x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),

Size: px
Start display at page:

Download "x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),"

Transcription

1 ÛÜØ Þ ÜÒ Ô ÚÜ Ô Ü Ñ Ü Ô Ð Ñ Ü ÜØ º½ ÞÜ Ò f Ø ÚÜ ÚÛÔ Ø Ü Ö ºÞ ÜÒ Ô ÚÜ Ô Ð Ü Ð Þ Õ Ô ÞØÔ ÛÜØ Ü ÚÛÔ Ø Ü Ö L(f) = f(x)dx ÚÜ Ô Ü ÜØ Þ Ü Ô, b] Ö Û Þ Ü Ô Ñ ÒÖØ k Ü f Ñ Df(x) = f (x) ÐÖ D Ü Ü ÜØ Þ Ü Ô Ñ Ü ÜØ Ñ Ð Ñ Ü ÜØ ºD k (f) = D(D k f) ÐÖ k ÜÕÒ Ü Ü ÜØ ºL(αf + βg) = αl(f) + βl(g) Ñ Ò ÛÒ Ñ ÜÒ Ð Ñ Ü Ô Ð L Ü Ô Ð Ü ÜØ Ñ ºÑ Ô Ð Ø p, b] Ö Û ÞÜ Ò ÚÛÔ Ø f Þ e(x) = f(x) p(x) ÐÖ Ü Ò e ÜÝ L(f) L(p) = L(e) p ÐÖ f ÐÖ Ü Ò p(x) = n j=0 f(x j)l j (x) Ñ Ò ºp Ñ Ô Ð Ø ÐÖ f ÚÛÔ Ø Ü Û Ý j = 0,,..., n L(l j ) = w j Ñ x 0, x,...,x n Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø Ñ ºL(p) Ý ÐÖ L(f) Þ ÜÖ ÐÝ Ý E(f) = L(f) L(p) = L(e) ºL(f) L(p) Ó Û E(f) Þ ÜÒ Ô Ü º¾ Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø P n, b] Ö Û Ü f Þ x 0, x,...,x n ³ ÛÜØ µ º½ Õ Ô Ø ÐÖ º, b] Ö ÛÐ Þ Ý µ f(x) p n (x) = fx 0, x,..., x n, x]w n (x), Ó ºw n (x) = n j=0 (x x j) ÜÝ d fx fx dx 0,..., x n, x] = lim 0,...,x n,x+h] fx 0,...,x n,x] h 0 h = lim h 0 fx 0,...,x n, x, x + h] = fx 0,...,x n, x, x], ½

