Inflation from a SUSY Axion Model

Size: px
Start display at page:

Download "Inflation from a SUSY Axion Model"

Transcription

1 Inflation from a SUSY Axion Model Masahiro Kawasaki (ICRR, Univ of Tokyo) with Naoya Kitajima (ICRR, Univ of Tokyo) Kazunori Nakayama (Univ of Tokyo) Based on papers MK, Kitajima, Nakayama, PRD 82, (2010) MK, Kitajima, Nakayama, PRD 83, (2011) 1

2 1. Introduction Problems in the standard model of particle physics Strong CP problem : Why QCD preserves CP? Hierarchy problem : The EW scale is unstable against radiative correction Well-known solutions Peccei-Quinn mechanism Axion Supersymmetry This leads us to consider a SUSY Axion Model In this model Hybrid Inflation is naturally realized Copeland, Liddle, Lyth, Stewart, Wands (1994) Axion is dominant dark matter of the universe We have a consistent cosmological scenario.

3 2. SUSY Axion Model Superpotential W = κs(ψ Ψ f 2 a)+λψx X S X, X : gauge singlet : PQ fields Ψ, Ψ : Heavy quraks (Higgs) for KSVZ (DFSZ) axion model Scalar potential S X X Uð1Þ PQ 0 þ1 1 1=2 1=2 Uð1Þ R þ2 0 0 þ1 þ1 V F = κ 2 Ψ Ψ f 2 a 2 + κ 2 S 2 ( Ψ 2 + Ψ 2 ) global minimum Ψ Ψ =f 2 a, S =0 flat direction The flat direction is lifted up by soft SYSY-breaking potential V soft = c 1 m 2 3/2 Ψ 2 + c 2 m 2 3/2 Ψ 2 PQ scalars are stabilized at Ψ Ψ f a

4 Axion a and saxion σ ( scalar partner of axion) are related to PQ scalars as Ψ f a exp Saxion decay σ + ia 2fa KSVZ axion model In general, decay into two axions ( σ a + a) is dominant but it is suppressed when c 1 c 2 we assume Then the saxion decays into two gluons with decay rate DFSZ axion model Γ(σ 2g) Ψ f a exp α s 32π 3 m 3 σ f 2 a σ + ia 2fa The saxion decays into Higgses with decay rate Γ(σ 2h) 1 8π µ m σ 4 m 3 σ f 2 a µ = λψ

5 3. Inflation in SUSY Axion Model Superpotential in SUSY axion model includes W inf = κs(ψ Ψ f 2 a) This is the same form as that realizes SUSY hybrid inflation Copeland, Liddle, Lyth, Stewart, Wands (1994) Dvali, Shafi, Schaefer (1994)..... PQ scalars and S play roles of waterfall fields and inflaton, respectively Scalar potential V = κ 2 Ψ Ψ f 2 a 2 + κ 2 S 2 ( Ψ 2 + Ψ 2 ) For local minimum at where the potential is flat S f a Ψ= Ψ =0 "#$ ($ (% (& (' "# "$ "% "& "' ("$ ("# "# " V κ 2 f 4 a +(one loop corr.)+(sugra corr.) "#$ ($ (% (& "$ (' "# "& "% ("# "# "$

6 With appropriate Kähler potential we have successful inflation which is consistent with WMAP result However, PQ scale should be high f a GeV Axion overcloses the universe? Post-inflationary dynamics can solve this problem Successful inflation κ f a [GeV] Nakayama, F.Takahashi, Yanagida (2010)

7 4. Post-inflationary Dynamics For successful inflation we need f a GeV too large axion density This problem cannot be solved by tuning misalignment angle θ because PQ symmetry is broken after inflation and θ takes random values in different places of the universe However, after inflation saxion can oscillate with large amplitude and decay to produce huge entropy entropy production sufficiently dilutes axion together with other harmful relics

8 4.1 Inflaton Oscillation After inflation the inflaton starts oscillation PQ scalars roll down toward the flat direction PQ scalars have masses PQ scalars are stabilized at m 2 Ψ, Ψ κ2 S 2 Ψ= Ψ =f a Ψ /f a 10-2 S /f a

