j j ( ϕ j ) p (dd c ϕ j ) n < (dd c ϕ j ) n <.

Size: px
Start display at page:

Download "j j ( ϕ j ) p (dd c ϕ j ) n < (dd c ϕ j ) n <."

Transcription

1 ÆÆÄË ÈÇÄÇÆÁÁ ÅÌÀÅÌÁÁ ½º¾ ¾¼¼µ ÓÒÖÒÒ Ø ÒÖÝ Ð E p ÓÖ 0 < p < 1 Ý ÈÖ ËÙÒ ÚÐе Ê ÞÝ ÃÖÛµ Ò È º Ñ ÀÓÒ À º Ô ÀÒÓµ ØÖغ Ì ÒÖÝ Ð E p ØÙ ÓÖ 0 < p < 1º ÖØÖÞØÓÒ Ó Ö¹ ØÒ ÓÙÒ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ Ò ØÖÑ Ó F p Ò Ø ÔÐÙÖÓÑÔÐÜ p¹òöý ÔÖÓÚº ½º ÁÒØÖÓÙØÓÒº ÄØ C n ÓÙÒ ÝÔÖÓÒÚÜ ÓÑÒ ºº ØÖ Ü Ø ÓÙÒ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ ϕ : (, 0) Ù ØØ Ø ÐÓ ÙÖ Ó Ø Ø {z : ϕ(z) < c} ÓÑÔØ Ò ÓÖ ÚÖÝ c (, 0)º ÁÒ Ø ÖØÐ ÓÙÖ Ð Ó Ø Ø ÙÒØÓÒ ÛÐÐ Ø ÓÒÚÜ ÓÒ E 0 (= E 0 ()) ÓÒ ØÒ Ó ÐÐ ÓÙÒ ÔÐÙÖ ÙÖÑÓÒ Ì ÙÒØÓÒ ϕ Ò ÓÒ Ù ØØ lim z ξ ϕ(z) = 0 ÓÖ ÚÖÝ ξ Ò (ddc ϕ) n < ÛÖ (dd c ) n Ø ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖº ÙÑ ØØ u ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ Ò ÓÒ Ò [ϕ j ] ϕ j E 0 Ö Ò ÕÙÒ Û ÓÒÚÖ ÔÓÒØÛ ØÓ u ÓÒ j º Á ØÖ Ò ÒÓ Ñ ÒØÖÔÖØØÓÒ ÕÙÒ [ ] ÛÐÐ ÒÓØ Ý [ ]º ÓÖ p > 0 Ü ÓÒ Ö Ø ÓÐÐÓÛÒ ÖØÓÒ ½µ sup j ¾µ sup j ( ϕ j ) p (dd c ϕ j ) n < (dd c ϕ j ) n <. Á Ø ÕÙÒ [ϕ j ] Ò Ó Ò Ù ØØ (1) ÓÐ ØÒ Û Ý ØØ u ÐÓÒ ØÓ E p Ò (2) ÓÐ ØÒ u ÐÓÒ ØÓ Fº ÒÐÐÝ ÓØ (1) Ò (2) Ö Ø ØÒ u F p º ÓÖ p = 0 Û Ý Ý ÓÒÚÒØÓÒ ØØ u Fº Ì ÒÖÝ Ð F p Ò E p Ö ØÛÓ Ó Ø Ó ÐÐ ÖÐÐ Ð º ÓÖ p 1 Ø Ð F p Ò E p ÛÖ ÒØÖÓÙ Ò ÜØÒ ÚÐÝ ØÙ Ò Ò Ö Û ÛÐÐ ØÙÝ ØÑ ÓÖ 0 < p < 1º ÓÖ ÙÖØÖ ÒÓÖÑØÓÒ ÓÙØ Ø ÖÐÐ Ð ºº Ò Ø ÖÖÒ ØÖÒº ÁØ ÓÐÐÓÛ ÖÓÑ ¾¼¼¼ ÅØÑØ ËÙØ Ð ØÓÒ ÈÖÑÖÝ ¾Í½ ËÓÒÖÝ ¾Ï¾¼º ÃÝ ÛÓÖ Ò ÔÖ ÖÐÐ Ð ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖ ÖÐØ ÔÖÓÐÑ ÔÐÙÖÓÑÔÐÜ ÒÖÝ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ º ½½ ÁÒ ØÝØÙØ ÅØÑØÝÞÒÝ ÈÆ ¾¼¼

2 ½¾¼ Ⱥ Ø Ðº ØØ ÒÝ ÙÒØÓÒ Ò E p Ò E Ò Ò Ý Ø ÓÔÖØÓÖ (dd c ) n ÛÐÐ Ò ÓÒ E p p 0 ÓÖ Ø ÒØÓÒ Ó Eµº ÆÓÛ ÐØ e p (u) Ò Ý e p (u) = ( u) p (dd c u) n ÓÖ p > 0º Ì ÒØÖÐ e p (u) Ø ÔÐÙÖÓÑÔÐÜ Ô¹ÒÖÝ Ó Ø ÙÒØÓÒ uº Ò ½½ Ø ÔÐÙÖÓÑÔÐÜ p¹òöý ÛÐÐ Ù ØÓ ØÙÝ E p º ÁÒ ½½ ÈÖ ÓÒ ÔÖÓÚ ØØ p 1 Ò u 0, u 1,...,u n E 0 ØÒ ( u 0 ) p dd c u 1 dd c u n D n,p e p (u 0 ) p/(p+n) e p (u 1 ) 1/(p+n) e p (u n ) 1/(p+n) Ð Ó µ ÛÖ D n,p ÓÒ ØÒØ ÔÒÒ ÓÒÐÝ ÓÒ n Ò pº Ì ÀÐÖ ØÝÔ ÒÕÙÐØÝ ÙÒÑÒØÐ ØÓÓÐ Ò º ÁÒ ËØÓÒ ¾ Û ÛÐÐ ÜØÒ Ø ØÑØ ØÓ p > 0 ÖØ ÓÒ ÕÙÒ Ø ÓÐÐÓÛ ØØ F p Ò E p Ö ÓÒÚÜ ÓÒ ÓÖÓÐÐÖÝ ¾ºµº Ì Ñ Ó Ø ÖØÐ ØÓ ÔÖÓÚ Ø ÓÐÐÓÛÒ ÖØÖÞØÓÒ Ó Ø ÖÐØ ÔÖÓÐÑ ÄØ n 1 p > 0 Ò µ ÒÓÒ¹ÒØÚ Ñ ÙÖ ÒÓØ Ò ÖÐÝ Ó ÒØ ØÓØÐ Ñ µº ÌÒ ØÖ Ü Ø ÙÒÕÙ ÙÒØÓÒ u E p Ù ØØ (dd c u) n = µ Ò ÓÒÐÝ ØÖ Ü Ø ÓÒ ØÒØ A > 0 Ù ØØ ( ϕ) p dµ Ae p (ϕ) p/(n+p) ÓÖ ÚÖÝ ϕ E 0 ÌÓÖÑ ºµº ÓÖ p 1 Ø Û ÔÖÓÚ Ò º ÖÐØ ÖÐØ ÔÖÓÐÑ ÓÖ Ø p = 0 Û ÓÒ Ö Ò º ÁÒ ËØÓÒ Û ÛÐÐ ÔÖÓÚ Ò ÔÔÐØÓÒ Ó Ø ÖÑÛÓÖ ÒÙ Ý Ø ÒÖÝ Ð ØØ u E 0 Ò ÓÒÐÝ ½µ u F p ÓÖ ÚÖÝ p 0 ¾µ lim u(z) = 0 ÓÖ ÚÖÝ ξ z ξ µ supe p (u) 1/p < º p>0 Ï Ò Ø ÖØÐ Ý ÓÒ ØÖÙØÒ ØÛÓ ÜÑÔÐ Û ÑÓØÚØ Ø Ö¹ ØÖÞØÓÒº Ì ÙØÓÖ ÛÓÙÐ Ð ØÓ ØÒ ÍÖÒ ÖÐÐ ÆÙÝÒ ÎÒ Ã٠˹ ÛÓÑÖ ÃÓÓÞ Ò Ñ Ö ÓÖ ÚÐÙÐ ÐÔ ÛØ Ø ÑÒÙ ÖÔغ ¾º ÀÐÖ ØÝÔ ÒÕÙÐØݺ Ï ÛÐÐ ÔÖÓ Ò ½½ Ý Ù Ò ÄÑÑ ¾º½ ÐÓÛ ÓÙÒØÖÔÖØ Ó ÄÑÑ º½ Ò ½½ º ÄÑÑ ¾º½º ÄØ u, v PSH() L () lim z ξ u(z) =lim z ξ v(z) =0 ÓÖ ÚÖÝ ξ Ò T ÔÓ ØÚ ÐÓ ÙÖÖÒØ Ó Ö (n 1, n 1)º

3 ÒÖÝ Ð E p ÓÖ 0 < p < 1 ½¾½ ÓÖ 0 < p < 1 ( u) p dd c v T p 1 1 p ( ( u) p dd c u T ) ( p ) 1 p+1 ( v) p dd c p+1 v T. ÈÖÓÓº ÄØ 0 < p < 1 Ò w = ( v) p º ÌÒ w PSH() L () Ò lim z ξ w(z) = 0 ÓÖ ÚÖÝ ξ º Ï Ú (2.1) ( u) p dd c v T = = 1 p 1 p 1 p p 2 ÀÐÖ³ ÒÕÙÐØÝ ÝÐ ¾º¾µ ( u) p (dd c ( w) 1/p ) T ( u) p ( w) 1/p 1 dd c ( w) T ( u) p dd c v T 1 p ( u) p ( w) 1/p 2 d( w) d c ( w) T ( u) p ( w) 1/p 1 dd c w T = 1 p = 1 p = 1 p [ [ [ ( u)dd c w T ( w)dd c u T ( v) p dd c u T ] p [ ] p [ ] p [ Ý ÓÑÒÒ ÒÕÙÐØ ¾º½µ Ò ¾º¾µ Û Ø ( u) p dd c v T 1 p [ [ p 1+p 1 ( v) p dd c u T [ ] p [ ( u) p dd c v T ( v) p dd c v T] 1 p. ÌÙ Ø Ö ÒÕÙÐØÝ Úº ( u) p ( v) 1 p dd c w T. ( v)dd c w T ( w)dd c v T ] 1 p ] 1 p ( v) p dd c v T] 1 p. ( v) p dd c v T ] p 2[ ] 1 p ( u) p dd c u T ] p(1 p) ÌÓÖÑ ¾º¾º ÄØ u 0, u 1,...,u n E 0 Ò p > 0º ÙÑ ØØ X ÒÓÒ¹ÑÔØÝ Ø n 1 Ò ÒØÖ Ò ØØ F : X n+1 R ÙÒØÓÒ Û ÝÑÑØÖ Ò Ø Ð Ø n ÚÖÐ º Á ØÖ Ü Ø ÓÒ ØÒØ C > 0 Ù ØØ F(u 0, u 1,...,u n ) CF(u 0, u 0, u 2,...,u n ) p+1f(u p 1, u 1, u 2,...,u n ) p+1, 1