2 ¾ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Ó Ð º½µ f (x) p n (x) = fx 0,...,x n, x, x]w n (x) + fx 0, x,...,x n, x]w n (x). Ð ÛÔ ³ ÛÜØ ÐÝ º ØÝÒ ØÐ E(f) = Df Dp n = f (x) P n (x) = f(n+) (ξ) (n + )! w n(x)+ f(n+) (η) (n + )! w n (x), ξ, η (, b). º¾µ Ñ Ü Ñ Ó Ø Ð Ð ÚÐ ØÜ Ô Þ ÛÔÒ Þ ÞÜ Ô Þ Ý Ð Ñ Ú Ü Ñ ÞÜ Ô Þ Ñ Ý Ò ÛÔ Ó Ò Þ Ý ÚÐ ØÜ Ô Þ ÛÔ Þ Ð ÔÓ ÔÝ Ü Ò Þ ÛÜ Ð Ò µ º½ ÐÝ Ó Ò Ó Ð ÝÐ k Ü Ö w n (x) = w n (x k ) µ º¾ Þ Ð Ð º µ E(f) = f(n+) (η) (n + )! w n(x k ) = f(n+) (η) (n + )! n j=0, j k (x k x j ). Ó Ò ÜÛÒ ºw n(x) = 0 ÛÔ ÞÜ Ô Þ Ý Ð ÞÜ Ô Þ ÜÝØ µ º¾ Þ Ð Ð Ð ÔÓ Ó Ý Ü Ü Ò Þ ÛÜ Ð Ò µ º½ ÐÝ º µ E(f) = f(n+) (ξ) (n + )! w n(x) = f(n+) (ξ) (n + )! n (x x j ). j=0 º Ý Þ ÜÖÔ n ÐÝ Ñ ÜÖ Ò Ü Ö D(f) ¹Ð Ü Û D(p n ) Þ Ý Ô ºD(f) ¹Ð ÜÖ Ð D(p 0 ) = 0 Ó Ò Ñ Ð ÛÒ n = 0 Ü Ö p (x) = f(x 0 )+fx 0, x ](x x 0 ) ÞÒ ºD(f) ¹Ð Þ Ô Ý Þ ÜÖ ÞÝ Ð ÛÔ n = Ü Ö x 0 ÛÔ ÞÜ Ô Þ ÜÖ ºD(p ) = fx 0, x ] Ð ÛÔ º µ f (x 0 ) fx 0, x 0 + h] = f(x 0 + h) f(x 0 ). h µ º Ø ÐÖ Ý Þ ÜÖ º µ E(f) = hf (η). ¹Ü Ô Þ ÛÔ x = x + h x 0 = x h Þ ÛÔ ÞÜ ÐÖ Þ ÝÖÔ ÞÜ ÜÖ ÜÛÒ º ÚÐ Ø º µ f (x) fx h, x + h] = f(x + h) f(x h). h µ º Ø ÐÖ Ý Þ ÜÖ º µ E(f) = 6 h f (ξ).

3 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÞÜ ÔÐ Ý fx 0, x ] Lgrnge ØÝÒ Ø ÐÖ Þ Ö ÞØÒ ÓÔ n = Ü Ö Þ Ú Þ Ö Û Þ ÛÔ Ð Ð Ü Û ÛÐ Ò ÝÜØ Ó Ð ºx Ó Ð x 0 Ó ÞÒ ÕÒ ÛÔ º ÝÐ ÜÖ Ñ ÔÐ Û Ó ºÓ Û x x 0 ÝÜØ Ý ÔÞ ÞÒ Þ Þ ÜÖ Þ Ð ÛÔ n = Ü Ö p (x) = f(x 0 ) + fx 0, x ](x x 0 ) + fx 0, x, x ](x x 0 )(x x ), x = x 0 +h x = x 0 +h Ü Ô Ñ ºp (x) = fx 0, x ]+fx 0, x, x ](x x 0 x ) Ð ÛÔ º µ f (x 0 ) 3f(x 0) + 4f(x 0 + h) f(x 0 + h). h º½¼µ E(f) = 3 h f (η). º½½µ f (x) f(x 0 + h) f(x 0 h). h Ð ÛÔ Ý Þ ÜÖ Ð ÛÔ x = x 0 + h x = x 0 h Ü Ô Ñ º½¾µ E(f) = 6 h f (η). ÐÖÒÒ ÚÐ ØÜ Ô Ò Ô Ð Ø ÞÜ Ö Þ ÜÒ Ô Ü Ð Þ ØÕ Ô Þ Õ Ô Ð ÛÐ ÜÝØ º½ µ p n (x) = n j=0 fx 0, x,...,x j ]w j (x), w (x), w j (x) = (x x j )w j (x), j. ÜÞ º½ µ e n (x) = fx 0, x,...,x n, x]w n (x). Ý Ü Ü Ð Ô ÐÖ ÑÝÐ ºÜÞ ÜÕÒ Þ Ü Ô Ñ Ü Û Ý Ð ÞÜÝØ Ò µ º½ Õ Ô Ô Ü ºÑ ÒÖØ ÜØÕÒ µ º½ Õ Ô Ý ÛÐ Ò ÝÜØ Þ d dx fx 0,...,x n, x] = fx 0,...,x n, x, x]. Ñ ÛÞÒ k > Ü Ö Ô º½ µ d k dx kfx 0, x,...,x n, x] = k!fx 0, x,...,x n, x,...,x]. }{{} k ºÑ ÒÖØ k Þ ØÐ Þ Ø ÚÜ Ü f ÚÛÔ Ø Ý ÔÞ

