1 Global Supersymmetry in D=4 Susy algebra equivalently at quantum level Susy algebra In Weyl basis In this form it is obvious the U(1) R symmetry Susy algebra We choose a Majorana representation for which all spinors are real. In

More information

On Mirror Symmetry in Three Dimensional Abelian Gauge Theories

On Mirror Symmetry in Three Dimensional Abelian Gauge Theories IASSNS HEP 99/15 hep-th/9902033 On Mirror Symmetry in Three Dimensional Abelian Gauge Theories Anton Kapustin and Matthew J. Strassler arxiv:hep-th/9902033v2 1 Apr 1999 School of Natural Sciences, Institute

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/3

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions hep-th/9703110, RU-97-10, IASSNS-HEP-97/18 Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions O. Aharony 1, A. Hanany 2, K. Intriligator 2, N. Seiberg 1, and M.J. Strassler 2,3 1 Dept.

More information

Non Abelian T-duality in Gauged Linear Sigma Models

Non Abelian T-duality in Gauged Linear Sigma Models Published for SISSA by Springer Received: November 30, 017 Revised: January 7, 018 Accepted: February 3, 018 Published: April 11, 018 Non Abelian T-duality in Gauged Linear Sigma Models Nana Cabo Bizet,

More information

Symmetries of curved superspace

Symmetries of curved superspace School of Physics, University of Western Australia Second ANZAMP Annual Meeting Mooloolaba, November 27 29, 2013 Based on: SMK, arxiv:1212.6179 Background and motivation Exact results (partition functions,

More information

BULK AND BRANE SUPERSYMMETRY BREAKING. Jonathan Bagger SUSY 2002

BULK AND BRANE SUPERSYMMETRY BREAKING. Jonathan Bagger SUSY 2002 BULK AND BRANE SUPERSYMMETRY BREAKING Jonathan Bagger SUSY 2002 1 Introduction Since the beginning, extra dimensions have been intertwined with supersymmetry. Strings predict supersymmetry and extra dimensions.

More information

NON-ABELIAN Q-BALLS IN SUPERSYMMETRIC THEORIES. Alexandros Kehagias 3,

NON-ABELIAN Q-BALLS IN SUPERSYMMETRIC THEORIES. Alexandros Kehagias 3, October 1998 hep-th/9810230 DEMO-98/03 CERN-TH/98-279 NON-ABELIAN Q-BALLS IN SUPERSYMMETRIC THEORIES Minos Axenides, 1 Emmanuel Floratos 2 Institute of Nuclear Physics, N.C.S.R. Demokritos 153 10, Athens,

More information

BUSSTEPP lectures on Supersymmetry

BUSSTEPP lectures on Supersymmetry Prepared for submission to JHEP BUSSTEPP lectures on Supersymmetry Stephen M. West Royal Holloway, University of London Egham, Surrey, TW0 0EX E-mail: Stephen.West@rhul.ac.uk Abstract: These lecture notes

More information

Introduction to Lattice Supersymmetry

Introduction to Lattice Supersymmetry Introduction to Lattice Supersymmetry Simon Catterall Syracuse University Introduction to Lattice Supersymmetry p. 1 Motivation Motivation: SUSY theories - cancellations between fermions/bosons soft U.V

More information

Conformal Sigma Models in Three Dimensions

Conformal Sigma Models in Three Dimensions Conformal Sigma Models in Three Dimensions Takeshi Higashi, Kiyoshi Higashijima,, Etsuko Itou, Muneto Nitta 3 Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043,

More information

Supersymmetry II. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry II. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry II Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

arxiv: v2 [hep-th] 15 Apr 2009

arxiv: v2 [hep-th] 15 Apr 2009 CERN-PH-TH/2009-040 Globally and locally supersymmetric effective theories for light fields arxiv:0904.0370v2 [hep-th] 15 Apr 2009 Leonardo Brizi a, Marta Gómez-Reino b and Claudio A. Scrucca a a Institut

More information

Intro to Supersymmetry Part I: Basics

Intro to Supersymmetry Part I: Basics Intro to Supersymmetry Part I: Basics Yael Shadmi Technion Yael Shadmi (Technion) PreSUSY2015 1 / 93 This presentation contains material for my pre-susy 2015 (black-board) lectures. The ordering is somewhat

More information

Supersymmetric field theories

Supersymmetric field theories Supersymmetric field theories Antoine Van Proeyen KU Leuven Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg Based on some chapters of the book Supergravity Wess,

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

using D 2 D 2 D 2 = 16p 2 D 2

using D 2 D 2 D 2 = 16p 2 D 2 PHY 396 T: SUSY Solutions for problem set #4. Problem (a): Let me start with the simplest case of n = 0, i.e., no good photons at all and one bad photon V = or V =. At the tree level, the S tree 0 is just

More information

Exact solutions in supergravity

Exact solutions in supergravity Exact solutions in supergravity James T. Liu 25 July 2005 Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes Lecture

More information

Supersymmetry Highlights. Kevin Hambleton

Supersymmetry Highlights. Kevin Hambleton Supersymmetry Highlights Kevin Hambleton Outline SHO Example Why SUSY? SUSY Fields Superspace Lagrangians SUSY QED MSSM i Warm Up A Hint Of SUSY... Remember Quantum Simple Harmonic Oscillator... Canonical

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Soft Supersymmetry Breaking Terms in String Compactifications

Soft Supersymmetry Breaking Terms in String Compactifications Soft Supersymmetry Breaking Terms in String Compactifications Joseph P. Conlon DAMTP, Cambridge University Soft Supersymmetry Breaking Terms in String Compactifications p. 1/4 This talk is based on hep-th/0609180