4 ½¾¾ Ⱥ Ø Ðº ØÒ F(u 0, u 1,...,u n ) C α(n,p) F(u 0,...,u 0 ) p p+1f(u 1,...,u 1 ) 1 p+1 F(u n,...,u n ) 1 p+1, ÛÖ α(n, p) ÚÒ Ý α(1, p) = 1, α(n, p) = α(n 1, p) + ( (p + 1)(p + n 1) 1 + p(p + n) ÅÓÖÓÚÖ C 1 ØÒ ( ) p + 1 n 1 α(n, p) = (p + 2) (p + 1). p ÈÖÓÓº º ÌÓÖÑ º½ Ò ½½ º ) α(n 1, p). p + 1 ÄØ p > 0º Ì ÑÙØÙÐ ÔÐÙÖÓÑÔÐÜ Ô¹ÒÖÝ (u 0,...,u n ) p Ò Ý (u 0,...,u n ) p = ( u 0 ) p dd c u 1 dd c u n. ÓÖ p 1 ÌÓÖÑ ¾º ÐÓÛ Û ÔÖÓÚ Ò ½½ º Á p = 0 ØÒ ¾º µ Ò ÒØÖÔÖØ ÓÖÓÐÐÖÝ º Ò º ÌÓÖÑ ¾º º ÄØ p > 0 Ò u 0, u 1,...,u n E 0 º ÌÒ ¾º µ (u 0,..., u n ) p D n,p e p (u 0 ) p/(p+n) e p (u 1 ) 1/(p+n) e p (u n ) 1/(p+n), ÛÖ p α(n,p)/(1 p) 0 < p < 1, D n,p = 1 p = 1, p pα(n,p)/(p 1) p > 1, Ò α(n, p) = (p + 2) ( p+1) n 1 p (p + 1)º ÈÖÓÓº ÄØ 0 < p < 1 Ò (u 0, u 1,...,u n ) p = F(u 0, u 1,...,u n ) Ò ÌÓ¹ ÖÑ ¾º¾º Ì ÔÖÓÓ ØÒ ÓÐÐÓÛ ÖÓÑ ÄÑÑ ¾º½ Ò ÌÓÖÑ ¾º¾º ÓÖÓÐÐÖÝ ¾ºº ÓÖ ÒÝ p 0 Ø Ð F p Ò E p Ö ÓÒÚÜ ÓÒ º ÈÖÓÓº Ì ÓÐÐÓÛ Ò Ý Ù Ò ÌÓÖÑ ¾º º Á q > p > 0 ØÒ F q F p Ý ÀÐÖ³ ÒÕÙÐØݺ Ï ÛÐÐ Ò Ø ØÓÒ Ý ÜÔÐÒÒ ÛÝ ÑÐÖ Ö ÙÐØ ÓÖ E p ÒÓØ ÔÓ Ðº ÄØ q > p > 0 ܺ ÌÒ Ø ÓÐÐÓÛ ÖÓÑ ÜÑÔÐ ¾º Ò ØØ E p \ E q ÒÓÒ¹ÑÔØݺ ÜÑÔÐ ¾º ÐÓÛ ÓÛ ØØ E q \ E p ÒÓÒ¹ÑÔØÝ ÛÐк Ö Ø ÒÓØ ØØ u 1,...,u k E 0 ØÒ k ¾ºµ e p (u u k ) e p (u j ).

5 ÒÖÝ Ð E p ÓÖ 0 < p < 1 ½¾ Ï ÛÐÐ Ð Ó Ò Ø ÓÐÐÓÛÒ ÐÑѺ ÄÑÑ ¾ºº ÄØ p>0 Ò u, v E 0 º ÌÒ e p (u+v) e p (u) e p (v) 0º ÈÖÓÓº ÄØ 0 < p < 1º ÀÐÖ³ ÒÕÙÐØÝ ØÓØÖ ÛØ ¾º µ Ò Ø Ø ØØ ( u v) p ( u) p + ( v) p ÝÐ n ¾ºµ e p (u) e p (u + v) e p (u) + C e p (u) p+ne j p (v) p+n j p+n Ò Ø 0 < p < 1 ÔÖÓÚº ÙÑ ÒÓÛ ØØ p 1º Í Ò ÅÒÓÛ ³ ÒÕÙÐØÝ Û Ø ¾ºµ e p (u + v) 1/p ÑÔÐÓÝÒ ¾º µ ØÓ ØÑØ Ò j=0 [ ( u) p (dd c (u + v)) n] 1/p [ + ( u) p (dd c u) n j (dd c v) j ( v) p (dd c u) n j (dd c v) j ØÓØÖ ÛØ ¾ºµ ÓÑÔÐØ Ø ÔÖÓÓº ( v) p (dd c (u + v)) n] 1/p. ÓÖ j = 1,...,n ÓÖ j = 0,...,n ÊÑÖº ÁØ ÓÐÐÓÛ ÖÓÑ Ø ØÑØ ¾ºµ Ò ÜÑÔÐ º½½ Ò ØØ ( p>0 E p) \ F º ÜÑÔÐ ¾ºº ÄØ q > p > 0 Ò g = g(z, z 0 ) Ø ÔÐÙÖÓÑÔÐÜ ÖÒ ÙÒØÓÒ ÛØ ÔÓÐ z 0 º Ò v j = j p max(g, 1/j p+n ) E 0 º ÌÒ e p (v j ) = (2π) n Ò e q (v j ) = (2π) n j n(p q) Ò lim j e q (v j ) = 0º ÌÖÓÖ ÄÑÑ ¾º ÑÔÐ ØØ ØÖ Ü Ø ÒØÖ s j Ù ØØ Ø Ö Ò ÕÙÒ Ò Ý u k = v s1 + + v sk ÓÒÚÖ ÔÓÒØÛ ØÓ ÙÒØÓÒ u E q º ÁÒÕÙÐØÝ ¾ºµ ÑÔÐ ØØ e p (u k ) k(2π) n º ÌÙ u / E p º º Ì ÖÐØ ÔÖÓÐÑ ÄÑÑ º½º ÄØ p 0 Ò K {F p, E p }º Á u K Ò v PSH() v 0 ØÒ max(u, v) Kº ÈÖÓÓº ÓÖ Ø p = 0 º Ò ÓÖ Ø p 1 º ÄØ 0 < p < 1 Ò u E p º ÌÒ Ý ÒØÓÒ ØÖ Ü Ø Ö Ò ÕÙÒ [u j ] u j E 0 Û ÓÒÚÖ ÔÓÒØÛ ØÓ u j Ò sup j e p (u j ) < º ËØ w j = max(u j, v)º ÌÒ [w j ] w j E 0 Ö Ò ÕÙÒ Û ÓÒÚÖ ÔÓÒØÛ ØÓ max(u, v) j Ò sup j e p (w j ) sup j e p (u j ) < Ò Ì max(u, v) E p º Á u F p ØÒ Û ØÓÒÐÐÝ Ò Ì ØÓ ÔÖÓÚ ØØ sup j (ddc w j ) n < º ÙØ u j w j Û ÑÔÐ ØØ sup j (ddc w j ) n sup j Ì (ddc u j ) n < º

6 ½¾ Ⱥ Ø Ðº ÓÖ p 1 ÄÑÑ º¾ ÐÓÛ Û ÔÖÓÚ Ò º Ý Ù Ò ÌÓÖÑ ¾º ØÓØÖ ÛØ ÄÑÑ º½ Ø ÔÖÓÓ Ó ÄÑÑ º Ò Ð Ó ÚÐ ÓÖ Ø 0 < p < 1º ÄÑÑ º¾º ÄØ p > 0º Á ψ PSH() C() ψ < 0 Ò u E p ØÒ χ A (dd c u) n = χ A (dd c max(u, ψ)) n, ÛÖ χ A Ø ÖØÖ Ø ÙÒØÓÒ Ó Ø Ø A = {z : u > ψ}º ÄÑÑ º º ÄØ p 0º Á u, v E p Ö Ù ØØ u v ØÒ ( ϕ)(dd c v) n ÓÖ ÚÖÝ ϕ PSH() ÛØ ϕ 0º ( ϕ)(dd c u) n ÈÖÓÓº Ö Ø ÙÑ ØØ ϕ E 0 º ÌÒ ÒØÖØÓÒ Ý ÔÖØ µ ÑÔÐ ØØ º½µ ( ϕ)(dd c u) n = ÙØ u v Ý ÙÑÔØÓÒ Ò ØÖÓÖ º¾µ ( u)(dd c ϕ) (dd c u) n 1 ( u)(dd c ϕ) (dd c u) n 1 ; Ý Ù Ò ÒØÖØÓÒ Ý ÔÖØ ÓÒ Ò Û Ø º µ ( v)(dd c ϕ) (dd c u) n 1 = ( v)(dd c ϕ) (dd c u) n 1. ( ϕ)(dd c v) (dd c u) n 1 Ò ØÖÓÖ Ì ( ϕ)(ddc u) n Ì ( ϕ)(ddc v) (dd c u) n 1 Ý º½µ º µº ÓÒØÒÙÒ Ò ÑÐÖ ÑÒÒÖ Ù Ò ÒØÖØÓÒ Ý ÔÖØ Ò Ø ÙÑÔ¹ ØÓÒ u v ÝÐ Ø Ö ÒÕÙÐØÝ ÛÒ ϕ E 0 º Ì ÒÖÐ ØÒ ÓÐÐÓÛ ÖÓÑ ÌÓÖÑ ¾º½ Ò ØÓØÖ ÛØ Ø ÑÓÒÓØÓÒ ÓÒÚÖÒ ØÓÖѺ ÓÖ p = 0 ÌÓÖÑ º ÐÓÛ Û ÔÖÓÚ Ò ÌÓÖÑ º½µ Ò ÓÖ p 1 Ø ÓÐÐÓÛ ÖÓÑ Ø ÔÖÓÓ Ó ÌÓÖÑ º¾ Ò º ÀÖ Û ÛÐÐ Ù Ø ÑØÓ Ó ØÓ Ú Ø Ö ÙÐØ ÓÖ 0 < p < 1º ÌÓÖÑ ºº ÄØ p 0º Á u E Ò v E p Ö Ù ØØ (dd c v) n (dd c u) n ØÒ u vº ÈÖÓÓº ÙÑ ØØ 0 < p < 1 Ò ÐØ h E 0 C() ÒÓØ ÒØÐÐÝ 0º ÓÖ m 1 ÄÑÑ º½ Ò º¾ ÑÔÐÝ ØØ (dd c max(v, mh)) n = χ {v>mh} (dd c v) n + χ {v mh} (dd c max(v, mh)) n. ÃÓÓÞ³ ØÓÖÑ ½¼ Ò Ð Ó ÈÖÓÔÓ ØÓÒ º½ Ò µ ÑÔÐ ØØ ØÖ Ü Ø g m E 0 Ù ØØ (dd c g m ) n = χ {v mh} (dd c max(v, mh)) n º