9 4.2 Reheating and Thermal Effect Inflaton can decay through Reheating temperature T R GeV κ /2 W = ksy Ȳ (Y = H or Q ) k 10 3 Finite-temperature effect due to heavy quarks which couple MSSM particles in thermal bath fa GeV 1/2 V th α s T 4 ln Ψ 2 T 2 This lifts up the flat direction and Ψ( Ψ) rolls down to smaller (larger ) value Ψ α s M p / f a / f a H / f a m th / f a Ψ/f a m th /f a Ψ/f a H/f a σ i α s M p σ Ψ f a f a time

10 4.3 Saxion Oscillation and Entropy Production When H m 3/2, the soft SUSY breaking masses dominate over thermal mass and PQ scalars ( ~ saxion ) start oscillation around Ψ Ψ f a Saxion decay temperature KSVZ axion T σ 5MeV DFSZ axion T σ 5MeV Entropy production mσ 10TeV mσ 1TeV 3/ GeV f a / GeV µ s before s after f a m th /f a / f a / f a H / f a m th / f a Ψ/f a Ψ/f a m 3/2 /f a m σ 2 f a time H/f a

11 4.4 Axion Density Axion density under the large entropy production Ω a h Tσ 1MeV Axion can be appropriately diluted and account for dark matter of the universe Other harmful relics are also diluted by entropy production thermally and non-thermally produced gravitinos thermally and non-thermally produced axinos fa GeV 2 Lazarides, Schaefer, Seckel, Shaf (1990), MK, Moroi, Yanagida (1996)

12 5. Baryogenesis All contents of the universe are diluted by late-time entropy production We need sufficiently large baryon asymmetry that survives the dilution Affleck-Dine mechanism can work A MSSM flat direction ( = squark, slepton, Higgs) has a large field value in the early universe V V = m 2 Φ Φ 2 + Φ 10 M 6 + Φ am 6 3/2 M 3 + h.c Φ n B s 3 Tσ m3/ δ CP 1MeV 1MeV + V th U(1) B 1/ GeV T R M 1000M p 3

13 6. Conclusions Inflation naturally takes place in a SUSY axion model Successful inflation requires high PQ scale f a GeV After inflation, thanks to finite temperature effect, saxion starts oscillation with large initial amplitude Saxion decays and produces huge entropy, by which axion is appropriately dilutes and its density becomes consistent with the present dark matter density Other harmful relics like gravitino and axino are also diluted Baryon asymmetry is obtained through Affleck-Dine mechanism

Moduli Problem, Thermal Inflation and Baryogenesis

Moduli Problem, Thermal Inflation and Baryogenesis Finnish-Japanese Workshop on Particle Physics 2007 Moduli Problem, Thermal Inflation and Baryogenesis Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo Cosmological Moduli Problem

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Axino Phenomenology in the Kim-Nilles mechanism

Axino Phenomenology in the Kim-Nilles mechanism CP3, SDU, Odense, 11 Aug. 2014 Axino Phenomenology in the Kim-Nilles mechanism Eung Jin Chun Outline Introduction to strong CP problem & axion. KSVZ & DFSZ axion models. Supersymmetric axion models and

More information

A Minimal Supersymmetric Cosmological Model

A Minimal Supersymmetric Cosmological Model A Minimal Supersymmetric Cosmological Model Ewan Stewart KAIST COSMO/CosPA 2010 University of Tokyo 29 September 2010 EDS, M Kawasaki, T Yanagida D Jeong, K Kadota, W-I Park, EDS G N Felder, H Kim, W-I

More information

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun Axion Cold Dark Matter with High Scale Inflation Eung Jin Chun Outline The Strong CP problem & the axion solution. Astro and cosmological properties of the axion. BICEP2 implications on the axion CDM.

