Inflation from supersymmetry breaking

Size: px
Start display at page:

Download "Inflation from supersymmetry breaking"

Transcription

1 Inflation from supersymmetry breaking I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, Sorbonne Université, CNRS Paris I. Antoniadis (Athens Mar 018) 1 / 0

2 In memory of Ioannis Bakas 8th Regional meeting, Nafplion, July 015 I. Antoniadis (Athens Mar 018) / 0

3 Problem of scales describe high energy (SUSY?) extension of the Standard Model unification of all fundamental interactions incorporate Dark Energy simplest case: infinitesimal (tuneable) +ve cosmological constant describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter) => 3 very different scales besides M Planck : DarkEnergy ElectroWeak Inflation QuantumGravity mev TeV M I M Planck I. Antoniadis (Athens Mar 018) 3 / 0

4 Problem of scales DarkEnergy ElectroWeak Inflation QuantumGravity mev TeV M I M Planck 1 they are independent possible connections M I could be near the EW scale, such as in Higgs inflation but large non minimal coupling to explain M Planck could be emergent from the EW scale in models of low-scale gravity and TeV strings connect inflation and SUSY breaking scales while accommodating observed vacuum energy I. Antoniadis (Athens Mar 018) 4 / 0

5 Inflation in supergravity: main problems slow-roll conditions: the eta problem => fine-tuning of the potential η = V /V, V F = e K ( DW 3 W ), DW = W + K W K: Kähler potential, W : superpotential canonically normalised field: K = X X => η = trans-planckian initial conditions => break validity of EFT no-scale type models that avoid the η-problem K = 3 ln(t + T ) stabilisation of the (pseudo) scalar companion of the inflaton chiral multiplets => complex scalars moduli stabilisation, de Sitter vacuum,... I. Antoniadis (Athens Mar 018) 5 / 0

6 Starobinsky model of inflation L = 1 R + αr Lagrange multiplier φ => L = 1 1 (1 + φ)r 4α φ Weyl rescaling => equivalent to a scalar field with exponential potential: L = 1 R 1 ( φ) M 1 Note that the two metrics are not the same supersymmetric extension: (1 e 3 φ ) M = 3 4α add D-term R R because F-term R does not contain R => brings two chiral multiplets I. Antoniadis (Athens Mar 018) 6 / 0

7 SUSY extension of Starobinsky model K = 3 ln(t + T C C) ; W = MC(T 1 ) T contains the inflaton: Re T = e C R is unstable during inflation 3 φ => add higher order terms to stabilize it e.g. C C h(c, C) = C C ζ(c C) Kallosh-Linde 13 SUSY is broken during inflation with C the goldstino superfield model independent treatment in the decoupling sgoldstino limit replace C by a constrained superfield X satisfying X = 0 => sgoldstino = (goldstino) /F => minimal SUSY extension that evades stability problem I. Antoniadis (Athens Mar 018) 7 / 0

8 Non-linear Starobinsky supergravity I.A.-Dudas-Ferrara-Sagnotti 14 K = 3 ln(t + T X X ) ; W = M XT + f X + f /3 => L = 1 R 1 ( φ) M 1 ) (1 e 3 φ 1 e 3 φ ( a) M axion a much heavier than φ during inflation, decouples: m φ = M 3 e 3 φ 0 << m a = M 3 18 e inflation scale M independent from NL-SUSY breaking scale f => compatible with low energy SUSY however inflaton different from goldstino superpartner also initial conditions require trans-planckian values for φ (φ > 1) 3 φ a I. Antoniadis (Athens Mar 018) 8 / 0

