Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Size: px
Start display at page:

Download "Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31"

Transcription

1 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics,

2 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The U(1) problem The strong CP problem 4 Solution: Axions With / without massless quarks Neutron dipole moment Introduction of the axion The axion as Goldstone boson The invisible axion 5 Conclusion

3 3 / 31 Introduction Instanton solutions create a new problem in QCD. A new symmetry is introduced, the axial U(1) PQ symmetry. This includes the introduction of a new dynamical pseudoscalar field and thus a particle, the axion a(x).

4 4 / 31 Formulae Mapping f : S 3 S 3 Winding number: n = 1 24π 2 dθ 1 dθ 2 dθ 3 tr ( ) ɛ ijk A i A j A k where A i = f 1 (x 0, x) i f (x 0, x) Consider L = 1 2g 2 tr (F µν F µν )

5 5 / 31 Formulae S E = d 4 xl should be finite s.t. for x : F µν (x) 0 and A µ (x) U 1 µ U. Instantons correspond to Us with nontrivial winding number! By comparison: d 4 x tr(f µν F µν ) = 1 2 d 4 x µ K µ with K µ = 4 3 ɛ µνλρtr [ (U + ν U)(U + λ U)(U + ρ U) ]

6 6 / 31 Formulae Thus: n = 1 16π 2 d 4 x tr (F µν µν F ) We have multiple vacua that are characterized by their winding number n. Instantons can be seen as the connection between vacuum states as they have winding numbers themselves. Consider G 1 n = n + 1, where G 1 is a gauge transformation of winding number 1.

7 Instantons - The θ-vacuum Transition amplitude: T = n e iht m J = [ [da] n m exp i ] (L + J A)d 4 x Semiclassically this leads to: [ ] T = exp [ S E ] exp 8π2 n g 2 7 / 31

8 8 / 31 Instantons - The θ-vacuum [G 1, H] = 0 because of the gauge invariance. Then: θ = n e inθ n s.t. G 1 θ = e iθ θ This θ-vacuum leads to an adequate formulation of the theory.

9 9 / 31 Instantons - The θ-vacuum Transition amplitude: T = θ e iht θ J = m,n e imθ e inθ m e iht n J = m,n e i(n m)θ e im(θ θ) [ [da] n m exp i ] (L + J A)d 4 x Result: L eff = L + θ ( 32π 2 tr F µν µν F )

10 10 / 31 The U(1) problem For two quark flavours and the chiral limit m u,d 0 the Lagrangian possesses the symmetry: SU(2) L SU(2) R U(1) V U(1) A - SU(2) L SU(2) R being the chiral symmetry - U(1) V leading to baryon number conservation via the current J B µ = uγ µ u + dγ µ d - U(1) A leading to a current J 5 µ = uγ µ γ 5 u + dγ µ γ 5 d

11 11 / 31 The U(1) problem An invisible axial symmetry means that it should be broken. Thus we expect a Goldstone boson. But: There is no fourth pion except the η which is much too heavy to be a Goldstone boson. This is the U(1) or η-mass problem. Solution: The instantons can break U(1) without leading to a Goldstone boson.

12 12 / 31 The strong CP problem The instanton solution to the U(1) problem generates a new problem, namely the strong CP problem. The θ-term in the effective Lagrangian violates P. Experimentally: no CP violation in the strong interaction has been found. Comparison experiment vs. theory: θ < 10 9 So why should there be such a strong bound on θ?

13 13 / 31 With massless quarks Remember: L eff = L + ( ) θ tr F µν F µν 32π 2 Consider an axial U(1)-transformation on the quark fields: Axial current: q e iαγ 5 q j 5 µ = q qγ µ γ 5 q = q [q R γ µ q R q L γ µ q L ] Yielding to µ j 5 µ = N f g 2 16π 2 tr ( F µν F µν ) with N f being the number of massless quarks.

14 With massless quarks Thus, for α = θ 2N f the θ-term of the effective Lagrangian can be removed. Therefore, in the massless quark case θ would be unphysical. 14 / 31

15 15 / 31 Without massless quarks Massive case: mqq mqe 2iαγ 5 q = m cos (2α)qq im sin (2α)qγ 5 q The second part clearly violates P and T invariance and the mass term for quarks can be written in the following way: L m = q Li M ij q Rj + q Ri M + ij q Lj Under U(1), M no longer is hermitean: M e 2iα M and M + e 2iα M +

16 16 / 31 Without massless quarks Thus: arg det M arg det M + 2αN Define θ = θ + 2αN as it is the quantity which is invariant under the transformation. θ still has to be zero to be CP non-violating.