More information

Moduli-induced axion problem

Moduli-induced axion problem Moduli-induced axion problem Kazunori Nakayama (University of Tokyo) T.Higaki, KN, F.Takahashi, JHEP1307,005 (2013) [1304.7987] SUSY2013 @ ICTP, Trieste, Italy (2013/8/26) What we have shown : Kahler

More information

Dynamics of the Peccei-Quinn Scale

Dynamics of the Peccei-Quinn Scale Talk at International Workshop on Particle Physics and Cosmology, Norman, Oklahoma 2009 Department of Physics University of California, Santa Cruz Work with L. Carpenter, G. Festuccia and L. Ubaldi. May,

More information

Realistic Inflation Models and Primordial Gravity Waves

Realistic Inflation Models and Primordial Gravity Waves Journal of Physics: Conference Series Realistic Inflation Models and Primordial Gravity Waves To cite this article: Qaisar Shafi 2010 J. Phys.: Conf. Ser. 259 012008 Related content - Low-scale supersymmetry

More information

arxiv:hep-ph/ v1 16 Mar 1994

arxiv:hep-ph/ v1 16 Mar 1994 TU-455 Mar. 1994 A Solution to the Polonyi Problem in the Minimum SUSY-GUT arxiv:hep-ph/940396v1 16 Mar 1994 T. Moroi and T. Yanagida Department of Physics, Tohoku University, Sendai 980, Japan Abstract

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

GUTs, Inflation, and Phenomenology

GUTs, Inflation, and Phenomenology GUTs, Inflation, and Phenomenology Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Matter Inflation in Supergravity

Matter Inflation in Supergravity Matter Inflation in Supergravity University of Basel Department of Physics Max Planck Institute of Physics, Munich Talk at Pre-Planckian Inflation 2011, University of Minnesota, Minneapolis October 7,

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018 Flaxion a minimal extension to solve puzzles in the standard model Koichi Hamaguchi (University of Tokyo) @Moriond EW 2018, Mar. 13, 2018 Based on Y. Ema, KH, T. Moroi, K. Nakayama, arxiv:1612.05492 [JHEP

More information

Realistic Inflation Models

Realistic Inflation Models Realistic Inflation Models Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Fort Lauderdale, Florida December 19, 2009 1 /51 Outline Introduction Standard

More information

(Mainly centered on theory developments)

(Mainly centered on theory developments) (Mainly centered on theory developments) QCD axion Among energy pie, I will discuss axion in this part. Quintessential axion From a fundamental point of view, i.e. when mass scale is created, presumably

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Theory Group. Masahiro Kawasaki

Theory Group. Masahiro Kawasaki Theory Group Masahiro Kawasaki Current members of theory group Staffs Masahiro Kawasaki (2004~) cosmology Masahiro Ibe (2011~) particle physics Postdoctoral Fellows Shuichiro Yokoyama Shohei Sugiyama Daisuke

More information

The Supersymmetric Axion and Cosmology

The Supersymmetric Axion and Cosmology The Supersymmetric Axion and Cosmology arxiv:hep-ph/0307252v3 31 Jul 2003 A. Yu. Anisimov Institute of Theoretical and Experimental Physics, Moscow Abstract In this lecture 1 we review several cosmological

More information

Dynamics of the Peccei-Quinn Scale

Dynamics of the Peccei-Quinn Scale Talk at the Banks-Fischler Symposium, Challenges in Theoretical Physics Department of Physics University of California, Santa Cruz Work with L. Carpenter, G. Festuccia and L. Ubaldi. June, 2009 Tom and

More information

Naturalness and mixed axion-higgsino dark matter

Naturalness and mixed axion-higgsino dark matter Naturalness and mixed axion-higgsino dark matter Howard Baer University of Oklahoma UCLA DM meeting, Feb. 18, 2016 ADMX What is the connection? LZ The naturalness issue: Naturalness= no large unnatural

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

High Scale Inflation with Low Scale Susy Breaking

High Scale Inflation with Low Scale Susy Breaking High Scale Inflation with Low Scale Susy Breaking Joseph P. Conlon (DAMTP, Cambridge) Nottingham University, September 2007 High Scale Inflation with Low Scale Susy Breaking p. 1/3 Two paradigms: inflation...