7 ÒÖÝ Ð E p ÓÖ 0 < p < 1 ½¾ ÌÙ (dd c (u + g m )) n (dd c max(v, mh)) n º ÌÓÖÑ º½ Ò ÓÛ ØØ max(v, mh) u + g m Ò ºµ v = lim sup m max(v, mh) u + lim supg m. m ÄØ w m = sup j m g j º ÌÒ w m E 0 ÛÖ w ÒÓØ Ø ÙÔÔÖ ÑÓÒ¹ ØÒÙÓÙ ÖÙÐÖÞØÓÒ Ó Ø ÙÒØÓÒ wº ÅÓÖÓÚÖ [w m ] Ö Ò ¹ ÕÙÒ Û ÓÒÚÖ ÔÓÒØÛ ØÓ lim sup m g m m º Ü m 1 Ò ÐØ j mº ÄÑÑ º Ò Ø Ø ØØ max(v, jh) g j w m ÑÔÐÝ ØØ e p (wm) m p ( h) p (dd c wj) n m p ( h) p (dd c g j ) n ( ) m p = ( jh) p χ j {v jh} (dd c max(v, jh)) n ( ) m p sup e p (max(v, jh)) < j j m Ò ØÖÓÖ w m = 0º ÀÒ lim sup m g m = lim m w m = 0 ÐÑÓ Ø ÚÖÝÛÖ Ò Ý ÒÕÙÐØÝ ºµ Ø ÓÐÐÓÛ ØØ v uº Ì ÒÜØ ÓÖÓÐÐÖÝ Û ÔÖÓÚ Ò ½ ÓÖ p 1 Ò p = 0º Í Ò ÜØÐÝ Ø Ñ ÑØÓ ØÓØÖ ÛØ ÌÓÖÑ º ÝÐ Ø Ö Ø ØØÑÒغ Ì ÓÒ ØØÑÒØ ÓÐÐÓÛ ÖÓÑ ÜÑÔÐ º Ò ½ º ÓÖÓÐÐÖÝ ºº Á u p 0 E p ØÒ lim sup z ξ u(z) = 0 ÓÖ ÚÖÝ ξ º ÅÓÖÓÚÖ ÓÖ p 0 ØÖ Ü Ø ÙÒØÓÒ v E p Ù ØØ lim inf z ξ v(z) = ÓÖ ÚÖÝ ξ º Ï ÒÓÛ ÔÖÓÚ ÖØÖÞØÓÒ Ó Ø ÖÐØ ÔÖÓÐÑ Ò E p ÓÖ p > 0º ÓÖ p 1 Ø Û ÔÖÓÚ Ò ÌÓÖÑ º¾ º ÌÓÖÑ ºº ÄØ p > 0 Ò µ ÒÓÒ¹ÒØÚ Ñ ÙÖº ÌÒ ØÖ Ü Ø ÙÒÕÙ ÙÒØÓÒ u E p Ù ØØ (dd c u) n = µ Ò ÓÒÐÝ ØÖ Ü Ø ÓÒ ØÒØ A > 0 Ù ØØ ºµ ÓÖ ÚÖÝ ϕ E 0 º ( ϕ) p dµ Ae p (ϕ) p/(n+p) ÈÖÓÓº ÄØ 0 < p < 1º ÙÑ ØØ ØÖ Ü Ø ÙÒÕÙ u E p Ù ØØ (dd c u) n = µº ÌÖ Ü Ø ÕÙÒ [u j ] u j E 0 Û ÓÒÚÖ ÔÓÒØÛ ÓÒ ØÓ u j Ò lim j e p (u j ) = e p (u) < ÄÑÑ ¾º½ Ò µº ÄØ ϕ E 0 º ÌÒ ÌÓÖÑ ¾º ÑÔÐ ØØ ØÖ Ü Ø ÓÒ ØÒØ C > 0

8 ½¾ Ⱥ Ø Ðº Ù ØØ Ì ( ϕ)(ddc u j ) n Ce p (ϕ) p/(p+n) e p (u j ) 1/(p+n) Ò ØÖÓÖ ( ϕ) p dµ lim inf j Ae p (ϕ) p/(n+p). ( ϕ) p (dd c u j ) n Ce p (u) 1/(p+n) e p (ϕ) p/(p+n) ÓÖ Ø ÓÒÚÖ ÙÑ ØØ ØÖ Ü Ø ÓÒ ØÒØ A > 0 Ù ØØ ºµ ÓÐ º ÁÒ ÔÖØÙÐÖ Ø ÙÑÔØÓÒ ÑÔÐ ØØ µ ÚÒ ÓÒ ÔÐÙÖÔÓÐÖ Ø Ò Ó ÌÓÖÑ º½½ Ò ÓÛ ØØ ØÖ Ü Ø ÙÒØÓÒ φ E 0 Ò 0 f L 1 loc ((ddc φ) n ) Ù ØØ µ = f(dd c φ) n º ÃÓÓÞ³ ØÓÖÑ ½¼ ÈÖÓÔÓ ØÓÒ º½ µ ÑÔÐ ØØ ØÖ Ü Ø u j E 0 Ù ØØ (dd c u j ) n = min(f, j)(dd c φ) n º ÀÒ sup j e p (u j ) < A (n+p)/p < Ò ØÖÓÖ ØÖ Ü Ø u E p Ù ØØ (dd c u) n = µº ÍÒÕÙÒ ÓÐÐÓÛ ÖÓÑ ÌÓÖÑ ºº Í Ò ÌÓÖÑ º ØÓØÖ ÛØ Ø ÑØÓ Ó ¾ Û ÓØÒ ÓÖÓÐÐÖÝ ºº ÄØ n 1 Ò ψ PSH() ÛØ lim z ξ ψ(z) = 0 ÓÖ ÚÖÝ ξ Ò ϕ L q ((dd c ψ) n ) ϕ 0 1 < q < º ÌÒ ØÖ Ü Ø ÙÒÕÙ ÙÒØÓÒ u E n(q 1) Ù ØØ (dd c u) n = ϕ(dd c ψ) n º ÅÓÖÓÚÖ Ì (ddc ψ) n < ØÒ u F n(q 1) º º ÖØÖÞØÓÒ Ó ÓÙÒ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ º Ì ÓÐÐÓÛÒ ÛÐйÒÓÛÒ ÐÑÑ Ò ÐÑÒØÖÝ ÜÖ Ò L p ¹ØÓÖݺ ÄÑÑ º½º ÄØ q > 1 Ò ÙÑ ØØ u Ò E q ÒÓØ ÒØÐÐÝ 0º ÌÒ { [ lim e p(u) 1/p = inf α R : χ { u>α} (dd c u) n] } = 0. p ÈÖÓÓº ËØ M = inf{α R : Ì χ { u>α}(dd c u) n = 0}º ÏØÓÙØ ÐÓ Ó ÒÖÐØÝ Û Ò ÙÑ Ì ØØ M > 0º Ì 0 < M < Mº Á A = {z : u(z) > M} Ò C 1 = χ A(dd c u) n ØÒ C 1 > 0 Ò > C 2 = ( u) q (dd c u) n A ( u) q (dd c u) n M q C 1. Ì ÓÖ p > q Ø ØÒ ÓÐÐÓÛ ØØ e p (u) 1/p ( A ( u)p (dd c u) n ) 1/p ÌÙ º½µ lim inf p e p(u) 1/p M, Ò 0 < M < M Û Ó Ò ÖØÖÖÐݺ ÅÓÖÓÚÖ ÓÖ p > q Û Ú e p (u) 1/p = ( ( u) q ( u) p q (dd c u) n) 1/p 1/p C 2 M 1 q/p. MC 1/p 1 º