9 Inflation from supersymmetry breaking I.A.-Chatrabhuti-Isono-Knoops 16, 17 Inflaton : goldstino superpartner in the presence of a gauged R-symmetry linear superpotential W = f X => no η-problem V F = e K ( DW 3 W ) = e K ( 1 + K X X 3 X ) f K = X X = e X ( 1 X + O( X 4) f = O( X 4 ) => η = inflation around a maximum of scalar potential (hill-top) => small field no large field initial conditions gauge R-symmetry: (pseudo) scalar absorbed by the U(1) R vacuum energy at the minimum: tuning between V F and V D I. Antoniadis (Athens Mar 018) 9 / 0

10 Two classes of models Case 1: R-symmetry is restored during inflation (at the maximum) Case : R-symmetry is (spontaneously) broken everywhere (and restored at infinity) example: toy model of SUSY breaking I. Antoniadis (Athens Mar 018) 10 / 0

11 Case 1: R-symmetry restored during inflation [13] K(X, X ) = κ X X + κ 4 A (X X ) A > 0 [17] W (X ) = κ 3 f X => f (X ) = 1 (+β ln X to cancel anomalies but β very small) V = V F + V D V F = κ 4 f X X(1+AX e X) [ 3X X + ( 1 + X X (1 + AX X ) ) ] 1 + 4AX X 4 q [ V D = κ 1 + X X (1 + AX X ) ] [14] Assume inflation happens around the maximum X ρ 0 => I. Antoniadis (Athens Mar 018) 11 / 0

12 Case 1: predictions slow-roll parameters η = 1 ( ) ( ) V 4A + x κ = V + x + O(ρ ) x = q/f [14] ɛ = 1 ( ) V ( ) 4A + x κ = 4 V + x ρ + O(ρ 4 ) η ρ η small: for instance x 1 and A O(10 1 ) inflation starts with an initial condition for φ = φ near the maximum and ends when η = 1 => number of e-folds N = start end V V = κ 1 1 ɛ η ln ( ρend ρ ) [19] I. Antoniadis (Athens Mar 018) 1 / 0

13 Case 1: predictions amplitude of density perturbations A s = κ4 V 4π ɛ = κ H 8π ɛ spectral index tensor to scalar ratio n s = 1 + η 6ɛ 1 + η r = 16ɛ Planck 15 data : η 0.0, A s. 10 9, N > 50 => r < 10 4, H < 10 1 GeV assuming ρ end < 1/ Question: can a nearby minimum exist with a tiny +ve vacuum energy? Answer: Yes in a weaker sense: perturbative expansion [11] valid for the Kähler potential but not for the slow-roll parameters generic V (not fine-tuned) => 10 9 < r < 10 4, < H < 10 1 GeV [0] I. Antoniadis (Athens Mar 018) 13 / 0

14 Fayet-Iliopoulos (FI) D-terms in supergravity D-term contribution: positive contribution to η => should stay small [1] its role: not important for inflation U(1) absorbs the pseudoscalar partner of inflaton allows tuning the EW vacuum energy at a tiny positive value in case Question: is it possible to have inflation by SUSY breaking via D-term? the inflaton should belong to a massive vector multiplet as before FI-term in supergravity very restrictive: constant FI term exists only by gauging the R-symmetry [11] A new FI term was written recently Cribiori-Farakos-Tournoy-Van Proeyen 18 gauge invariant at the Lagrangian level but non-local becomes local and very simple in the unitary gauge I. Antoniadis (Athens Mar 018) 14 / 0

15 A new FI term Global supersymmetry: gauge field-srength superfield L new FI = ξ 1 d 4 W W θ D W D W DW = ξ 1D + fermions It makes sense only when < D > 0 => SUSY broken by a D-term Supergravity generalisation: straightforward unitarity gauge: goldstino = U(1) gaugino = 0 => standard sugra ξ 1 D Pure sugra + one vector multiplet => L = R + ψ µ σ µνρ D ρ ψ ν + m 3/ ψ µ σ µν ψ ν 1 4 F µν ξ 1 = 0 => AdS supergravity ξ 1 0 uplifts the vacuum energy and breaks SUSY ( ) 3m3/ +1 ξ 1 e.g. ξ 1 = 6m 3/ => massive gravitino in flat space I. Antoniadis (Athens Mar 018) 15 / 0