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Intermediate scale supersymmetric inflation, matter and dark energy

Intermediate scale supersymmetric inflation, matter and dark energy Intermediate scale supersymmetric inflation, matter and dark energy G L Kane 1 and S F King 2 1 Randall Physics Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA 2 Department of Physics

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Mixed axion/lsp dark matter: a new paradigm

Mixed axion/lsp dark matter: a new paradigm Mixed axion/lsp dark matter: a new paradigm Howard Baer University of Oklahoma OUTLINE SUSY WIMPs: miracle or not? strong CP problem and PQWW solution the PQMSSM mixed axion/axino CDM mixed axion/neutralino

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

A short review of axion and axino parameters

A short review of axion and axino parameters A short review of axion and axino parameters Jihn E. Kim Seoul National University Gwangju Institute of Science and Technology Seattle, 25 April 2012 What can be there beyond SM? New CP? Axions? SUSY?

More information

Revisiting gravitino dark matter in thermal leptogenesis

Revisiting gravitino dark matter in thermal leptogenesis Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro

More information

Cosmological Relaxation of the Electroweak Scale

Cosmological Relaxation of the Electroweak Scale the Relaxion Cosmological Relaxation of the Electroweak Scale with P. Graham and D. E. Kaplan arxiv: 1504.07551 The Hierarchy Problem The Higgs mass in the standard model is sensitive to the ultraviolet.

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Inflation from supersymmetry breaking

Inflation from supersymmetry breaking Inflation from supersymmetry breaking I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, Sorbonne Université, CNRS Paris I. Antoniadis (Athens Mar 018) 1 / 0 In memory of Ioannis Bakas

More information

QCD axions with high scale inflation

QCD axions with high scale inflation QCD axions with high scale inflation Kiwoon Choi (COSMO 2014, Chicago) The IBS Center for Theoretical Physics of the Universe Outline * Introduction * Cosmological constraints on the QCD axion Before BICEP2

More information

arxiv: v3 [hep-ph] 11 Aug 2015

arxiv: v3 [hep-ph] 11 Aug 2015 HGU-CAP-037 EPHOU-15-0009 arxiv:1505.0194v3 [hep-ph] 11 Aug 015 Dilution of axion dark radiation by thermal inflation Hironori Hattori, Tatsuo Kobayashi, Naoya Omoto Department of Physics, Hokkaido University,

More information

Challenges for hybrid inflation : SUSY GUTs, n s & initial conditions

Challenges for hybrid inflation : SUSY GUTs, n s & initial conditions J. Stefan Institute, Ljubjana, May 8th 009 Challenges for hybrid inflation : SUSY GUTs, n s & initial conditions V(, Jonathan Rocher Brussels University Theory group Jeannerot, J.R., Sakellariadou PRD

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY) SM*A*S*H Standard Model * Axion * See-saw * Hidden PQ scalar inflation Andreas Ringwald (DESY) From the Vacuum to the Universe Kitzbühel, Austria 26 June 1 July 2016 [Guillermo Ballesteros, Javier Redondo,

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

arxiv: v1 [hep-ph] 12 Sep 2018

arxiv: v1 [hep-ph] 12 Sep 2018 WU-HE-18-11 arxiv:1809.04361v1 [hep-ph] 12 Sep 2018 Affleck-Dine baryogenesis in the SUSY DFSZ axion model without R-parity Kensuke Akita 1 and Hajime Otsuka 2 1 Department of hysics, Tokyo Institute of

More information

SaxiGUTs and their Predictions

SaxiGUTs and their Predictions SCIPP 16/05 SaxiGUTs and their Predictions arxiv:1603.04439v2 [hep-ph] 11 Oct 2016 Raymond T. Co 1,2, Francesco D Eramo 3,4 and Lawrence J. Hall 1,2 1 Berkeley Center for Theoretical Physics, Department

More information

Making Neutrinos Massive with an Axion in Supersymmetry

Making Neutrinos Massive with an Axion in Supersymmetry UCRHEP-T300 February 2001 arxiv:hep-ph/0102008v1 1 Feb 2001 Making Neutrinos Massive with an Axion in Supersymmetry Ernest Ma Physics Department, University of California, Riverside, California 92521 Abstract