9 ÒÖÝ Ð E p ÓÖ 0 < p < 1 ½¾ ÀÒ º¾µ lim supe p (u) 1/p M. p ÁÒÕÙÐØ º½µ Ò º¾µ ÓÑÔÐØ Ø ÔÖÓÓº ÌÓÖÑ º¾º ÙÒØÓÒ u ÐÓÒ ØÓ E 0 Ò ÓÒÐÝ ½µ u F p ÓÖ ÚÖÝ p 0 ¾µ lim u(z) = 0 ÓÖ ÚÖÝ ξ z ξ µ supe p (u) 1/p < º p>0 ÈÖÓÓº ÏØÓÙØ ÐÓ Ó ÒÖÐØÝ ÙÑ ØØ u(z) < 0 ÓÖ z º ÄØ u E 0 º ÌÒ ÔÖÓÔÖØ ½µ Ò ¾µ ÓÐÐÓÛ ÖÓÑ Ø ÒØÓÒ Ó E 0 Ò Ì F p º Ì ÙÒØÓÒ u ÓÙÒ Ý ÙÑÔØÓÒ Ò ØÖÓÖ e p (u) 1/p C 1 ( (ddc u) n ) Ì 1/p ÛÖ C 1 0 ÓÒ ØÒغ ÌÙ sup p>0 e p (u) 1/p < Ò lim p ( (ddc u) n ) 1/p = 1º ÓÖ Ø ÓÒÚÖ ÙÑ ØØ u ÙÒØÓÒ Ø ÝÒ ½µ µº ÄØ M Ò ÄÑÑ º½º ÌÒ M < Ý µº ÅÓÖÓÚÖ M > 0 Ò u < 0 Ý ÙÑÔØÓÒº ÄØ A = {z : u(z) < M}º Ì Ø A ÓÔÒ Ò u ÙÔÔÖ ÑÓÒØÒÙÓÙ ÌA (ddc u) n = 0 Ò u M ÓÒ \ Aº ÆÓÛ ÙÑ ØØ u ÙÒÓÙÒ Ò ÐØ ε > 0 Ù ØØ ε z 2 < M ÓÒ º ËØ v(z) = max(u(z), ε z 2 2M)º ÌÒ v F p L () ÓÖ p 0º u ÙÒÓÙÒ Ø Ø {u < v} Ì = {u < ε z 2 2M} Ì ÒÓÒ¹ÑÔØÝ Ò ÓÔÒº ÄÑÑ º Ò ÑÔÐ ØØ {u<v} (ddc v) n {u<v} (ddc u) n Ì A (ddc u) n = 0 Ò {u < v} A ÙØ {u<v} (dd c v) n = {u<v} (dd c (ε z 2 2M)) n = Cλ({u < v}) > 0, ÛÖ λ Ø Ä Ù Ñ ÙÖ Ò C ÓÒ ØÒØ ÔÒÒ ÓÒÐÝ ÓÒ n Ò εº Ì ÓÒØÖØÓÒ Û ÑÔÐ ØØ u ÓÙÒº ÌÙ u E 0 º ÜÑÔÐ º º ÄØ = (0, 1) Ø ÙÒØ ÐÐ Ò C n Ò [a k ] ÕÙÒ Ò Ù ØØ a k ζ ÓÖ ÓÑ ζ º ÄØ T ak = T k Ø ÙØÓÑÓÖÔ Ñ Ó Û ÑÔ a k ØÓ 0 ºº T k (z) = T ak (z) = 1 a k 2 1 ak 2 ( z, a k a k a k 2 z) + a k ( a k 2 z, a k ), 1 z, a k ÛÖ x, y = n x jȳ j Ø Ù ÙÐ ÒÒÖ ÔÖÓÙØ Ò C n º Ì ÖÐ ÂÓÒ Ó T k Ø z ÚÒ Ý T k (z) 2 = F(z, a k ) 1 z, a k 4n,

10 ½¾ Ⱥ Ø Ðº ÛÖ F ÓÙÒ ÙÒØÓÒº ÅÓÖÓÚÖ ÓÖ ÐÐ ÓÑÔØ Ù Ø K Û Ú max z K T k (z) 2 C 1 ÛÖ C 1 ÓÒ ØÒØ ÒÓØ ÔÒÒ ÓÒ kº Ò ϕ j (z) = 2 j max(log T j (z), 1)º ÌÒ ϕ j PSH() L () lim z ξ ϕ j (z) = 0 ÓÖ ÚÖÝ ξ Ò ( (dd c ϕ j ) n = dd c 1 ) n 2 j max(log T j, 1) = 1 2 jn (dd c max(log T j, 2 j )) n = 1 2 jn T k 2 (dd c max(log z, 2 j )) n 1 2 jn (2π)n max T 1 k 2 C 2 (0,e 1 ) 2 jn, ÛÖ C 2 ÓÒ ØÒØ ÒÓØ ÔÒÒ ÓÒ jº ËØ ( k ) 1 u k (z) = max 2 j log T j(z), 1. ÌÒ u k PSH() L () lim z ξ u k (z) = 0 ÓÖ ÚÖÝ ξ Ò u k k ϕ jº Ì ÓÑÔÖ ÓÒ ÔÖÒÔÐ ºº µ ØÓØÖ ÛØ ÄÑÑ ¾º Ò ÓÛ ØØ u k E 0 º Ì ÙÒØÓÒ u Ò Ý ( ) 1 u(z) = max 2 j log T j(z), 1 ÐÓÒ ØÓ F L () Ò ØÖÓÖ ØÓ F p ÓÖ ÐÐ p 0º ÙØ u E 0 Ò lim inf z ζ u(z) lim j u(a j ) = 1º ÜÑÔÐ ºº ÄØ = (0, 1) C 2 Ò ÐØ [a j ] Ò [b j ] 0 < a j, b j < 1 Ö Ò ÕÙÒ Û ÓÒÚÖ ØÓ 0 j º ÓÖ j N Ò ϕ j : R { } Ý ϕ j (z) = a j max(log z, log b j )º ÌÒ ϕ j PSH() L () Ò lim z ξ ϕ j (z) = 0 ÓÖ ÚÖÝ ξ º ÅÓÖÓÚÖ { (2π) 2 dd c ϕ j dd c a 2 j ϕ k = dσ b j j = k, (2π) 2 a j a k dσ max(bj,b k ) ÓØÖÛ ÛÖ dσ r Ø ÒÓÖÑÐÞ Ä Ù Ñ ÙÖ ÓÒ (0, r) Ò ϕ j E 0 Ò ØÖÓÖ Ø ÙÒØÓÒ u k : R Ò Ý u k = k ϕ j Ò E 0 º Ì ÙÒØÓÒ u k Ö ÖÐÐÝ ÝÑÑØÖ ºº u k ( z ) = u k (z) Ò

11 (4.3) = k j,l=1 ( u k ) p (dd c u k ) 2 = ÒÖÝ Ð E p ÓÖ 0 < p < 1 ( u k ) p dd c ϕ j dd c ϕ l = ( u k ) p( k ) 2 dd c ϕ j k ( u k (max(b j, b l ))) p (2π) 2 a j a l j,l=1 k ( u k (b j )) p/2 ( u k (b l )) p/2 (2π) 2 a j a l = (2π) 2( k ) 2. ( u k (b j )) p/2 a j j,l=1 ÄØ z Ù ØØ z = b j º ÌÒ { ak log b k k j, ϕ k (z) = a k log b j ÓØÖÛ Ò ØÖÓÖ k=1 ϕ k(z) = j k=1 a k log b k +log b j k=j+1 a k = c j º ÙÑ ÒÓÛ ØØ Ø ÕÙÒ [a j ] Ò [b j ] Ö Ó Ò Ù ØØ ½µ ¾µ µ a j <, a j log b j = ( c j ) p/2 a j < º ÄØ u : R { } Ò Ý u = lim k u k º ÌÒ u ÔÐÙÖ Ù¹ ÖÑÓÒ Ò Ø Ø ÐÑØ Ó Ö Ò ÕÙÒ Ó ÔÐÙÖ ÙÖÑÓÒ Ì ÙÒØÓÒ Ò u(1/2, 0) > º ÙÑÔØÓÒ ½µ ÑÔÐ ØØ (ddc u) 2 < Ò ÖÓÑ ÒÕÙÐØÝ º µ Ò ÙÑÔØÓÒ µ Ø ÓÐÐÓÛ ØØ sup k ( u k ) p (dd c u k ) 2 <. ÀÒ u F p ÓÖ p 0º ÙØ ÙÑÔØÓÒ ¾µ ÝÐ u(0) = º ÄØ ÒÓÛ Ø ÕÙÒ [a j ] Ò [b j ] Ò Ý a j = 1/2 j Ò b j = e 2j /j º Ì ÕÙÒ Ö ØÓ 0 j Ò Ý ØÖØÓÖÛÖ ÐÙÐØÓÒ ØÝ Ø Ý ÙÑÔØÓÒ ½µ µº ÀÒ Ø ÙÒØÓÒ Ò ÓÒ Ý u(z) = 1 2 j max(log z, log e 2j /j ) = ( ) 1 max 2 j log z, 1 j ÐÓÒ ØÓ F p ÓÖ ÚÖÝ p 0 Ò lim z ξ u(z) = 0 ÓÖ ÚÖÝ ξ º ÙØ u E 0 Ò u ÙÒÓÙÒº ½¾