4 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ k ÐÖ ÚÛ Ô d k dx kfx 0,...,x n, x] = d ( ) d k dx dx k fx 0,...,x n, x] = d dx ((k )!fx 0,...,x n, x,...,x]. }{{} k ÓÒÕÔ ºy () = = y (k) = x ÜÝ fx 0,...,x n, y (),...,y (k) ] ÐÖ Þ ÓÒÕÔ Ð ÜÝ Ñ ÔÞÝÒ k ÐÝ ÚÛÔ Ø ρ ρ(y (),...,y (k) ) = fx 0,..., x n, y (),...,y (k) ] Ð ÛÔ ÞÜÝÜÝ ÐÐ ÝÒÞÝÔ º(y (j) = x) x ÐÝ ÚÛÔ Ø Ñ Ò d dx ρ(y(),...,y (k) ) = k dρ dy (j) dy (j) dx = k dρ dy = kfx 0,...,x (j) n, x, x,...,x], }{{} º ÔÖ Þ Ô k º½ µ f (k) (x) n j=0 fx 0, x,..., x j ] dj dx j w j (x). Ð ÛÔ µ º½ ¹ µ º½ Þ Õ ÔÒ º½ µ E(f) = dk dx k (fx 0,..., x n, x]w n (x)). Ý f ÐÝ k ÜÕÒ ÞÜ ÔÐ Ü Ü Û º½ µ f (k) (x) k!fx 0, x,...,x k ]. Ü Ñ Ü Û ºx 0, x,..., x k Þ ÛÔ Þ Ð Ò Ð Ò Ô Ò Ö ÛÐ Ý x ÜÝ µ º½ Õ Ô ÐÝ ³ ÛÜØ º ØÝÒ ÐÝ Ú Þ µ º½ Õ Ô º Ó Û Ö Û ÐÝ ºn = k Ü Ö Þ ÜÒ Ô ÚÜ Ô º Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø p n, b] Ö Û Ø ÚÜ ÚÛÔ Ø f Þ º½ µ I(f) = ³ ÛÜØ µ º½ Õ Ô Ø ÐÖ º, b] Ö ÛÐ Þ Ý µ x 0, x,...,x n f(x) p n (x) = fx 0,...,x n, x]w n (x), f(x)dx = p n (x)dx + Ó Ð ºw n (x) = n j= (x x j) ÜÝ fx 0, x,...,x n, x]w n (x)dx