17 17 / 31 Neutron dipole moment In L, there is a contribution to the neutron dipole moment coming from the following graphs:

18 18 / 31 Neutron dipole moment Pion nucleon interaction: L πnn = g θ πnn Nτ a Nπ a Experiment: d n < e cm Calculation: d n = θ e cm Therefore: θ <

19 19 / 31 Introduction of the axion Solution proposed by Peccei and Quinn in 1977: make θ a dynamical field. Later on, a new pseudoscalar boson, the axion a(x), was added by Weinberg. Choose θ = a/f a with f a being the axion decay constant. + i L = 1 4g 2 tr (F µνf µν ) µa µ a+ q i (i/d m i )q i + a ( 32π 2 tr F µν F ) µν + θ ( f a 32π 2 tr µν F µν F )

20 20 / 31 Introduction of the axion Still to be shown: θ = 0 The θ vaccum is proportional to (1 cos θ). Thus θ = 0 would be the correct vacuum. Integrating out the effect of quarks and gluons in Euclidean space yields to: d 4 xv [0] d 4 xv [a] There must be a minimum at a = 0 or θ = 0 Thus the choice of θ = 0 is justified.

21 21 / 31 The axion as Goldstone boson Notation: - Q f L = (u f L, d f L ) are the SU(2) doublets - U f R, D f R denote the SU(2) singlets - ϕ is the doublet of the Higgs scalar fields and f labels the generations. The mass term comes from: with ψ = iτ 2 ϕ. L Y = Q f L X fg ϕd gr + Q f L Y fg ψu gr + h.c.

22 22 / 31 The axion as Goldstone boson 0 ϕ 0 = 1 2 ( 0 v 1 e iδ 1 0 ψ 0 = 1 2 ( v2 e iδ 2 0 ) for down-like quarks ) for up-like quarks Conditions in the SM: v 1 = v 2 and δ 1 = δ 2 ( ) ( ) 1 det M = det 2 v 1 e iδ 1 1 X det 2 v 2 e iδ 2 Y = e 3i(δ 1+δ 2 ) 1 8 (v 1v 2 ) 3 det (XY )

23 23 / 31 The axion as Goldstone boson Thus, we extend the SM and define two independent scalar doublets ϕ and ψ and get: θ θ + arg det M = 0 arg det M = 3(δ 1 + δ 2 ) + arg det(xy ) This is exactly what we needed. To still ensure the symmetry, suppose: ϕ e iαγ 1 ϕ, ψ e iαγ 2 ψ where Γ 1, Γ 2 are the Peccei-Quinn charges of ϕ, ψ

24 24 / 31 The axion as Goldstone boson Further transformations: Q L e iαγ Q, U L e iαγu, D L e iαγ d Invariance of L Y is given if: Γ 1 + Γ d = Γ Q, Γ 2 + Γ u = Γ Q, meaning Γ 1 + Γ 2 = 2Γ Q Γ u Γ d 0 For ϕ and ψ acquiring the former vevs, the SSB yields a Goldstone boson which is associated with the phase angle of these fields.

25 25 / 31 The axion as Goldstone boson Look at the neutral components of the scalar doublets: ϕ 0 = 1 2 (v 1 + ρ 1 (x)) e iθ 1(x)/v 1 ψ 0 = 1 2 (v 2 + ρ 2 (x)) e iθ 2(x)/v 2 Thus a(x) = [v 2 θ 1 (x) + v 1 θ 2 (x)] /v where v ( v v 2 2 ) 1/2

26 26 / 31 The axion as Goldstone boson The orthogonal second combination gets eaten and generates the Z-boson mass: χ(x) = [ v 1 θ 1 (x) + v 2 θ 2 (x)] /v This finally yields to the axion-quark Yukawa coupling: L a,q Y = ia(x) [ v2 m d dγ 5 d + v ] 1 m u uγ 5 u v v 1 v 2

27 27 / 31 The axion as Goldstone boson v 246 GeV from weak interaction data Axion mass: m a = ( v1 + v ) 2 74 kev v 2 v 1 Although many experiments tried to find this axion it was not found in any reaction so far. But this is not the end of the story.