12 ½ ¼ Ⱥ Ø Ðº ÊÖÒ ½ ¾ ½¼ ½½ Ⱥ Ì ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖ ÓÒ ÓÙÒ ÝÔÖÓÒÚÜ ÓÑÒ Èºº Ø ÍÑ ÍÒÚº ¾¼¼¾º Ⱥ Ò Êº ÞÝ ÇÒ Ø ÖÐØ ÔÖÓÐÑ Ò Ø ÖÐÐ Ð ÒÒº ÈÓÐÓÒº Åغ ¾¼¼µ ¾ ¾º º ÓÖ Ò º º ÌÝÐÓÖ ÒÛ ÔØÝ ÓÖ ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ Ø Åغ ½ ½¾µ ½¼º ͺ ÖÐÐ ÈÐÙÖÓÑÔÐÜ ÒÖÝ º ½¼ ½µ ½¾½º ÌÛÓ ÜÑÔÐ Ò ÔÐÙÖÔÓØÒØÐ ØÓÖÝ Å ËÛÒ ÍÒÚº Ö Ö ÖÔÓÖØ ½ ¾¼¼¼µº Ì ÒÖÐ ÒØÓÒ Ó Ø ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖ ÒÒº ÁÒ Øº ÓÙÖÖ ÖÒÓе ¾¼¼µ ½½º ͺ ÖÐР˺ ÃÓÓÞ Ò º Ö ËÙÜØÒ ÓÒ Ó ÔÐÙÖ ÙÖÑÓÒ ÙÒØÓÒ ÛØ Û ÒÙÐÖØ Åغ º ¾¼ ¾¼¼µ ¾¾º ͺ ÖÐÐ Ò Äº ÈÖ ÓÒ Ò ÒÖÝ ØÑØ ÓÖ Ø ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔ¹ ÖØÓÖ ÒÒº ÈÓÐÓÒº Åغ ½µ ½¼¾º ͺ ÖÐÐ Ò Âº ÏÐÙÒ ÅÓÒÑÔÖ ÒÓÖÑ ÓÖ ÐعÔÐÙÖ ÙÖÑÓÒ ÙÒ¹ ØÓÒ Åغ ËÒº ¾¼¼µ ¾¼½¾½º ˺ ÃÓÓÞ Ì ÖÒ Ó Ø ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖ ÁÁ ÁÒÒ ÍÒÚº Åغ º ½µ ¾º ĺ ÈÖ ÓÒ ÖÐØ ÔÖÒÔÐ ÓÖ Ø ÓÑÔÐÜ ÅÓÒÑÔÖ ÓÔÖØÓÖ Öº Åغ ½µ º ÔÖØÑÒØ Ó ÅØÑØ Å ËÛÒ ÍÒÚÖ ØÝ Ë¹½ ¼ ËÙÒ ÚÐÐ ËÛÒ ¹ÑÐ ÔÖºÑÙÒº ÔÖØÑÒØ Ó ÅØÑØ ÍÒÚÖ ØÝ Ó ÙØÓÒ ÀÓ ËÙ ÈÑ ÀÒÓµ Ù Ý ÌÙÐÑ ÀÒÓ ÎØÒÑ ¹ÑÐ ÔÔÚÒÝÓÓºÓÑ ÔÖØÑÒØ Ó ÅØÑØ ÂÐÐÓÒÒ ÍÒÚÖ ØÝ ÊÝÑÓÒØ ¼¹¼ ÃÖÛ ÈÓÐÒ ¹ÑÐ ÊкÞÝÞѺٺٺÔÐ ÊÚ ¾¾º½º¾¼¼ ½½¾µ

dz k dz j. ω n = 1. supφ 1.

dz k dz j. ω n = 1. supφ 1. ÆÆÄË ÈÇÄÇÆÁÁ ÅÌÀÅÌÁÁ ½º¾ ¾¼¼µ ÖÐÐ Ð ÓÒ ÓÑÔØ ÃÐÖ ÑÒÓÐ Ý ËÛÓÑÖ ÒÛ ÃÖÛµ ØÖغ Ï ØÙÝ ÖÐÐ Ð ÓÒ ÓÑÔØ ÃÐÖ ÑÒÓÐ º ÇÙÖ Ö ÙÐØ Ò¹ ÖÐÞ ÓÑ ØÓÖÑ Ó Ù Ò Ö ÖÓÑ Ø ØØÒ Ó ÙÖ ØÓ ÖØÖÖÝ ÑÒÓÐ µ Ò Ò ÛÖ ÓÑ ÓÔÒ ÕÙ ØÓÒ ÔÓ Ý ØѺ ½º

More information

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3 ÈÖÑÙØØÓÒ ÔØØÖÒ Ò Ø ÅÙ ÙÒØÓÒ ÙÖ ØÒ ÎØ ÂÐÒ Ú ÂÐÒÓÚ Ò ÐÜ ËØÒÖÑ ÓÒ ÒÖ Ì ØÛÓµ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ ½ Ì ÔÓ Ø Ó ÔÖÑÙØØÓÒ ÛºÖºØº ÔØØÖÒ ÓÒØÒÑÒØ ½ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ Ì ÒØÖÚÐ [12,2314] ½ ¾ ÓÑÔÙØÒ

More information

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÙÑÔ ÐØÖ ÓÖ ÙÒÖØÒ ÝÒÑ Ý ØÑ ÛØ ÖÓÔÓÙØ º ÓÐÞ ½ º º ÉÙÚÓ ¾ Áº ÈÖÖÓ ½ ʺ ËÒ ½ ½ ÔÖØÑÒØ Ó ÁÒÙ ØÖÐ ËÝ ØÑ ÒÒÖÒ Ò Ò ÍÒÚÖ ØØ ÂÙÑ Á ØÐÐ ËÔÒ ¾ ËÓÓÐ Ó ÐØÖÐ ÒÒÖÒ

More information

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ½¾ Ù Ö ÓÖ ÖÓÑ Ö ÓÒ Ò ÄÈ ÐØ Ö ½¾ ½¾ ½» ½½ ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ¾ Á b 2 < 4ac Û ÒÒÓØ ÓÖ Þ Û Ö Ð Ó ÒØ Ó Û Ð Ú ÕÙ Ö º ËÓÑ Ñ ÐÐ ÕÙ Ö Ö ÓÒ Ò º Ù Ö ÓÖ ½¾ ÓÖ Ù Ö ÕÙ Ö ÓÖ Ò ØÖ Ò Ö ÙÒØ ÓÒ

More information

arxiv: v1 [math.dg] 17 Nov 2009

arxiv: v1 [math.dg] 17 Nov 2009 arxiv:0911.3294v1 [math.dg] 17 Nov 2009 ½ ÓÒÓÖÑÐ Ð Ò Ø ØÐØÝ Ó ÐÚ ÛØ ÓÒ ØÒØ Ö ÓÖÖ ÑÒ ÙÖÚØÙÖ ÃÖÞÝ ÞØÓ ÒÖÞÛ Ò ÈÛ º ÏÐÞ ØÖØ ÁÒ Ø ÔÔÖ Û ØÙÝ ÙÑÒÓÐ ÛØ ÓÒ ØÒØ rø ÑÒ ÙÖ¹ ÚØÙÖ S r º Ï ÒÚ ØØ Ø ØÐØÝ Ó Ù ÙÑÒÓÐ Ò Ø

More information

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÁÒØÖÐ ÓÙÒÖ Ò Ë»Ì Î ÊÐ ÔÖØÑÒØ Ó ÅØÑØ ÍÒÚÖ ØÝ Ó ÓÖ Á̳½½ ØÝ ÍÒÚÖ ØÝ ÄÓÒÓÒ ÔÖÐ ½ ¾¼½½ ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÇÙØÐÒ ËÙÔÖ ØÖÒ Ò Ë»Ì Ì ØÙÔ ÏÓÖÐ Ø Ë¹ÑØÖÜ ÍÒÖÐÝÒ ÝÑÑØÖ ÁÒØÖÐ ÓÙÒÖ ÁÒØÖÐØÝ Ø Ø ÓÙÒÖÝ» ÖÒ Ò ØÛ Ø ÒÒ Ú»Ú

More information

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò ÝÒÑ Ò Ò Ö Ð Ö Ò Ó Ò Ö ÀÍ ÖÐ Òµ Ó Ò ÛÓÖ Û Ö Ò ÖÓÛÒ Ö Ú ½ ¼¾º ¾½ Û Åº Ä Ö Ö Ú ½ ¼¾º ¼¼ Û Äº Ñ Ò Ëº Ï ÒÞ ÖÐ Å ÒÞ ½ º¼ º¾¼½ ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ

More information

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER È Ö Ò Ò Ù Ò Ò Ò ÖÝ ÒÙÐ Ö Ý Ø Ñ Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER Radu.Gherghescu@nipne.ro IFIN-HH, Bucharest-Magurele, Romania and Frankfurt Institute for Advanced Studies, J

More information

½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾

½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾ ÓÖ ÁÒ ØØÙØ Ó ÌÒÓÐÓÝ ¹ ÇØÓÖ Ø ¾¼½¾ ÓÒ ØØÙØÚ ÑÓÐ ÓÙÔÐÒ Ñ Ò ÔÐ ØØÝ ÓÖ ÙÒ ØÙÖØ ÓÑØÖÐ ËÓÐÒÒ Ä ÈÆË È ËÙÔÖÚ ÓÖ Ñ ÈÇÍ ÖÓÙÞ ÌÅÁÊÁ ½ ÅÝ Ò ØØÙØÓÒ ¾ ÁÒØÖÓÙØÓÒ ÓÒ ØØÙØÚ ÑÓÐÐÒ ÆÙÑÖÐ ÑÔÐÑÒØØÓÒ ÓÒÐÙ ÓÒ Ò ÔÖ ÔØÚ ¾»¾ ½

More information

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3) Physics Department Royal Holloway University of London PH2510 - Nuclear Physics Laboratory Gamma spectroscopy (NP3) 1 Objectives The aim of this experiment is to demonstrate how γ-ray energy spectra may

More information

Proving observational equivalence with ProVerif

Proving observational equivalence with ProVerif Proving observational equivalence with ProVerif Bruno Blanchet INRIA Paris-Rocquencourt Bruno.Blanchet@inria.fr based on joint work with Martín Abadi and Cédric Fournet and with Vincent Cheval June 2015

More information

F(q 2 ) = 1 Q Q = d 3 re i q r ρ(r) d 3 rρ(r),

F(q 2 ) = 1 Q Q = d 3 re i q r ρ(r) d 3 rρ(r), ÁÒØÖÓÙØÓÒ ÖÐ ÕÙÖ ÑÓÐ Ê ÙÐØ ËÙÑÑÖÝ ÌÖÒ ÚÖ ØÝ ØÖÙØÙÖ Ó Ø ÔÓÒ Ò ÖÐ ÕÙÖ ÑÓÐ ÏÓ ÖÓÒÓÛ ÂÒ ÃÓÒÓÛ ÍÒÚÖ ØÝ ÃÐ ÁÒ ØØÙØ Ó ÆÙÐÖ ÈÝ ÈÆ ÖÓÛ ÛØ º ÊÙÞ ÖÖÓÐ Ò º º ÓÖÓÓÚ ÅÒ¹ÏÓÖ ÓÔ Ð ¾¼½½ ÍÒÖ ØÒÒ ÀÖÓÒ ËÔØÖ Ð ËÐÓÚÒµ ¹½¼ ÂÙÐÝ