16 New FI term with matter net result: ξ 1 ξ 1 e K/3 Not invariant under Kähler transformations K(X, X ) K + J(X ) + J( X ) W e J W U(1) cannot be an R-symmetry however R-symmetry becomes ordinary U(1) by a Kähler transformation: J = ln(w /W 0 ) => W W 0 constant and K K + ln W /W 0 The new and standard FI terms can co-exist in this basis I.A.-Chatrabhuti-Isono-Knoops 18 Case 1 model for A = 0 and W = f X b (W 0 = f, κ = 1) => [11] I. Antoniadis (Athens Mar 018) 16 / 0

17 Model of inflation on D-terms K = X X + b ln X X ; W = f (b: standard FI constant) => V F = f e ρ [ ρ (b 1) (b + ρ ) 3ρ b] V D = q (ρ + b + ξρ 4b 3 e 3 ρ) ξ = ξ 1 /q Case f = 0 (pure D-term potential): maximum at ρ = 0 => b = 3/ and ξ 1 (or b = 0 and /3 ξ 0) V D = q [b + ρ ( 1 + ξe 3 ρ)] ξ = 1: effective charge of X vanishes supersymmetric minimum at D=0 I. Antoniadis (Athens Mar 018) 17 / 0

18 Pure D-term potential Case f 0: maximum is shifted at ρ = 3f 4(1+ξ)q minimum is lifted up and SUSY is broken by both D and F of O(f ) I. Antoniadis (Athens Mar 018) 18 / 0

19 Predictions for inflation slow-roll parameters η = 4(1 + ξ) 3 + O(ρ ) ɛ = 16 9 (1 + ξ) ρ + O(ρ 4 ) η ρ N 1 ( ) η ln ρend => same main results as before (F-term dominated inflation)!! [1] However allowing higher order correction to the Kähler potential one can obtain r as large as (near the experimental bound) ρ I. Antoniadis (Athens Mar 018) 19 / 0

20 Conclusions Challenge of scales: at least three very different (besides M Planck ) electroweak, dark energy, inflation, SUSY? their origins may be connected or independent General class of models with inflation from SUSY breaking: identify inflaton with goldstino superpartner (gauged) R-symmetry restored (case 1) or broken (case ) during inflation small field, avoids the η-problem, no (pseudo) scalar companion D-term inflation is also possible using a new FI term I. Antoniadis (Athens Mar 018) 0 / 0

Scale hierarchies and string phenomenology

Scale hierarchies and string phenomenology Scale hierarchies and string phenomenology I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, UPMC/CNRS, Sorbonne Universités, Paris Workshop on the Standard Model and Beyond Corfu, Greece,

More information

arxiv: v2 [hep-th] 9 Nov 2017

arxiv: v2 [hep-th] 9 Nov 2017 Inflation from Supersymmetry Breaking I. Antoniadis a,b,1, A. Chatrabhuti c,2, H. Isono c,3, R. Knoops c,4 a LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6, 4 Place Jussieu, 75005 Paris, France

More information

NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION

NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION 1 NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION Based on : - I.Antoniadis, E.D., S.Ferrara and A. Sagnotti, Phys.Lett.B733 (2014) 32 [arxiv:1403.3269 [hep-th]]. - E.D., S.Ferrara, A.Kehagias

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

The coupling of non-linear Supersymmetry to Supergravity

The coupling of non-linear Supersymmetry to Supergravity The coupling of non-linear Supersymmetry to Supergravity Ignatios Antoniadis Laboratoire de Physique Théorique et Hautes Energies, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005 Paris, France

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

Cosmology in Supergravity. Sergio FERRARA (CERN LNF INFN) January, 2016

Cosmology in Supergravity. Sergio FERRARA (CERN LNF INFN) January, 2016 Cosmology in Supergravity Sergio FERRARA (CERN LNF INFN) 25-28 January, 2016 1 Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

High Scale Inflation with Low Scale Susy Breaking

High Scale Inflation with Low Scale Susy Breaking High Scale Inflation with Low Scale Susy Breaking Joseph P. Conlon (DAMTP, Cambridge) Nottingham University, September 2007 High Scale Inflation with Low Scale Susy Breaking p. 1/3 Two paradigms: inflation...