28 28 / 31 The invisible axion Two models: i) There is the heavy quark theory. (KSVZ axion) ii) The PQ symmetry breaking scale can be separated from the electroweak breaking scale. (DFSZ axion) Breaking scale: 10 9 GeV f PQ GeV This yield to invisibility.

29 29 / 31 The invisible axion Possible decay processes: For m a > 2 m e : For m a < 2 m e : m a e e + m a γ γ This is a possible detection method.

30 30 / 31 Conclusion The axion is a very promising idea to solve the strong CP-violation problem. Even if it has not been detected this does not mean that it cannot exist as an invisible axion. Could be a candidate for the dark matter in the universe. Further experiments are conducted. e.g. the CAST-experiment at CERN is searching for solar axions.

31 31 / 31 Literature T. Cheng and L. Li: Gauge Theory of elementary particle physics (1988) J.E. Kim: Phys. Rep (1987) D. Bailin and A. Love: Introduction to Gauge Field Theory (1993) D. Bailin and A. Love: Cosmology in Gauge Field Theory and String Theory (2004) S. Coleman: Aspects of Symmetry: Selected Erice Lectures of Sidney Coleman (1985) S. Weinberg, Phys. Rev. Lett. 40, 223 (1978) F. Wilczek, Phys. Rev. Lett. 40, 279 (1978) R. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D16, 279 (1978) J. E. Kim, Phys. Rev. Lett. 43, 103 (1979)

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Two models with extra Higgs doublets and Axions

Two models with extra Higgs doublets and Axions Two models with extra Higgs doublets and Axions H Serôdio (KAIST) 4 th KIAS Workshop Particle Physics and Cosmology, 30 October 2014 In collaboration with: Alejandro Celis, Javier Fuentes-Martin Works:

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Making Neutrinos Massive with an Axion in Supersymmetry

Making Neutrinos Massive with an Axion in Supersymmetry UCRHEP-T300 February 2001 arxiv:hep-ph/0102008v1 1 Feb 2001 Making Neutrinos Massive with an Axion in Supersymmetry Ernest Ma Physics Department, University of California, Riverside, California 92521 Abstract

More information

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Symposium on Advances in Semi-Classical Methods in Mathematics and Physics Groningen, NL, 19-21 October 2016 Topological Theta Term and Strong

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

A short review of axion and axino parameters

A short review of axion and axino parameters A short review of axion and axino parameters Jihn E. Kim Seoul National University Gwangju Institute of Science and Technology Seattle, 25 April 2012 What can be there beyond SM? New CP? Axions? SUSY?

More information

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18 The θ term In particle physics and condensed matter physics Anna Hallin 601:SSP, Rutgers 2017 Anna Hallin The θ term 601:SSP, Rutgers 2017 1 / 18 1 Preliminaries 2 The θ term in general 3 The θ term in

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Production and evolution of axion dark matter in the early universe

Production and evolution of axion dark matter in the early universe Production and evolution of axion dark matter in the early universe 24 12 Abstract Axion is a hypothetical particle introduced as a solution of the strong CP problem of quantum chromodynamics (QCD). Various

More information

CP Symmetry Breaking, or the Lack of It, in the Strong Interactions

CP Symmetry Breaking, or the Lack of It, in the Strong Interactions SLAC PUB 10698 Corrected Version October 2004 CP Symmetry Breaking, or the Lack of It, in the Strong Interactions Helen R. Quinn Stanford Linear Accelerator Center Stanford University, Stanford, California

More information

A Two Higgs Doublet Model for the Top Quark

A Two Higgs Doublet Model for the Top Quark UR 1446 November 1995 A Two Higgs Doublet Model for the Top Quark Ashok Das and Chung Kao 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA Abstract A two Higgs doublet

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Axions and other (Super-)WISPs

Axions and other (Super-)WISPs Axions and other (Super-)WISPs Markus Ahlers 1,2 1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 2 Now at the C.N. Yang Institute for Theoretical Physics, SUNY,

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

(Mainly centered on theory developments)

(Mainly centered on theory developments) (Mainly centered on theory developments) QCD axion Among energy pie, I will discuss axion in this part. Quintessential axion From a fundamental point of view, i.e. when mass scale is created, presumably