5 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ º¾¼µ E(f) = I(f) I(p n ) = fx 0, x,...,x n, x]w n (x)dx ØÐ Ö Û ÓÒ Õ Ý w n ÚÛÔ ØÐ, b] Ö Û Ñ º Õ Ô ÝØÐ ÓÞ Ô Ñ Ü Ñ ÜÛÒ º¾½µ E(f) = fx 0, x,...,x n, η] ÐÜ Ô Ó Ý ÐÝ Ñ Ô ÜÖ ØÝÒ w n (x)dx Þ Ø ÚÜ Þ Ü Ô n+ Ý f ÚÛÔ ØÐ Ð Õ Ô Ñ ºη (, b) ÞÒ ÕÒ ÛÔ Ü Ö º¾¾µ E(f) = (n + )! f(n+) (ξ) Ü ÖÝ ξ (, b) ÛÔ ÞÒ Û w n (x)dx. µ º¾¼ Þ ÝØÐ Ð Ô w n(x)dx = 0 Ð, b] Ö Û Ö Û ÓÒ Õ Ó w n ÚÛÔ ØÐ Ñ fx 0,...,x n, x]fx 0,..., x n, x n+ ] + fx 0,...,x n, x n+, x](x x n+ ). ÓØ E(f) = fx 0, x,...,x n+ ]w n (x)dx + º¾ µ E(f) = Ð ÛÔ µ º¾¾ Õ Ô Þ ÚÔ fx 0, x,...,x n+ ](x x n+ )w n (x)dx. Ó Ð ÔÞ Ô Ø ÐÖ ÕØ Ð Ý Ó Ý Ü ÐÜ Ô fx 0, x,...,x n+, x]w n+ (x)dx., b] Ö Û Ö Û ÓÒ Õ Ý w n+ ÚÛÔ ØÐÝ Ü Ð ÓÞ Ô x n+ ÛÔ Þ Ñ º¾ µ E(f) = fx 0, x,...,x n+, η] w n+ (x)dx Ñ ÝÜÐ Ð Ô Þ Ø ÚÜ Þ Ü Ô n + Ý f ÚÛÔ ØÐ Ð Õ Ô Ñ ºη (, b) ÞÒ ÕÒ ÛÔ Ü Ö º¾ µ E(f) = (n + )! f(n+) (ξ) Ü ÖÝ ξ (, b) ÛÔ ÞÒ Û w n+ (x)dx. Þ Ý Þ ÜÖÔ Þ Ü ÛÒ ÚÜ Ô Þ Õ Ô Ð ÛÐ ÞÔÒ ÐÖ µ º½ Õ Ô ÝÒÞÝÔ ºµ º¾ ¹ µ º¾¾ Þ Õ Ô Þ ÞÜ Ö Ü Û

6 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÕØ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º½ f(x) = f(x 0 ) + fx 0, x](x x 0 ), I(p 0 ) f(x 0 )dx = f(x 0 )(b ). º¾ µ º¾ µ E(f) = f (ξ) Ð ÛÔ x 0 = Ñ I(f) f()(b ). µ º¾¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û w 0 (x) = x 0 (x )dx = f (ξ)(b ). ºÑ Ô ÐÒ Þ Ý Þ ÜÛÔ ÚÜ Ô Þ Ý (I) Ð ÛÔ x 0 = +b Ñ ( ) + b º¾ µ I(f) f (b ). w (x) = ( ) x +b b Ð ÛÔ x = x 0 Ü Ô º w 0(x)dx = ( ) x +b = 0 Ó µ º¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û 0 (II) º¾ µ E(f) = 4 f (ξ)(b ) 3. ºÖÚÒ Þ ÛÔ Þ Ý Þ ÜÛÔ ÚÜ Ô Þ Ý Ô Ý Ü ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º¾ f(x) = f(x 0 ) + fx 0, x ](x x 0 ) + fx 0, x, x]w (x), I(p 0 ) = (f(x 0) + fx 0, x ](x x 0 ))dx = f(x 0 )(b ) + fx 0, x ](b )(b + x 0 ). Ð ÛÔ x = b ¹ x 0 = Ñ (III) º ¼µ I(f) (b )(f() + f(b)). µ º¾¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û w (x) = (x )(x b) 0 º ½µ E(f) = f (ξ)(b ) 3. º ØÜ ÐÐ Þ ÜÛÔ ÚÜ Ô Þ Ý