More information

x f(t) 1 + t 1 + t 1 + u k e uk du = f(0) k Γ 1

x f(t) 1 + t 1 + t 1 + u k e uk du = f(0) k Γ 1 ½ ÌÇÌÌÆ ËÇÄÍÌÁÇÆË Ì Ö Ø ÓÐÙØÓÒ ØÓ Ø ÔÐ ØÓÒ Ó ÔÖÓÐÑ ÔÔÖÒ Ò Ø ËÔØÑÖ ¾¼¼ Ù Ò Ø ØÓ Ø ÑÑÓÖÝ Ó ÂÑ ÌÓØØÒº ÌÇÌÌÆß¼½º ¾¼¼ ¾¼ ¾¾ ÈÖÓÔÓ Ý Ó ÑÒ ÈÓÓØ ÌÙÓÖ ÎÒÙ ÆØÓÒÐ ÓÐÐ ÙÖ Ø ÊÓÑÒº ÄØ H Ø ÓÖØÓÒØÖ Ó ØÖÒÐ ABC Ò ÐØ P Ø

More information

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),

x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x), ÛÜØ Þ ÜÒ Ô ÚÜ Ô Ü Ñ Ü Ô Ð Ñ Ü ÜØ º½ ÞÜ Ò f Ø ÚÜ ÚÛÔ Ø Ü Ö ºÞ ÜÒ Ô ÚÜ Ô Ð Ü Ð Þ Õ Ô ÞØÔ ÛÜØ Ü ÚÛÔ Ø Ü Ö L(f) = f(x)dx ÚÜ Ô Ü ÜØ Þ Ü Ô, b] Ö Û Þ Ü Ô Ñ ÒÖØ k Ü f Ñ Df(x) = f (x) ÐÖ D Ü Ü ÜØ Þ Ü Ô Ñ Ü ÜØ Ñ

More information

2 Hallén s integral equation for the thin wire dipole antenna

2 Hallén s integral equation for the thin wire dipole antenna Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾ ¾¼½½µ ½ ¹½ ¾ ÆÙÑ Ö Ð Ñ Ø Ó ÓÖ Ò ÐÝ Ó Ö Ø ÓÒ ÖÓÑ Ø Ò Û Ö ÔÓÐ ÒØ ÒÒ Ëº À Ø ÑÞ ¹Î ÖÑ ÞÝ Ö Åº Æ Ö¹ÅÓ Êº Ë Þ ¹Ë Ò µ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò

More information

N 1 N 1 + N 2. Pr(I = I 0 ) = ˆπ(A) π(a) Pr(I A Ē) + Pr(E) π(a) Ω + δ A

N 1 N 1 + N 2. Pr(I = I 0 ) = ˆπ(A) π(a) Pr(I A Ē) + Pr(E) π(a) Ω + δ A 8 CHAPTER 1. SAMPLING AND COUNTING Thus Pr(I = ) 2/3 as required. (d) This is clearly true if V =. If V and v = maxv I 0 then, by induction Pr(I = I 0 ) = and similarly Pr(I = I 0 ) = φ if v / I 0. N 1

More information

A Glimpse into the Special Theory of Relativity

A Glimpse into the Special Theory of Relativity A Glimpse into the Special Theory of Relativity Siim Ainsaar January 013 1 Why relativity?...1 4.6 Light-cones, simultaneity and Postulates of special relativity... causality...6 3 Basic thought experiments...

More information

INRIA Sophia Antipolis France. TEITP p.1

INRIA Sophia Antipolis France. TEITP p.1 ÌÖÙ Ø ÜØ Ò ÓÒ Ò ÓÕ Ä ÙÖ ÒØ Ì ÖÝ INRIA Sophia Antipolis France TEITP p.1 ÅÓØ Ú Ø ÓÒ Ï Ý ØÖÙ Ø Ó ÑÔÓÖØ ÒØ Å ÒÐÝ ÈÖÓÚ Ò ÌÖÙØ Ø Ò ÑÔÐ Ã Ô ÈÖÓÚ Ò ÌÖÙ Ø È Ó ÖÖÝ Ò ÈÖÓÓ µ Ò Ö ØÝ ÓÑ Ò ËÔ ÔÔÐ Ø ÓÒ TEITP p.2 ÇÙØÐ

More information

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, 202 Abstracts ÁÒÚ Ö Ð Ñ Ø Ó Ø¹Ú ÐÙ ÙÒØ ÓÒ ÁÞØÓ Ò ÞØÓ º Ò ÙÒ ¹Ñ º ÙÐØÝ Ó Æ ØÙÖ Ð Ë Ò Ò Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó Å Ö ÓÖ ÃÓÖÓ ½ ¼ Å Ö ÓÖ ¾¼¼¼

More information

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most ÁÑÔÖÓÚ ÇÒÐÒ ÐÓÖØÑ ÓÖ Ù«Ö ÅÒÑÒØ Ò ÉÓË ËÛØ ÅÖ ÖÓ ÏÓ ÂÛÓÖ ÂÖ ËÐÐ Ý ÌÓÑ ÌÝ Ý ØÖØ We consider the following buffer management problem arising in QoS networks: packets with specified weights and deadlines arrive

More information

Non-Stationary Spatial Modeling

Non-Stationary Spatial Modeling BAYESIAN STATISTICS 6, pp. 000 000 J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (Eds.) Oxford University Press, 1998 Non-Stationary Spatial Modeling D. HIGDON, J. SWALL, and J. KERN Duke

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Information Systems 2, summer term 2010 0/29 Information Systems 2 Information Systems 2 5. Business Process Modelling I: Models Lars Schmidt-Thieme Information Systems and Machine Learning Lab

More information

Multi-electron and multi-channel effects on Harmonic Generation

Multi-electron and multi-channel effects on Harmonic Generation Multi-electron and multi-channel effects on Harmonic Generation Contact abrown41@qub.ac.uk A.C. Brown and H.W. van der Hart Centre for Theoretical Atomic, Molecular and Optical Physics, Queen s University

More information

519.8 ýý ½ ¹¼½¹¾¼¼ ¼º üº üº þ üº º Á ¹ ÇÊž¼½ µ ¾¾ ¾ ¾¼½ º º Á» º º üº üº þ üº º º º ü ¾¼½ º º ÁË Æ þ Á ¹ º ¹ º ºþº ¹ ú û ü ü µ ¹ µ ¹ ü ü µ ¹ µ

519.8 ýý ½ ¹¼½¹¾¼¼ ¼º üº üº þ üº º Á ¹ ÇÊž¼½ µ ¾¾ ¾ ¾¼½ º º Á» º º üº üº þ üº º º º ü ¾¼½ º º ÁË Æ þ Á ¹ º ¹ º ºþº ¹ ú û ü ü µ ¹ µ ¹ ü ü µ ¹ µ þ ü þ þ º þº þü ü þü ú ü ü üþ û ü ü ü þ ¹ ý üþ ü ý þ þü ü ü ý þ þü ü Á ÇÊž¼½ µ ¾¾ ¾ ¾¼½ Á Á ÅÓ ÓÛ ÁÒØ ÖÒ Ø ÓÒ Ð ÓÒ Ö Ò ÓÒ ÇÔ Ö Ø ÓÒ Ê Ö ÇÊž¼½ µ ÅÓ ÓÛ ÇØÓ Ö ¾¾¹¾ ¾¼½ ÈÊÇ ÁÆ Ë ÎÇÄÍÅ Á þü ¾¼½ 519.8 ýý 22.18

More information

Lecture 16: Modern Classification (I) - Separating Hyperplanes

Lecture 16: Modern Classification (I) - Separating Hyperplanes Lecture 16: Modern Classification (I) - Separating Hyperplanes Outline 1 2 Separating Hyperplane Binary SVM for Separable Case Bayes Rule for Binary Problems Consider the simplest case: two classes are

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

Monodic Temporal Resolution

Monodic Temporal Resolution Monodic Temporal Resolution ANATOLY DEGTYAREV Department of Computer Science, King s College London, London, UK. and MICHAEL FISHER and BORIS KONEV Department of Computer Science, University of Liverpool,

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Solution of Nonlinear Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 ÓÑÔÙØ Ö Ü Ö Ì ÓÓØ ØÖ Ô Ð ÓÖ Ø Ñ Ò Ý Ò Ò ÐÝ In this exercise we will

More information

arxiv:hep-ph/ v1 10 May 2001

arxiv:hep-ph/ v1 10 May 2001 New data and the hard pomeron A Donnachie Department of Physics, Manchester University P V Landshoff DAMTP, Cambridge University DAMTP-200-38 M/C-TH-0/03 arxiv:hep-ph/005088v 0 May 200 Abstract New structure-function

More information

18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang 8.06 Quiz 2 April 7, 200 Professor Strang Your PRINTED name is:. Your recitation number or instructor is 2. 3.. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line in the

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

Outline. Calorimeters. E.Chudakov 1. 1 Hall A, JLab. JLab Summer Detector/Computer Lectures http: // gen/talks/calor lect.

Outline. Calorimeters. E.Chudakov 1. 1 Hall A, JLab. JLab Summer Detector/Computer Lectures http: //  gen/talks/calor lect. Outline Calorimeters E.Chudakov 1 1 Hall A, JLab JLab Summer Detector/Computer Lectures http: //www.jlab.org/ gen/talks/calor lect.pdf Outline Outline 1 Introduction 2 Physics of Showers 3 Calorimeters

More information

Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model

Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model J. At. Mol. Sci. doi: 10.4208/jams.011511.022111a Vol. x, No. x, pp. 1-5 xxx 2011 ½ ¾ ½¼ Calculation of the van der Waals potential of argon dimer using a modified Tang-Toennies model J. F. Peng a, P.