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni Axion and axion-like particle searches in LUX and LZ Maria Francesca Marzioni PPE All Group meeting 06/06/2016 Outline Why are we interested in axions How can we detect axions with a xenon TPC Axion signal

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

A model of heavy QCD axion

A model of heavy QCD axion A model of heavy QCD axion Masahiro Ibe (ICRR, Kavli-IPMU) Beyond the Standard Model in Okinawa 2016 2016/3/7 with H. Fukuda (IPMU), K. Harigaya(UC Berkeley), T.T.Yanagida (IPMU) Phy.Rev.D92(2015),1,015021

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Grand unification and heavy axion

Grand unification and heavy axion Grand unification and heavy axion V. A. Rubakov arxiv:hep-ph/9703409v2 7 May 1997 Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312

More information

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Axion-Like Particles from Strings. Andreas Ringwald (DESY) Axion-Like Particles from Strings. Andreas Ringwald (DESY) Origin of Mass 2014, Odense, Denmark, May 19-22, 2014 Hints for intermediate scale axion-like particles > Number of astro and cosmo hints pointing

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

The Affleck Dine Seiberg superpotential

The Affleck Dine Seiberg superpotential The Affleck Dine Seiberg superpotential SUSY QCD Symmetry SUN) with F flavors where F < N SUN) SUF ) SUF ) U1) U1) R Φ, Q 1 1 F N F Φ, Q 1-1 F N F Recall that the auxiliary D a fields: D a = gφ jn T a

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11

Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11 Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11 Outline Introduction to Higgs & Motivations for an Extended Higgs Sector Two-Higgs Doublet Model (2HDM)

More information

QCD, STRONG CP AND AXIONS

QCD, STRONG CP AND AXIONS QCD, STRONG CP AND AXIONS R. D. Peccei Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095-1547 The physical origin of the strong CP problem in QCD, rooted in the structures

More information

The QCD Axion. Giovanni Villadoro

The QCD Axion. Giovanni Villadoro The QCD Axion Giovanni Villadoro the strong CP problem The Strong CP problem The Strong CP problem neutron EDM Pendlebury et al. '15 The Strong CP problem neutron EDM Pendlebury et al. '15 The Strong CP

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

arxiv:astro-ph/ v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS

arxiv:astro-ph/ v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS International Journal of Modern Physics A c World Scientific Publishing Company arxiv:astro-ph/0504636v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS MAURIZIO GIANNOTTI Dipartimento

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

The CP Puzzle in the Strong Interactions

The CP Puzzle in the Strong Interactions SLAC PUB 8964 October 2001 The CP Puzzle in the Strong Interactions Helen Quinn Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 E-mail: quinn@slac.stanford.edu Abstract

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

arxiv:hep-ph/ v1 24 Jul 2006

arxiv:hep-ph/ v1 24 Jul 2006 The Strong CP Problem and Axions R.D. Peccei arxiv:hep-ph/0607268v1 24 Jul 2006 Department of Physics and Astronomy, UCLA, Los Angeles, California, 90095 peccei@physics.ucla.edu Summary. I describe how

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

The Supersymmetric Axion and Cosmology

The Supersymmetric Axion and Cosmology The Supersymmetric Axion and Cosmology arxiv:hep-ph/0307252v3 31 Jul 2003 A. Yu. Anisimov Institute of Theoretical and Experimental Physics, Moscow Abstract In this lecture 1 we review several cosmological

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Theory and Phenomenology of CP Violation

Theory and Phenomenology of CP Violation Theory and Phenomenology of CP Violation Thomas Mannel a a Theretische Physik I, University of Siegen, 57068 Siegen, Germany In this talk I summarize a few peculiar features of CP violation in the Standard

More information

arxiv:hep-ph/ v1 31 Jan 2003

arxiv:hep-ph/ v1 31 Jan 2003 UT-03-05 Warped QCD without the Strong CP Problem arxiv:hep-ph/0301273v1 31 Jan 2003 Akito Fukunaga and Izawa K.-I. Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract QCD in a five-dimensional

More information

Group Structure of Spontaneously Broken Gauge Theories

Group Structure of Spontaneously Broken Gauge Theories Group Structure of SpontaneouslyBroken Gauge Theories p. 1/25 Group Structure of Spontaneously Broken Gauge Theories Laura Daniel ldaniel@ucsc.edu Physics Department University of California, Santa Cruz