More information

Special Geometry and Born-Infeld Attractors

Special Geometry and Born-Infeld Attractors JOINT ERC WORKSHOP ON SUPERFIELDS, SELFCOMPLETION AND STRINGS & GRAVITY October 22-24, 2014 - Ludwig-Maximilians-University, Munich Special Geometry and Born-Infeld Attractors Sergio Ferrara (CERN - Geneva)

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Vector Superfields. A Vector superfield obeys the constraint:

Vector Superfields. A Vector superfield obeys the constraint: Lecture 5 A Vector superfield obeys the constraint: Vector Superfields Note: still more degrees of freedom than needed for a vector boson. Some not physical! Remember Vector bosons appears in gauge theories!

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

arxiv: v1 [hep-th] 7 Sep 2015

arxiv: v1 [hep-th] 7 Sep 2015 Dedicated to I. V. Tyutin anniversary Matter-coupled de Sitter Supergravity arxiv:1509.02136v1 [hep-th] 7 Sep 2015 Renata Kallosh Stanford Institute of Theoretical Physics and Department of Physics, Stanford

More information

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 1/ 53 Supersymmetry I A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece The rudiments of Supersymmetry 2/ 53 Outline 1 Introduction

More information

Matter Inflation in Supergravity

Matter Inflation in Supergravity Matter Inflation in Supergravity University of Basel Department of Physics Max Planck Institute of Physics, Munich Talk at Pre-Planckian Inflation 2011, University of Minnesota, Minneapolis October 7,

More information

Beyond the SM, Supersymmetry

Beyond the SM, Supersymmetry Beyond the SM, 1/ 44 Beyond the SM, A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Beyond the SM, 2/ 44 Outline 1 Introduction 2 Beyond the SM Grand Unified Theories

More information

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY beyond standard model ZHONG-ZHI XIANYU Tsinghua University June 9, 015 Why Higgs? Why gravity? An argument from equivalence principle Higgs:

More information

arxiv: v1 [hep-th] 4 Nov 2016

arxiv: v1 [hep-th] 4 Nov 2016 DFPD-2016/TH/19 Minimal Constrained Supergravity N. Cribiori 1,2, G. Dall Agata 1,2, F. Farakos 1,2 and M. Porrati 3 arxiv:1611.01490v1 [hep-th] 4 Nov 2016 1 Dipartimento di Fisica Galileo Galilei Università

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Inflation in heterotic supergravity models with torsion

Inflation in heterotic supergravity models with torsion Inflation in heterotic supergravity models with torsion Stephen Angus IBS-CTPU, Daejeon in collaboration with Cyril Matti (City Univ., London) and Eirik Eik Svanes (LPTHE, Paris) (work in progress) String

More information

Aspects of SUSY Breaking

Aspects of SUSY Breaking Aspects of SUSY Breaking Zohar Komargodski Institute for Advanced Study, Princeton ZK and Nathan Seiberg : arxiv:0907.2441 Aspects of SUSY Breaking p. 1/? Motivations Supersymmetry is important for particle

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Realistic Inflation Models and Primordial Gravity Waves

Realistic Inflation Models and Primordial Gravity Waves Journal of Physics: Conference Series Realistic Inflation Models and Primordial Gravity Waves To cite this article: Qaisar Shafi 2010 J. Phys.: Conf. Ser. 259 012008 Related content - Low-scale supersymmetry

More information

Inflation! Starobinsky, 1980 modified gravity, R + R 2 a complicated but almost working model!