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

The Dirac Propagator From Pseudoclassical Mechanics

The Dirac Propagator From Pseudoclassical Mechanics CALT-68-1485 DOE RESEARCH AND DEVELOPMENT REPORT The Dirac Propagator From Pseudoclassical Mechanics Theodore J. Allen California Institute of Technology, Pasadena, CA 9115 Abstract In this note it is

More information

1 Goldstone-Maxwell superfield

1 Goldstone-Maxwell superfield hep-th/9911166 GOLDSTONE-TYPE SUPERFIELDS AND PARTIAL SPONTANEOUS BREAKING OF D=3, N= SUPERSYMMETRY B.M. Zupnik 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980,

More information

F-theory and 2d (0, 2) Theories

F-theory and 2d (0, 2) Theories KCL-MTH-16-01 F-theory and 2d (0, 2) Theories Sakura Schäfer-Nameki 1 and Timo Weigand 2 arxiv:1601.02015v5 [hep-th] 6 Jan 2017 1 Department of Mathematics, King s College London The Strand, London WC2R

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

for flux compactifications

for flux compactifications UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE MM. FF. NN. DIPARTIMENTO DI FISICA GALILEO GALILEI LAUREA SPECIALISTICA IN FISICA N = 1 effective supergravities for flux compactifications Relatore:

More information

Recent developments in lattice supersymmetry

Recent developments in lattice supersymmetry Recent developments in lattice supersymmetry Erich Poppitz Joel Giedt, E.P., hep-th/0407135 [JHEP09(2004)029] Joel Giedt, Roman Koniuk, Tzahi Yavin, E.P., hep-lat/0410041 [JHEP12(2004)033] work in progress

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 UH-511-87-97 WHAT IS SUPERSYMMETRY AND HOW DO WE FIND IT? a arxiv:hep-ph/9706307v1 9 Jun 1997 XERXES TATA Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 968, USA Abstract In these

More information

Light-Cone Quantization of Electrodynamics

Light-Cone Quantization of Electrodynamics Light-Cone Quantization of Electrodynamics David G. Robertson Department of Physics, The Ohio State University Columbus, OH 43210 Abstract Light-cone quantization of (3+1)-dimensional electrodynamics is

More information

Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity. Keith R. Dienes

Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity. Keith R. Dienes Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity Keith R. Dienes National Science Foundation University of Maryland University of Arizona Work done in collaboration

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Introduction to supersymmetry

Introduction to supersymmetry Introduction to supersymmetry Vicente Cortés Institut Élie Cartan Université Henri Poincaré - Nancy I cortes@iecn.u-nancy.fr August 31, 2005 Outline of the lecture The free supersymmetric scalar field

More information

New Model of N=8 Superconformal Mechanics

New Model of N=8 Superconformal Mechanics New Model of N=8 Superconformal Mechanics François Delduc, Evgeny Ivanov To cite this version: François Delduc, Evgeny Ivanov. New Model of N=8 Superconformal Mechanics. 10 pages. 2007.

More information

arxiv: v4 [hep-th] 30 Nov 2017

arxiv: v4 [hep-th] 30 Nov 2017 KIAS-P16058 NCTS-TH/1605 arxiv:1608.05363v4 [hep-th] 30 Nov 017 (, ) and (0, 4) Supersymmetric Boundary Conditions in 3d N = 4 Theories and Type IIB Branes Hee-Joong Chung 1a and Tadashi Okazaki b a Korea

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

arxiv:hep-th/ v1 23 Apr 2003

arxiv:hep-th/ v1 23 Apr 2003 OU-HET 439 hep-th/0304194 April 003 Three Dimensional Nonlinear Sigma Models in the Wilsonian Renormalization Method arxiv:hep-th/0304194v1 3 Apr 003 Kiyoshi Higashijima and Etsuko Itou Department of Physics,

More information

Supersymmetric Skyrme Model. Muneto Nitta (Keio U.,Jp)

Supersymmetric Skyrme Model. Muneto Nitta (Keio U.,Jp) Supersymmetric Skyrme Model June 20/2016 @ Krakow SIG V - 20-23 June 2016: Skyrmions - from atomic nuclei to neutron stars Muneto Nitta (Keio U.,Jp) Shin Sasaki (Kitasato U., Jp) Sven Bjarke Gudnason (Lanzhou,

More information

Non-anticommutative N = 2 super-yang Mills theory with singlet deformation

Non-anticommutative N = 2 super-yang Mills theory with singlet deformation Physics Letters B 579 (2004) 226 234 www.elsevier.com/locate/physletb Non-anticommutative N = 2 super-yang Mills theory with singlet deformation Sergio Ferrara a,b, Emery Sokatchev c a CERN Theoretical

More information

arxiv: v1 [hep-th] 6 Dec 2012

arxiv: v1 [hep-th] 6 Dec 2012 December 5, 01 EFI-1-8 Target Spaces from Chiral Gauge Theories arxiv:11.11v1 [hep-th] 6 Dec 01 Ilarion Melnikov a1, Callum Quigley b, Savdeep Sethi b3 and Mark Stern c4 a Max Planck Institute for Gravitational

More information

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. In my notations, the A µ and their components A a µ are the canonically normalized vector fields, while the A µ = ga µ and

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

Final reading report: BPHZ Theorem

Final reading report: BPHZ Theorem Final reading report: BPHZ Theorem Wang Yang 1 1 Department of Physics, University of California at San Diego, La Jolla, CA 92093 This reports summarizes author s reading on BPHZ theorem, which states

More information

Supersymmetry Breaking 1

Supersymmetry Breaking 1 Supersymmetry Breaking 1 Yael Shadmi arxiv:hep-th/0601076v1 12 Jan 2006 Physics Department, Technion Israel Institute of Technology, Haifa 32000, Israel yshadmi@physics.technion.ac.il Abstract These lectures

More information