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

Symmetry breaking: Pion as a Nambu-Goldstone boson

Symmetry breaking: Pion as a Nambu-Goldstone boson Symmetry breaking: Pion as a Nambu-Goldstone boson Stefan Kölling Universität Bonn Seminar zur theoretischen Teilchenphysik, 20.04.06 Structure 1 General theory of sponatneous symmetry breaking What it

More information

Oblique corrections in the Dine-Fischler-Srednicki axion model

Oblique corrections in the Dine-Fischler-Srednicki axion model EPJ Web of Conferences 16, 44 16 DOI: 1.151/ epjconf/161644 ICNFP 15 Oblique corrections in the Dine-Fischler-Srednicki axion model Alisa Katanaeva 1,a and Domènec Espriu 1 V. A. Fock Department of Theoretical

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Development of a hadronic model: general considerations. Francesco Giacosa

Development of a hadronic model: general considerations. Francesco Giacosa Development of a hadronic model: general considerations Objectives Development of a chirallysymmetric model for mesons and baryons including (axial-)vector d.o.f. Extended Linear Sigma Model (elsm) Study

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

( ) 2 = #$ 2 % 2 + #$% 3 + # 4 % 4

( ) 2 = #$ 2 % 2 + #$% 3 + # 4 % 4 PC 477 The Early Universe Lectures 9 & 0 One is forced to make a choice of vacuum, and the resulting phenomena is known as spontaneous symmetry breaking (SSB.. Discrete Goldstone Model L =! µ"! µ " # V

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Gauge Symmetry in QED

Gauge Symmetry in QED Gauge Symmetry in QED The Lagrangian density for the free e.m. field is L em = 1 4 F µνf µν where F µν is the field strength tensor F µν = µ A ν ν A µ = Thus L em = 1 (E B ) 0 E x E y E z E x 0 B z B y

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Back to Gauge Symmetry. The Standard Model of Par0cle Physics

Back to Gauge Symmetry. The Standard Model of Par0cle Physics Back to Gauge Symmetry The Standard Model of Par0cle Physics Laws of physics are phase invariant. Probability: P = ψ ( r,t) 2 = ψ * ( r,t)ψ ( r,t) Unitary scalar transformation: U( r,t) = e iaf ( r,t)

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Majoron as the QCD axion in a radiative seesaw model

Majoron as the QCD axion in a radiative seesaw model Majoron as the QCD axion in a radiative seesaw model 1 2 How to explain small neutrino mass ex) Type I Seesaw Heavy right-hand neutrino is added. After integrating out, neutrino Majorana mass is created.

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Conformal Standard Model

Conformal Standard Model K.A. Meissner, Conformal Standard Model p. 1/13 Conformal Standard Model Krzysztof A. Meissner University of Warsaw AEI Potsdam HermannFest, AEI, 6.09.2012 K.A. Meissner, Conformal Standard Model p. 2/13

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

arxiv:hep-ph/ v2 30 Nov 2000

arxiv:hep-ph/ v2 30 Nov 2000 hep-th/0011376 SCIPP-00/30 TASI Lectures on The Strong CP Problem arxiv:hep-ph/0011376v2 30 Nov 2000 Michael Dine Santa Cruz Institute for Particle Physics, Santa Cruz CA 95064 Abstract These lectures

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Origin and Status of INSTANTONS

Origin and Status of INSTANTONS Utrecht University Origin and Status of INSTANTONS Gerard t Hooft, Spinoza Institute. Erice 2013 The pre-qcd age (before 1971) d s u J PC = 0 + K o K + K* o K* + π η π o η π + ρ ω ρ o ϕ ρ + K K o K* J

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Symmetries in Effective Field Theory

Symmetries in Effective Field Theory Symmetries in Effective Field Theory Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February 4 March, 2016 Outline Outline Symmetries in EFTs Softly broken symmetries

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

UV Completions of Composite Higgs Models with Partial Compositeness

UV Completions of Composite Higgs Models with Partial Compositeness UV Completions of Composite Higgs Models with Partial Compositeness Marco Serone, SISSA, Trieste Based on 1211.7290, in collaboration with Francesco Caracciolo and Alberto Parolini and work in progress

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information