Inflation! Starobinsky, 1980 modified gravity, R + R 2 a complicated but almost working model! Andrei Linde! Inflation! Starobinsky, 1980 modified gravity, R + R 2 a complicated but almost working model! Guth, 1981 - old inflation. Great idea, first outline of the new paradigm, but did not quite

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/3

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Chaotic Inflation, Supersymmetry Breaking, and Moduli Stabilization

Chaotic Inflation, Supersymmetry Breaking, and Moduli Stabilization Chaotic Inflation, Supersymmetry Breaking, and Moduli Stabilization Clemens Wieck! COSMO 2014, Chicago August 25, 2014!! Based on 1407.0253 with W. Buchmüller, E. Dudas, L. Heurtier Outline 1. Chaotic

More information

arxiv: v1 [hep-th] 6 Feb 2019

arxiv: v1 [hep-th] 6 Feb 2019 LCTP-19-0 Deriving the Inflaton in Compactified M-theory with a De Sitter Vacuum Gordon Kane 1 and Martin Wolfgang Winkler 1 Leinweber Center for Theoretical Physics, Department of Physics, University

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg April 5, 011 1 Lecture 6 Let s write down the superfield (without worrying about factors of i or Φ = A(y + θψ(y + θθf (y = A(x + θσ θ A + θθ θ θ A + θψ + θθ(

More information

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010 Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010 SEWM, June 29 - July 2 2010 p. 1 Original part based on: F. Bezrukov, M. S., Phys. Lett. B 659 (2008) 703 F. Bezrukov, D. Gorbunov,

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Inflation from a SUSY Axion Model

Inflation from a SUSY Axion Model Inflation from a SUSY Axion Model Masahiro Kawasaki (ICRR, Univ of Tokyo) with Naoya Kitajima (ICRR, Univ of Tokyo) Kazunori Nakayama (Univ of Tokyo) Based on papers MK, Kitajima, Nakayama, PRD 82, 123531

More information

Higgs inflation: dark matter, detectability and unitarity

Higgs inflation: dark matter, detectability and unitarity Higgs inflation: dark matter, detectability and unitarity Rose Lerner University of Helsinki and Helsinki Institute of Physics In collaboration with John McDonald (Lancaster University) 0909.0520 (Phys.

More information

Dynamics of the Peccei-Quinn Scale

Dynamics of the Peccei-Quinn Scale Talk at International Workshop on Particle Physics and Cosmology, Norman, Oklahoma 2009 Department of Physics University of California, Santa Cruz Work with L. Carpenter, G. Festuccia and L. Ubaldi. May,

More information

Soft Supersymmetry Breaking Terms in String Compactifications

Soft Supersymmetry Breaking Terms in String Compactifications Soft Supersymmetry Breaking Terms in String Compactifications Joseph P. Conlon DAMTP, Cambridge University Soft Supersymmetry Breaking Terms in String Compactifications p. 1/4 This talk is based on hep-th/0609180

More information

Anomaly and gaugino mediation

Anomaly and gaugino mediation Anomaly and gaugino mediation Supergravity mediation X is in the hidden sector, P l suppressed couplings SUSY breaking VEV W = ( W hid (X) + W vis ) (ψ) f = δj i ci j X X ψ j e V ψ 2 i +... Pl τ = θ Y

More information

arxiv:hep-ph/ v1 16 Mar 1994

arxiv:hep-ph/ v1 16 Mar 1994 TU-455 Mar. 1994 A Solution to the Polonyi Problem in the Minimum SUSY-GUT arxiv:hep-ph/940396v1 16 Mar 1994 T. Moroi and T. Yanagida Department of Physics, Tohoku University, Sendai 980, Japan Abstract