More information

Visit our WWW site:

Visit our WWW site: For copies of this Booklet and of the full Review to be sent to addresses in the Americas, Australasia, or the Far East, visit http://pdg.lbl.gov/pdgmail or write to Particle Data Group MS 50R6008 Lawrence

More information

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete ÍÒ Ú Ö ØÝ Ó Ö Ø ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ È Ö ÓÒ Ð Þ Ò Ð Ö Ø Ú Ê Ô Ö Ò ÈÓÐ ÓÖ ÙÖ Ø Ã ÁÓ ÒÒ ÊÓÙ Å Ø Ö³ Ì À Ö Ð ÓÒ Ñ Ö ¾¼½¼ È Æ ÈÁËÌÀÅÁÇ ÃÊÀÌÀË ËÉÇÄÀ Â ÌÁÃÏÆ Ã Á Ì ÉÆÇÄÇ ÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÈÁËÌÀÅÀË ÍÈÇÄÇ ÁËÌÏÆ

More information

Chebyshev Spectral Methods and the Lane-Emden Problem

Chebyshev Spectral Methods and the Lane-Emden Problem Numer. Math. Theor. Meth. Appl. Vol. 4, No. 2, pp. 142-157 doi: 10.4208/nmtma.2011.42s.2 May 2011 Chebyshev Spectral Methods and the Lane-Emden Problem John P. Boyd Department of Atmospheric, Oceanic and

More information

Multi-agent learning

Multi-agent learning Multi-agent learning Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Gerard Vreeswijk, Intelligent Systems Group, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands. Gerard Vreeswijk. Last modified

More information

Seminar to the lecture Computer-based Engineering Mathematics

Seminar to the lecture Computer-based Engineering Mathematics Seminar to the lecture Computer-based Engineering Mathematics N T S Prof. Dr.-Ing. A. Czylwik Mohammad Abdelqader, M.Sc. Room: BA 249, Tel: +49-203-379-3474 E-Mail: abdelqader@nts.uni-duisburg-essen.de

More information

Temperature profiles with bi-static Doppler-RASS and their correction

Temperature profiles with bi-static Doppler-RASS and their correction Atmos. Meas. Tech., 5, 1399 148, 212 www.atmos-meas-tech.net/5/1399/212/ doi:1.5194/amt-5-1399-212 Author(s) 212. CC Attribution 3. License. Atmospheric Measurement Techniques Temperature profiles with

More information

Elastic scattering of positron by gold atom

Elastic scattering of positron by gold atom J. At. Mol. Sci. doi: 208/jams.022633a Vol. 2, No. 4, pp. 294-304 November 20 Elastic scattering of positron by gold atom Kapil K. Sharma a,, Neerja b, and R. P. Vats a a Department of Physics, M.S (P.G)

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¼¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ½ ¾¼½ Problem (From the reservoir to the grid) The causality diagram of the

More information

HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS. (µ ε (x, θ ε ) vε = f,

HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS. (µ ε (x, θ ε ) vε = f, QUARTERLY OF APPLIED MATHEMATICS VOLUME, NUMBER XXXX XXXX, PAGES S 33-569X(XX- HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS By NICOLAS CHARALAMBAKIS (Department of Civil Engineering, Aristotle

More information

Subspace angles and distances between ARMA models

Subspace angles and distances between ARMA models ÔÖØÑÒØ ÐØÖÓØÒ Ë̹ËÁËÌ»ÌÊ ß ËÙ Ô ÒÐ Ò ØÒ ØÛÒ ÊÅ ÑÓÐ ÃØÖÒ Ó Ò ÖØ ÅÓÓÖ ÅÖ ÈÙÐ Ò ÈÖÓÒ Ó Ø ÓÙÖØÒØ ÁÒØÖÒØÓÒÐ ËÝÑÔÓ ÙÑ Ó ÅØÑØÐ ÌÓÖÝ Ó ÆØÛÓÖ Ò ËÝ ØÑ ÅÌÆË µ ÈÖÔÒÒ ÖÒ ÂÙÒ ß Ì ÖÔÓÖØ ÚÐÐ Ý ÒÓÒÝÑÓÙ ØÔ ÖÓÑ ØÔº غÙÐÙÚÒºº

More information

I118 Graphs and Automata

I118 Graphs and Automata I8 Graphs and Automata Takako Nemoto http://www.jaist.ac.jp/ t-nemoto/teaching/203--.html April 23 0. Û. Û ÒÈÓ 2. Ø ÈÌ (a) ÏÛ Í (b) Ø Ó Ë (c) ÒÑ ÈÌ (d) ÒÌ (e) É Ö ÈÌ 3. ÈÌ (a) Î ÎÖ Í (b) ÒÌ . Û Ñ ÐÒ f

More information

Standard Model or New Physics?

Standard Model or New Physics? Σ + pµ + µ Standard Model or New Physics? Jusak Tandean National Taiwan University in collaboration with XG He & G Valencia High Energy Physics Seminar National Tsing Hua University 25 September 2008 Outline

More information

A projection preconditioner for solving the implicit immersed boundary equations

A projection preconditioner for solving the implicit immersed boundary equations NUMERICAL MATHEMATICS: Theory, Methods and Applications Numer. Math. Theor. Meth. Appl., Vol. xx, No. x, pp. -27 (200x) A projection preconditioner for solving the implicit immersed boundary equations

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ËÓÐÙØ ÓÒ ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ¾ ¾¼½ Problem 1 (From the reservoir to the grid) The causality diagram

More information

Elastoviscoplastic Finite Element analysis in 100 lines of Matlab

Elastoviscoplastic Finite Element analysis in 100 lines of Matlab J. Numer. Math., Vol., No. 3, pp. 57 92 (22) c VSP 22 Elastoviscoplastic Finite Element analysis in lines of Matlab C. Carstensen and R. Klose Received 3 July, 22 Abstract This paper provides a short Matlab

More information

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator E. D. Held eheld@cc.usu.edu Utah State University General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator

More information

On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows

On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0229 Vol. 23, No. 3, pp. 846-876 March 2018 On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows

More information

Uniform approximation of sgnx by polynomials and entire functions

Uniform approximation of sgnx by polynomials and entire functions arxiv:math/64324v1 [math.ca] 13 Apr 26 Uniform approximation of sgnx by polynomials and entire functions Alexandre Eremenko and Peter Yuditskii 2nd February 28 In 1877, E. I. Zolotarev [19, 2] found an

More information

Table of Contents... 4 Preface Introduction Notation Background and Related Work 11

Table of Contents... 4 Preface Introduction Notation Background and Related Work 11 ÁÄÄ Ê ÅÇ ÄË ÇÊ Ä ÊÇÅ Ì Ê Ë ÇÆÌÁÆÍÇÍË ËÌÍÊ Ê Ç ÆÁÌÁÇÆ Å Ó Ã ÙÔÔ Ð Å Ø Ö³ Ì Å Ý ¾¼¼ È ÊÌÅ ÆÌ Ç Å ÌÀ Å ÌÁ Ä Ë Á Æ Ë ÍÆÁÎ ÊËÁÌ Ç ÇÍÄÍ ÁÆÄ Æ ÍÒ Ú Ö ØÝ Ó ÇÙÐÙ Ì ØÖ Ø ÙÐØÝ Ó Ë Ò Ô ÖØÑ ÒØ Ô ÖØÑ ÒØ Ó Å Ø Ñ Ø Ð

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SKMM 3023 Applied Numerical Methods Ordinary Differential Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Ordinary

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) 1 / 43 Outline 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear Regression Ordinary Least Squares Statistical

More information

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1 Õ 83-25 Þ ÛÐ Þ Ð ÚÔÜØ Þ ÝÒ Þ Ô ÜÞØ ¹ 3 Ñ Ð ÜÞ u x + u y = x u u(x, 0) = e x2 ÝÒ Þ Ü ÞØ º½ dt =, dt = x = t + c, y = t + c 2 We can choose c to be zero without loss of generality Note that each characteristic

More information

Seminarberichte Mathematik

Seminarberichte Mathematik Seminarberichte Mathematik Band 86-2014 Herausgegeben von den Dozentinnen und Dozenten der Mathematik Seminarberichte aus der FAKULTÄT für Mathematik und Informatik der FernUniversität in Hagen Ë Ñ Ò Ö

More information

AST 248, Lecture 5. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. February 12, 2015

AST 248, Lecture 5. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. February 12, 2015 AST 248, Lecture 5 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University February 12, 2015 The Search for Intelligent Life in the Universe james.lattimer@stonybrook.edu

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) Fall, 2017 1 / 40 Outline Linear Model Introduction 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear

More information

Second Harmonic Generation. Study of Equatorial Electrojet. Pulsations of Cosmic Medium. Study of Ionospheric Irregularities

Second Harmonic Generation. Study of Equatorial Electrojet. Pulsations of Cosmic Medium. Study of Ionospheric Irregularities Online ISSN : 49-466 Print ISSN : 0975-5896 DOI : 10.17406/GJSFR Study of Equatorial Electrojet Second Harmonic Generation Pulsations of Cosmic Medium Study of Ionospheric Irregularities VOLUME 17 ISSUE

More information

Mean, Median, Mode, More. Tilmann Gneiting University of Washington

Mean, Median, Mode, More. Tilmann Gneiting University of Washington Mean, Median, Mode, More ÓÖ ÉÙ ÒØ Ð ÇÔØ Ñ Ð ÈÓ ÒØ ÈÖ ØÓÖ Tilmann Gneiting University of Washington Mean, Median, Mode, More or Quantiles as Optimal Point Predictors Tilmann Gneiting University of Washington

More information

hal , version 1-27 Mar 2014

hal , version 1-27 Mar 2014 Author manuscript, published in "2nd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2005), New York, NY. : United States (2005)" 2 More formally, we denote by

More information

Planning for Reactive Behaviors in Hide and Seek

Planning for Reactive Behaviors in Hide and Seek University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science May 1995 Planning for Reactive Behaviors in Hide and Seek Michael B. Moore

More information

arxiv:astro-ph/ v1 12 Feb 2004

arxiv:astro-ph/ v1 12 Feb 2004 Extreme Kuiper Belt Object 2001 QG 298 and the Fraction of Contact Binaries Scott S. Sheppard and David Jewitt 1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 sheppard@ifa.hawaii.edu,

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Ordinary Differential Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS Q J j,. Y j, q.. Q J & j,. & x x. Q x q. ø. 2019 :. q - j Q J & 11 Y j,.. j,, q j q. : 10 x. 3 x - 1..,,. 1-10 ( ). / 2-10. : 02-06.19-12.06.19 23.06.19-03.07.19 30.06.19-10.07.19 07.07.19-17.07.19 14.07.19-24.07.19

More information

arxiv:cs/ v4 [cs.na] 21 Nov 2005

arxiv:cs/ v4 [cs.na] 21 Nov 2005 arxiv:cs/0300v4 [cs.na] Nov 005 Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices Arvind Sankar Department of Mathematics Massachusetts Institute of Technology Shang-Hua Teng Department

More information

Application of ICA and PCA to extracting structure from stock return

Application of ICA and PCA to extracting structure from stock return 2014 3 Å 28 1 Ð Mar. 2014 Communication on Applied Mathematics and Computation Vol.28 No.1 DOI 10.3969/j.issn.1006-6330.2014.01.012 Ç ÖÇ Ú ¾Ä Î Þ Ý ( 200433) Ç È ß ³ Õº º ÅÂÞÐÆÈÛ CAC40 Õ Û ËÛ ¾ ÆÄ (ICA)

More information

Electroweak Precision Physics from LEP to LHC and ILC

Electroweak Precision Physics from LEP to LHC and ILC Electroweak Precision Physics from LEP to LHC and ILC 50th Anniversary Particle and Nuclear Physics at KIT W. HOLLIK MAX-PLANCK-INSTITUT ÜR PHYSIK, MÜNCHEN undamental questions of particle physics: constituents

More information

Lecture 2. Distributions and Random Variables

Lecture 2. Distributions and Random Variables Lecture 2. Distributions and Random Variables Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers March 2013. Click on red text for extra material.