More information

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector Masaki Asano (ICRR, Univ. of Tokyo) arxiv:08104601 Collaborator: Junji Hisano (ICRR), Takashi Okada (ICRR),

More information

Reheating and Supersymmetric Flat-Direction Baryogenesis

Reheating and Supersymmetric Flat-Direction Baryogenesis Alberta Thy-19-99, CERN-TH/99-39 hep-ph/00011 January 000 Reheating and Supersymmetric Flat-Direction Baryogenesis Rouzbeh Allahverdi, Bruce. A. Campbell Department of Physics, University of Alberta Edmonton,

More information

Gauge non-singlet (GNS) inflation in SUSY GUTs

Gauge non-singlet (GNS) inflation in SUSY GUTs Journal of Physics: Conference Series Gauge non-singlet (GNS) inflation in SUSY GUTs To cite this article: Jochen P Baumann 2010 J. Phys.: Conf. Ser. 259 012046 View the article online for updates and

More information

arxiv:hep-ph/ v2 8 Oct 1996

arxiv:hep-ph/ v2 8 Oct 1996 UM-AC-95-11 hep-ph/9512211 arxiv:hep-ph/9512211v2 8 Oct 1996 MODULI INFLATION WITH LARGE SCALE STRUCTURE PRODUCED BY TOPOLOGICAL DEFECTS Katherine Freese, Tony Gherghetta, and Hideyuki Umeda Physics Department,

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Abdus Salam & Physics Beyond the Standard Model

Abdus Salam & Physics Beyond the Standard Model Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Abdus Salam Memorial Meeting, Singapore. January 2016 1

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

3.5 kev X-ray line and Supersymmetry

3.5 kev X-ray line and Supersymmetry Miami-2014, Fort Lauderdale, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Bhaskar Dutta, Rizwan Khalid and Qaisar Shafi, JHEP 1411,

More information

Towards Matter Inflation in Heterotic Compactifications

Towards Matter Inflation in Heterotic Compactifications Towards in Heterotic Compactifications Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Cornell University September 2, 2011 Based on work with S. Antusch, K. Dutta, J. Erdmenger arxiv 1102.0093

More information

The Cosmological Moduli Problem and Non-thermal Histories of the Universe

The Cosmological Moduli Problem and Non-thermal Histories of the Universe The Cosmological Moduli Problem and Non-thermal Histories of the Universe Kuver Sinha Mitchell Institute for Fundamental Physics Texas A M University LEPP Seminar Cornell University Introduction Affleck-Dine

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

From HEP & inflation to the CMB and back

From HEP & inflation to the CMB and back ESF Exploratory Workshop, Porto March 8th, 008 From HEP & inflation to the CMB and back Jonathan Rocher ULB - Brussels V,ψ ψ 0 Introduction : Grand Unified Theories and Inflation Part A : Constraints on

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

arxiv:hep-ph/ v1 18 Jan 1996

arxiv:hep-ph/ v1 18 Jan 1996 MIT-CTP-2499 hep-ph/9601296 Supernatural Inflation arxiv:hep-ph/9601296v1 18 Jan 1996 Lisa Randall, Marin Soljačić, and Alan H. Guth Laboratory for Nuclear Science and Department of Physics Massachusettts

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

arxiv: v2 [hep-ph] 23 Jul 2014

arxiv: v2 [hep-ph] 23 Jul 2014 Baryogenesis from the Gauge-mediation type Q ball and the New type of Q ball as dark matter Shinta Kasuya a and Masahiro Kawasaki bc a Department of Mathematics and Physics Kanagawa University Kanagawa

More information

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi Inflation, Gravity Waves, and Dark Matter Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Feb 2015 University of Virginia Charlottesville, VA Units ћ =

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Cosmological Axion Problem in Chaotic Inflationary Universe