More information

From HEP & inflation to the CMB and back

From HEP & inflation to the CMB and back ESF Exploratory Workshop, Porto March 8th, 008 From HEP & inflation to the CMB and back Jonathan Rocher ULB - Brussels V,ψ ψ 0 Introduction : Grand Unified Theories and Inflation Part A : Constraints on

More information

INTRODUCTION motivation 5d supergravity models An important question in supersymmetric theories is how supersymmetry is broken in the low energy world

INTRODUCTION motivation 5d supergravity models An important question in supersymmetric theories is how supersymmetry is broken in the low energy world Peggy Kouroumalou Univ. of Athens, Greece The soft scalar sector of supergravity compactified on S 1 /Z 2 orbifolds G. Diamandis, V. Georgalas, P. Kouroumalou, A.B. Lahanas [hep-th: 011046] [hep-th: 042228]

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

PRICE OF WMAP INFLATION IN SUPERGRAVITY

PRICE OF WMAP INFLATION IN SUPERGRAVITY PRICE OF WMAP INFLATION IN SUPERGRAVITY Zygmunt Lalak Planck 06 with J. Ellis, S. Pokorski and K. Turzyński Outline - Inflation and WMAP3 data - Embedding inflation in supergravity - Moduli stabilisation

More information

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS 1 BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS Based on : - W.Buchmuller, E.D., L.Heurtier and C.Wieck, arxiv:1407.0253 [hep-th], JHEP 1409 (2014) 053. - W.Buchmuller, E.D., L.Heurtier, A.Westphal,

More information

Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity

Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity universe Article Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity Spyros Basilakos 1, Nick E. Mavromatos,3 and Joan Solà 4, 1 Academy of Athens, Research Center for Astronomy

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Inflation in String Theory. mobile D3-brane

Inflation in String Theory. mobile D3-brane Inflation in String Theory mobile D3-brane Outline String Inflation as an EFT Moduli Stabilization Examples of String Inflation Inflating with Branes Inflating with Axions (Inflating with Volume Moduli)

More information

Naturalness and string phenomenology in the LHC era

Naturalness and string phenomenology in the LHC era Naturalness and string phenomenology in the LHC era I. Antoniadis String Phenomenology 2014 ICTP, Trieste, 7-11 July 2014 LHC: where do we stand? where do we go? Low energy SUSY after the Higgs discovery

More information

Gauge Threshold Corrections for Local String Models

Gauge Threshold Corrections for Local String Models Gauge Threshold Corrections for Local String Models Stockholm, November 16, 2009 Based on arxiv:0901.4350 (JC), 0906.3297 (JC, Palti) Local vs Global There are many different proposals to realise Standard

More information

arxiv: v1 [hep-th] 18 Apr 2019

arxiv: v1 [hep-th] 18 Apr 2019 April 019 IPMU19-0056 Gravitino condensate in N = 1 supergravity coupled to the N = 1 supersymmetric Born-Infeld theory arxiv:1904.08586v1 [hep-th] 18 Apr 019 Ryotaro Ishikawa a and Sergei V. Ketov a,b,c,d

More information

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University Katrin Becker, Texas A&M University Strings 2016, YMSC,Tsinghua University ± Overview Overview ± II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Brane SUSY Breaking, non-linear SUSY and Some Applications

Brane SUSY Breaking, non-linear SUSY and Some Applications Brane SUSY Breaking, non-linear SUSY and Some Applications Augusto Sagnotti Scuola Normale Superiore and INFN Pisa TFI 2017 Theories of the Fundamental Interactions Parma, September 11-23 2017 10D Superstrings

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Review of Small Field Models of Inflation

Review of Small Field Models of Inflation Review of Small Field Models of Inflation Ram Brustein אוניברסיטת ב ן -גוריון I. Ben-Dayan 0907.2384 + in progress I. Ben-Dayan, S. de Alwis 0802.3160 Small field models of inflation - Designing small