7 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÔÝ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º f(x) = f(x 0 ) + fx 0, x ]w 0 (x) + fx 0, x, x ]w (x) + fx 0, x, x, x]w (x), I(p 0 ) = (f(x 0) + fx 0, x ](x x 0 ) + fx 0, x, x ](x x 0 )(x x ))dx = f(x 0 )(b ) ( + fx 0, x ](b )(b + x 0 ) ) +fx 0, x, x ] (b x0 ) (b x 6 + x 0 ) ( x 0) ( x 6 + x 0 ). Ü Ô x = x Ü Ô º w (x) = 0 Ð ÛÔ x = b ¹ x = +b º ¾µ I(f) (b ) f() + f ( +b ( ( = b 6 f() + 4f +b ) ) + f(b), º µ E(f) = w 3 (x)(x x 3 )w (x) = (x ) ( x +b ) f() + 6 ( f(b) f ( +b x 0 = Ñ ) (IV ) (x b) ) + f(b) )] fx 0, x, x, x 3, x]w 3 (x)dx = 90 f(4) (ξ)(b ) 5. º(Simpson s rule) Ó ÕØÒ Õ ÐÐ Þ ÜÛÔ Þ ÜÛÔ ÚÜ Ô Þ Ý Þ Ý ÐÝ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º f(x) = f(x 0 ) + fx 0, x ]w 0 (x) + fx 0, x, x ]w (x) + fx 0, x, x, x 3 ]w (x) +fx 0, x, x, x 3, x]w 3 (x), ÚÛÔ Ø ºw 3 (x) = (x ) (x b) Ð ÛÔ x = x 3 = b ¹ x 0 = x = Ñ (V ) Ý Ý Ð µ º¾¾ Õ Ô ÝÒÞÝÔ Ó Ð, b] Ö Û Þ º µ I(f) b (b ) (f() + f(b)) + (f () f (b)), º µ E(f) = 70 f(4) (ξ)(b ) 5. Ñ Ø Ð Ò Ý ØÜ ÐÐ Ð Ô ºÓÛ ÞÒ ØÜ ÐÐ Þ ÜÛÔ ÚÜ Ô Þ Ý ÜÝ x = b x = y = 0 Ñ ÜÝ ÐÖ Ü Ò ØÜ Ý ÐÜ Ô Þ Ü ÜÝ Ó Ý Ý Ñ Ý ÞÒ Ó (b, f(b)) (, f()) Þ ÛÔ Ü Ü Ö º ÚÛÔ Ø Þ ÝÐ Þ ÜÖ ÔÐ Û (I) (V ) Ñ ÜÛÒ Ü Ö Ô Þ ØÝ ÚÜ Ô Þ Õ Ô Ü Ö k ÜÖÒ ÜÝ (b ) k ÑÜ Þ Ñ ÐÐ Ð Ñ º Ð Ö Þ Ý ÐРе Þ ÞÒ ÖÐ ºÐ b Ö Û Ü ÜÝ Û Ð ÛÔ Ð Ó Ð º¹Ò Ð ÑÐÝ ÜØÕÒ Ñ Ý Ü k > ¹Ý Ó Ò Ó ÐÖ ÜÞ º Ô Û Ý Ñ Ó Û Ü ÐÖ Ñ Ö Û Ü Ö

8 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Þ Ý Ñ Õ Ñ Ý Ü Ó Û Ñ Ò Ð Ü Ý Ñ Ö Û n ¹Ð, b] Ö Û Þ ÛÐ Ô º Ó Û Ñ Ö Û n Ð Ö Û ÞÛ Ð ÐÖ (I) (V ) Ñ ÜÛÒ ÐÖ Ñ ÕÕ Ò ÚÜ Ô Þ Õ Ô ÞÖ ÞØÔ j = x j = + jh Û Ð Þ ÛÔ ºh = b Ý Ü ÐÖ Ñ Ö Û N ¹Ð, b] N º0,,...,N Ñ Ô ÐÒ Þ Ý (I) º º xj º µ µ º¾ ¹ µ º¾ Þ Õ Ô Ø ÐÖ Ñ Ð ÛÒ x j, x j ] Ö Û Ð x j f(x)dx = (x j x j )d(x j ) + f (ξ(x j x j ) = hf(x j ) + f (ξ)h. I(f) h Ñ ÝÜÐ Ð Ô N f(x j ), ÞÜ Ô Ô Ô Ý Ó Ò Ð N f(x)dx = N xj x j f(x)dx ¹Ý Ó Ò E(f) = h f (ξ)(b ). f (ξ j )h µ º¾ ¹Ò ÞÐ ÛÞÒ Ý Þ Õ Ô ºµ º Þ Ñ ÛÒ ξ (, b) Ñ Û Ø ÚÜ ÖÚÒ Þ ÛÔ Þ Ý (II) º º º µ I(f) h N ( xj + x j f ), E(f) = b 4 f (ξ)h. Ð ÛÔ µ º¾ ¹ µ º¾ Þ Õ ÔÒ Ñ ØÜ Þ Õ Ô (III) º º Ð ÛÔ µ º ½ ¹ µ º ¼ Þ Õ ÔÒ º µ I(f) h N f(x j ) + f(x j ) = h(f(x 0) + f(x N )) + h N f(x j), E(f) = b f (ξ)h. Ó ÕØÒ Õ Þ Õ Ô (IV ) º º º µ Ð ÛÔ µ º ¹ µ º ¾ Þ Õ ÔÒ I(f) h f() + f(b) + N 6 f(x j) + 4 N f ( x j +x j ) ], E(f) = b 80 f(4) (ξ) h4. 4