Cosmological Axion Problem in Chaotic Inflationary Universe ICRR-Report-374-96-25 UT-758 hep-ph/9608405 Cosmological Axion Problem in Chaotic Inflationary Universe S. Kasuya a, M. Kawasaki a and T. Yanagida b a Institute for Cosmic Ray Research, University of Tokyo,

More information

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University Non-Thermal Dark Matter rom Moduli Decay Bhaskar Dutta Texas A&M University Allahverdi, Dutta, Sinha, PRD87 (2013) 075024, PRDD86 (2012) 095016, PRD83 (2011) 083502, PRD82 (2010) 035004 Allahverdi, Dutta,

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

arxiv:astro-ph/ v4 5 Jun 2006

arxiv:astro-ph/ v4 5 Jun 2006 BA-06-12 Coleman-Weinberg Potential In Good Agreement With WMAP Q. Shafi and V. N. Şenoğuz Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Non-Thermal Dark Matter and the Moduli Problem in String Frameworks

Non-Thermal Dark Matter and the Moduli Problem in String Frameworks Syracuse University SURFACE Physics College of Arts and Sciences 4-12-2008 Non-Thermal Dark Matter and the Moduli Problem in String Frameworks Scott Watson Syracuse University Bobby Samir Acharya Syracuse

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Baryogenesis via mesino oscillations

Baryogenesis via mesino oscillations Baryogenesis via mesino oscillations AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON arxiv:1508.05392 The one minute summary 2 Mesino a bound state of colored scalar and quark Model analogous to Kaon system Mesinos

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

arxiv:hep-ph/ v1 28 Apr 2004

arxiv:hep-ph/ v1 28 Apr 2004 TU-717 hep-ph/0404253 April, 2004 arxiv:hep-ph/0404253v1 28 Apr 2004 Curvaton Scenario with Affleck-Dine Baryogenesis Maki Ikegami and Takeo Moroi Department of Physics, Tohoku University, Sendai 980-8578,

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

The Linear Collider and the Preposterous Universe

The Linear Collider and the Preposterous Universe The Linear Collider and the Preposterous Universe Sean Carroll, University of Chicago 5% Ordinary Matter 25% Dark Matter 70% Dark Energy Why do these components dominate our universe? Would an Apollonian

More information

A Review of Gravitational Waves from Cosmic Domain Walls

A Review of Gravitational Waves from Cosmic Domain Walls universe Review A Review of Gravitational Waves from Cosmic Domain Walls Ken ichi Saikawa Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany; kenichi.saikawa@desy.de Academic

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Axion-Like Particles from Strings. Andreas Ringwald (DESY) Axion-Like Particles from Strings. Andreas Ringwald (DESY) Origin of Mass 2014, Odense, Denmark, May 19-22, 2014 Hints for intermediate scale axion-like particles > Number of astro and cosmo hints pointing

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

L Breaking: (Dark) Matter & Gravitational Waves

L Breaking: (Dark) Matter & Gravitational Waves Cosmological B L Breaking: (Dark) Matter & Gravitational Waves Wilfried Buchmüller DESY, Hamburg with Valerie Domcke, Kai Schmitz & Kohei Kamada 202.6679; 203.0285, 2.45, 305.3392 GGI, Florence, June 203

More information

Neutrinos, GUTs, and the Early Universe

Neutrinos, GUTs, and the Early Universe Neutrinos, GUTs, and the Early Universe Department of Physics Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) What is nu...?, Invisibles 12, Smirnov Fest GGI, Florence June 26, 2012 Three challenges

More information

Formation of Primordial Black Holes in Double Inflation

Formation of Primordial Black Holes in Double Inflation Formation of Primordial Black Holes in Double Inflation Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo) Based on MK Mukaida Yanagida, arxiv:1605.04974 MK Kusenko Tada Yanagida arxiv:1606.07631

More information

Thermal production of gravitinos

Thermal production of gravitinos Thermal production of gravitinos Slava Rychkov Scuola Normale Superiore & INFN, Pisa Università di Padova April 5 2007 hep-ph/0701104 with Alessandro Strumia (to appear in PhysRevD) Outline Gravitino in

More information