More information

LECTURE 2: Super theories

LECTURE 2: Super theories LECTURE 2: Super theories Carlos Muñoz Universidad Autónoma de Madrid & Instituto de Física Teórica UAM/CSIC ISAPP09-Como, July 8-16 Carlos Muñoz Super theories 2 ~0.00000001 Carlos Muñoz Super theories

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Strings, SUSY and LHC

Strings, SUSY and LHC Strings, SUSY and LHC Joseph P. Conlon (Cavendish Laboratory and DAMTP, Cambridge) fpuk, November 2007 Strings, SUSY and LHC p. 1/4 The LHC What is the LHC? The greatest experiment on earth! Strings, SUSY

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry 1: Formalism of SUSY M. E. Peskin Maria Laach Herbstschule September, 2004 Among models of electroweak symmetry breaking and physics beyond the Standard Model Supersymmetry

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Quantum Gravity Constraints on Large Field Inflation

Quantum Gravity Constraints on Large Field Inflation Corfu2017, September 24, 2017 p.1/23 Quantum Gravity Constraints on Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München Bhg, Valenzuela, Wolf, arxiv:1703.05776 Frequently asked

More information

Cosmological Relaxation of the Electroweak Scale

Cosmological Relaxation of the Electroweak Scale the Relaxion Cosmological Relaxation of the Electroweak Scale with P. Graham and D. E. Kaplan arxiv: 1504.07551 The Hierarchy Problem The Higgs mass in the standard model is sensitive to the ultraviolet.

More information

Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production

Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production Prepared for submission to JCAP arxiv:1110.3984v2 [astro-ph.co] 6 Mar 2012 Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production Luis Álvarez-Gaumé, a César

More information

Naturally inflating on steep potentials through electromagnetic dissipation

Naturally inflating on steep potentials through electromagnetic dissipation Naturally inflating on steep potentials through electromagnetic dissipation Lorenzo Sorbo UMass Amherst IPhT IPMU, 05/02/14 M. Anber, LS, PRD 2010, PRD 2012 V(φ) INFLATION very early Universe filled by

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum arxiv: v1 [hep-ph] 24 Jul 2015

MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum arxiv: v1 [hep-ph] 24 Jul 2015 CERN-PH-TH-015-170 MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum arxiv:1507.0694v1 [hep-ph] 4 Jul 015 I. Antoniadis a,b, R. Knoops c,d,e a LPTHE, UMR CNRS 7589 Sorbonne Universités,

More information

Flipped GUT Inflation

Flipped GUT Inflation Flipped GUT Inflation Technische Universität Dortmund Wei- Chih Huang 09.18.2015 IOP Academia Sinica arxiv:1412.1460, 15XX.XXXX with John Ellis, Julia Harz, Tomás E. Gonzalo Outline BICEP2 excitement and

More information

Maximal Supersymmetry and B-Mode Targets

Maximal Supersymmetry and B-Mode Targets Maximal Supersymmetry and B-Mode Targets Renata Kallosh 1, Andrei Linde 1, Timm Wrase, Yusuke Yamada 1 arxiv:1704.0489v1 [hep-th] 16 Apr 017 1 SITP and Department of Physics, Stanford University, Stanford,

More information

Brane Backreaction: antidote to no-gos

Brane Backreaction: antidote to no-gos Brane Backreaction: antidote to no-gos Getting de Sitter (and flat) space unexpectedly w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool: high codim back-reaction

More information

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1.1 Algebras 2-component notation for 4d spinors ( ) ψα ψ = χ α (1) C matrix ( ɛαβ 0 C AB = 0 ɛ α β ) ; ɛ αβ = ɛ α β =

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Good things from Brane Backreaction

Good things from Brane Backreaction Good things from Brane Backreaction Codimension-2 Backreaction as a counterexample to almost everything w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool:

More information

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Wang Kai DEPARTMENT OF PHYSICS OKLAHOMA STATE UNIVERSITY In Collaboration with Dr. K.S. Babu and Ts. Enkhbat November 25, 2003 1