9 Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÞÔÛ ÞÒ Ñ ØÜ Þ Õ Ô (V ) º º Ð ÛÔ µ º ¹ µ º Þ Õ ÔÒ º ¼µ I(f) h(f() + f(b)) + h N f(x j) + h(f () f (b)), E(f) = b 70 f(4) (ξ)h 4. Ñ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô Ü Û º ÐÜ Ô ÐÝ Ü Û Ò Ü Ý ÓØ Ý Ò Ý ÐÖ ÓÞ Ô Ñ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô Ü Û Ü ÛÐ Ñ Ò Û Ñ Ø Ö Ô ÜÝ Þ Ý Þ Ð Ð Ô Ô Þ Û Ò ÜÞ Ñ ÐÒ Ò Ò Ð Ø ÐÜ Ô Ð Ü Û ÞÞÐ Ó Ô Ô Ý Þ Ö Þ ºÑ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô R = {(x, y) x b, c y b} ÜÒ Ð Ü Ý Ò ÝÐ Ó ÐÒ R ÜÝ f(x, y)dxdy Þ Ý Ñ Ó ÕØÒ Õ Û Ü ÖÔ Ð Ø ÐÜ Ô Ü ÛÐ ºÑ Ö Û < b c < d Ü Ö Ñ ÖÚ ÐÝ Ñ Ñ ÒÐÝ m n Ü Ú Newton-cotes R º ½µ º ¾µ R { h = b n k = d c m Ü Ú Ò ÞÜÝÜÝ ÐÜ Ô Ð Ø ÐÜ Ô Þ Þ Ô f(x, y)dx = ( d f(x, y)dy c ) dx d f(x, y)dy Ý ÜÒ Ð µ º ¾ ¹ Ò ÔØ ÐÜ Ô Ý Ð Ó ÕØÒ Õ Û ÝÒÞÝÔ c j = 0,,,..., m Ð Ü Ö y j = c + jk ºÖ Û x ÜÝ d c = k 3 f(x, y)dy f(x, y 0 ) + m f(x, y j) + 4 m f(x, y j ) + f(x, y m ) ] (d c)k f(x,µ) y 4, Ó Ð (c, d) Ö Û µ ÛÔ Ý Ü Ö º µ d c = k 3 f(x, y)dydx + k 3 f(x, y 0 )dx + k 3 f(x, y m )dx m (d c)k4 80 f(x, y j )dx + 4k 3 4 f(x, µ) y 4 m f(x, y j )dx