More information

Stochastic invariances and Lamperti transformations for Stochastic Processes

Stochastic invariances and Lamperti transformations for Stochastic Processes Stochastic invariances and Lamperti transformations for Stochastic Processes Pierre Borgnat, Pierre-Olivier Amblard, Patrick Flandrin To cite this version: Pierre Borgnat, Pierre-Olivier Amblard, Patrick

More information

Journal of Singularities

Journal of Singularities Journal of Singularities Volume 12 2015 Singularities in Geometry and Applications III, 2-6 September 2013, Edinburgh, Scotland Editors: Jean-Paul Brasselet, Peter Giblin, Victor Goryunov ISSN: # 1949-2006

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

arxiv:cs.na/ v2 14 Oct 2003

arxiv:cs.na/ v2 14 Oct 2003 arxiv:cs.na/0300 v 4 Oct 003 Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices Arvind Sankar Department of Mathematics Massachusetts Institute of Technology Shang-Hua Teng Department

More information

MMJ 1113 Computational Methods for Engineers

MMJ 1113 Computational Methods for Engineers Faculty of Mechanical Engineering Engineering Computing Panel MMJ 1113 Computational Methods for Engineers Engineering Problem Solving Abu Hasan Abdullah Feb 2013 Ùº Òº ÙÐÐ ÚºÒÙÐÐ MMJ 1113 Computational

More information

Periodic monopoles and difference modules

Periodic monopoles and difference modules Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential

More information

Pose Determination from a Single Image of a Single Parallelogram

Pose Determination from a Single Image of a Single Parallelogram Ê 32 Ê 5 ¾ Vol.32, No.5 2006 9 ACTA AUTOMATICA SINICA September, 2006 Û Ê 1) 1, 2 2 1 ( ÔÅ Æ 100041) 2 (Ñ Ò º 100037 ) (E-mail: fmsun@163.com) ¼ÈÙ Æ Ü Äµ ÕÑ ÅÆ ¼ÈÙ ÆÄ Ä Äº ¼ÈÙ ÆÄ Ü ÜÓ µ É» Ì É»²ÂÄÎ ¼ÐÅÄÕ

More information

2.2.3 Absolute value function, x

2.2.3 Absolute value function, x Sets ad fuctios Á ÉÌ Ê É ÑÌÁ ÂÕ Òº ÁÌ ÒÖ Ò ÑÖ ÊÌ Fig 60¹Ö ÑØ Öº å Ì Ì Ð Õ Â f()¹ö value Ø Àº  ÑÉÝ Ì ÒÁ Ì ÑÖ ÌÙ ÑÙÝ ÝÕ Ì Õ Ö Ýµ ÂØ Ò ÚÙÐ ÙÖ ÒÑ Ò Éº 2 x 2 Fig 57 Example 27:  if 0 x < g(x) = 3 if x = 2

More information

A Language for Task Orchestration and its Semantic Properties

A Language for Task Orchestration and its Semantic Properties DEPARTMENT OF COMPUTER SCIENCES A Language for Task Orchestration and its Semantic Properties David Kitchin, William Cook and Jayadev Misra Department of Computer Science University of Texas at Austin

More information

Lecture 8: Multiclass Classification (I)

Lecture 8: Multiclass Classification (I) Bayes Rule fr Multiclass Prblems Traditinal Methds fr Multiclass Prblems Linear Regressin Mdels Lecture 8: Multiclass Classificatin (I) Ha Helen Zhang Fall 07 Ha Helen Zhang Lecture 8: Multiclass Classificatin

More information

HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, 2010

HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, 2010 HERA RESULTS AND DGLAP EVOLUTION: THEORY AND PHENOMENOLOGY STEFANO FORTE UNIVERSITÀ DI MILANO & INFN GLASMA WORKSHOP BNL, MAY 9, SUMMARY SMALL Ü RESUMMATION: WHERE DO WE STAND? ß Ö ÙÑÑ Ø ÓÒ Ó Ä È ÚÓÐÙØ

More information

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Surface Modification of Nano-Hydroxyapatite with Silane Agent ß 23 ß 1 «Ã Vol. 23, No. 1 2008 Ç 1 Journal of Inorganic Materials Jan., 2008» : 1000-324X(2008)01-0145-05 Þ¹ Ò À Đ³ Ù Å Ð (ÎÄÅ Ç ÂÍ ËÊÌÏÁÉ È ÃÆ 610064) Ì É (KH-560) ¼ ³ (n-ha) ³ ËØ ÌË n-ha KH-560 Õ Ì»Þ

More information

Applications of Discrete Mathematics to the Analysis of Algorithms

Applications of Discrete Mathematics to the Analysis of Algorithms Applications of Discrete Mathematics to the Analysis of Algorithms Conrado Martínez Univ. Politècnica de Catalunya, Spain May 2007 Goal Given some algorithm taking inputs from some set Á, we would like

More information

Transdimensional Sampling Algorithms for Bayesian Variable Selection in Classification Problems with Many More Variables Than Observations

Transdimensional Sampling Algorithms for Bayesian Variable Selection in Classification Problems with Many More Variables Than Observations Transdimensional Sampling Algorithms for Bayesian Variable Selection in Classification Problems with Many More Variables Than Observations Demetris Lamnisos, Jim E. Griffin and Mark F. J. Steel Abstract

More information

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications KEKPH06 p.1/17 Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications Kentaro Kojima Based on the work with Kenzo Inoue and Koichi Yoshioka (Department of Physics,

More information

David Blaschke (Univ. Wrocław & JINR Dubna)

David Blaschke (Univ. Wrocław & JINR Dubna) ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) STIαS, April 6 th, ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) T. Klähn, R. Łastowiecki, D. Zabłocki

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Shift Generated Haar Spaces on Track Fields Dedicated to the memory of Walter Hengartner Gerhard Opfer Will be published in Proceedings of a conference on

More information

pnrqcd determination of E1 radiative transitions

pnrqcd determination of E1 radiative transitions pnrqcd determination of E radiative transitions Sebastian Steinbeißer Group T3f Department of Physics Technical University Munich IMPRS talk 3.3.7 In collaboration with: Nora Brambilla, Antonio Vairo and

More information

arxiv: v1 [astro-ph] 14 Nov 2008

arxiv: v1 [astro-ph] 14 Nov 2008 Astronomy & Astrophysics manuscript no. papersfr_new c ESO 2018 October 24, 2018 Ñ ÓÒ¹Ð Ò Ð Ö Ø ÓÒ Ó Ø ËØ Ö ÓÖÑ Ø ÓÒ Ê Ø ÖÓÑ Ø ËÐÓ Ò Ø Ð Ë Ý ËÙÖÚ Ý B. Argence 1,2 and F. Lamareille 1,3 arxiv:0811.2420v1

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

Factors and processes controlling climate variations at different time scales: supporting documents

Factors and processes controlling climate variations at different time scales: supporting documents Factors and processes controlling climate variations at different time scales: supporting documents Camille Risi LMD/IPSL/CNRS 3 july 2012 Outline Goals understand factors and processes controlling climate

More information

APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL

APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL 49 6 Vol49 No6 213 6 731 738 ACTA METALLURGICA SINICA Jun 213 pp731 738 º à 35Mn2 ³Í Ê Ü 1) ĐÛ 1,2) 1) Æ Ý 2) 1) ű± ± ±, 183 2) ű Û¼± ¼», 183 Ð Ê µ ¼ 3 Æ ² Ù, ÛÎ 35Mn2 Æ ²µÛ ºÐ Î Ç Đ ¹Ù ² ¾ ÜÜĐ ², Ù

More information

Improving the Berlekamp algorithm for binomials x n a

Improving the Berlekamp algorithm for binomials x n a Improving the Berlekamp algorithm for binomials x n a Ryuichi Harasawa Yutaka Sueyoshi Aichi Kudo Nagasaki University July 19, 2012 1 2 3 Idea Example Procedure after applying the proposed mehod 4 Theoretical

More information

Ayuntamiento de Madrid

Ayuntamiento de Madrid 9 v vx-xvv \ ü - v q v ó - ) q ó v Ó ü " v" > - v x -- ü ) Ü v " ñ v é - - v j? j 7 Á v ü - - v - ü

More information

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Final exam: Automatic Control II (Reglerteknik II, 1TT495) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Automatic Control II (Reglerteknik II, TT495) Date: October 22, 2 Responsible examiner:

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

First-principles investigations on the structural, electronic and magnetic properties of Cr-doped (ZnTe) 12 clusters

First-principles investigations on the structural, electronic and magnetic properties of Cr-doped (ZnTe) 12 clusters J. At. Mol. Sci. doi: 10.4208/jams.100210.102510a Vol. 2, No. 3, pp. 262-272 August 2011 First-principles investigations on the structural, electronic and magnetic properties of Cr-doped (ZnTe) 12 clusters

More information

Concrete subjected to combined mechanical and thermal loading: New experimental insight and micromechanical modeling

Concrete subjected to combined mechanical and thermal loading: New experimental insight and micromechanical modeling Concrete subjected to combined mechanical thermal loading: New experimental insight micromechanical modeling Thomas Ring 1, Matthias Zeiml 1,2, Roman Lackner 3 1 Institute for Mechanics of Materials Structures

More information