More information

Stability in Maximal Supergravity

Stability in Maximal Supergravity Stability in Maximal Supergravity S. Bielleman, s171136, RuG Supervisor: Dr. D. Roest August 5, 014 Abstract In this thesis, we look for a bound on the lightest scalar mass in maximal supergravity. The

More information

PoS(EDSU2018)043. Supergravity and Cosmology

PoS(EDSU2018)043. Supergravity and Cosmology Supergravity and Cosmology Stanford Institute for Theoretical Physics and Department of Physics Stanford University Stanford CA 90 USA E-mail: kallosh@stanford.edu For cosmology we need General Relativity.

More information

String Moduli Stabilization and Large Field Inflation

String Moduli Stabilization and Large Field Inflation Kyoto, 12.12.2016 p.1/32 String Moduli Stabilization and Large Field Inflation Ralph Blumenhagen Max-Planck-Institut für Physik, München based on joint work with A.Font, M.Fuchs, D. Herschmann, E. Plauschinn,

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Lecture 1. Supersymmetry: Introduction

Lecture 1. Supersymmetry: Introduction Outline Lecture 1. Supersymmetry: Introduction Briefly, the Standard Model What is supersymmetry (SUSY)? Motivations for SUSY The Wess-Zumino model SUSY gauge theories SUSY breaking Howard Baer Florida

More information

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity La Plata-Th 97/18 BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity José D. Edelstein Departamento de Física, Universidad Nacional de La Plata C.C. 67, (1900) La Plata, Argentina Short

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

arxiv: v1 [hep-th] 15 Jan 2019

arxiv: v1 [hep-th] 15 Jan 2019 Moduli Stabilization and Inflation in Type IIB/F-theory arxiv:1901.05075v1 [hep-th] 15 Jan 2019 Ignatios Antoniadis Laboratoire de Physique Théorique et Hautes Énergies - LPTHE, Sorbonne Université, CNRS,

More information

Supergravity and inflationary cosmology Ana Achúcarro

Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Slow roll inflation with fast turns: Features of heavy physics in the CMB with J-O. Gong, S. Hardeman, G. Palma,

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

arxiv:hep-ph/ v3 11 Jul 2005

arxiv:hep-ph/ v3 11 Jul 2005 TU-741 KYUSHU-HET-81 hep-ph/0504036 Bottom-Up Approach to Moduli Dynamics in Heavy Gravitino Scenario : Superpotential, Soft Terms and Sparticle Mass Spectrum arxiv:hep-ph/0504036 v3 11 Jul 2005 Motoi

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

BULK AND BRANE SUPERSYMMETRY BREAKING. Jonathan Bagger SUSY 2002

BULK AND BRANE SUPERSYMMETRY BREAKING. Jonathan Bagger SUSY 2002 BULK AND BRANE SUPERSYMMETRY BREAKING Jonathan Bagger SUSY 2002 1 Introduction Since the beginning, extra dimensions have been intertwined with supersymmetry. Strings predict supersymmetry and extra dimensions.

More information

Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity. Keith R. Dienes

Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity. Keith R. Dienes Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity Keith R. Dienes National Science Foundation University of Maryland University of Arizona Work done in collaboration

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Probing the Early Universe with Baryogenesis & Inflation

Probing the Early Universe with Baryogenesis & Inflation Probing the Early Universe with Baryogenesis & Inflation Wilfried Buchmüller DESY, Hamburg ICTP Summer School,Trieste, June 015 Outline BARYOGENESIS 1. Electroweak baryogenesis. Leptogenesis 3. Other models

More information

Particle Interpretation of Dark Matter and Energy

Particle Interpretation of Dark Matter and Energy Particle Interpretation of Dark Matter and Energy Hans Peter Nilles Physikalisches Institut Universität Bonn representing aspects of the projects A1, C2 and C4 Particle Interpretation of DM and DE, Heidelberg

More information