10 ½¼ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ x i = +ih µ º ÝÒ ÐÜ Ô Ð Ð Ó ÕØÒ Õ Û ÐÝ Ü Û Þ Ý Ð ÖØÔ Ý Ö 0 i n ÜÝ f(x, y j )dx f(x 0, y j ) + n f(x i, y j ) + 4 n = h 3 i= i= ] f(x i, y j ) + f(x n, y j ) b 80 h4 4 f(ξ,y j ) x 4 ÐÖ Ó ÞÔ Ð Ø ÐÜ Ô ÐÝ Ü Û Õ ξ (, b) ÛÔ Ý Ü Ö d º µ º µ c f(x, y)dydx f(x 0, y 0 ) + n f(x i, y 0 ) + 4 n = hk 9 i= i= +4 m f(x 0, y j ) + f(x 0, y m ) + 4 m f(x i, y 0 ) + f(x n, y 0 ) + m n i= f(x i, y j ) + 8 m i= f(x 0, y j ) n f(x i, y j ) +8 m n f(x i, y j ) + 6 m n f(x i, y j ) + m f(x n, y j ) i= i= ] +4 m f(x n, y j ) + m f(x i, y m ) + 4 n f(x i, y m ) + f(x n, y m ) + E, k(b )h f(ξ 0,y 0 ) x 4 i= + m k(b )h4 E = f(ξ j,y j ) x m (d c)(b ) º µ E = h 4 4 f 80 Þ ÜÛÐ Ñ Ô Ô ÖÒ Ô º I i=0 j=0 i= ÐÖ Ô ÞÔ E Ý ÜÝ ] 4 f(ξ j,y j ) + 4 f(ξ m,y m ) x 4 x 4 (d c)k f(x, µ) dx y 4 Ò Þ Ð ÞÔÞ Ô Ý R Ñ Þ Þ Ø ÚÜ 4 f 4 f y 4 ] m 4 f (d c)(b )k4 (η, µ) x x (η, µ) + f 4 k4 4 y 4 f (η, µ) y4 ] ( η, µ) 4 x 4 Ñ k = d c m ÚÔ ºR Ñ Þ η, µ, η, µ Þ ÛÔ Ó Ý Ü Ö ln(x + y)dydx Ð Ø ÐÜ Ô ÔÐ Ó ÞÔ º½ Ò w ij ln(x i +y j ) = k = 0.5 h = 0.5 m = n = ÔÐ Ó ÞÔ ÜÝ º

11 ½½ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ f x 4 (x, y) = 6 3 f = f = (x+y) 4 x 3 (x+y) 3 x f = (x+y) x x+y Ó Ð f = ln(x+y) Ó ÞÔ ÞÒ ÛÒ E Ý Ó Ð f = y 4 ] E (y y 0 )(x 4 x 0 ) h 4 4 f (η, µ) 80 x + k 4 4 f ( η, µ) 4 x mx 80 (x,y) R mx (x+y) 4 (x,y) R ] mx (x+y) 4 = ] (x 0 +y ) 4 (x+y) 4 ] 96 (x+y) 4 º Þ ÜØÕ 5 ÞÐÖ Õ ÔÒ ÑÖ ØÚ ÛÔ I Ó Ð Ñ ÐÜ Ô Ü ÛÐ Þ Ð Ð Ð ÜÝØ Ñ Ð Ø Ñ ÐÜ Ô Ü ÛÐ Ô ÜÝ Ý ÐÝ Ð ÐÜ Ô ÞÜ ÐÖ ÝÖÔ ºÑ ÝÐ ÝÒ Ñ ÐÜ Ô ÜØ Ñ ÜÒ ÐÜ Ô Þ ÜÖ ÐÝÒÐ ÝÖÔÝ Ý ÐÝ Þ ÑÚÒÚÐ ºÓ ÕØÒ Õ Þ Õ Ô Ý Ò Ý Þ Ñ ÔÝ ÔØÐ ºI = ºÕ Þ ÝÒ Ò Þ ÐÖ ÜÞ Þ Ý ÝÒÞÝ Ð ÜÝØ Ð Ø ln(x + y)dydx Ð Ø ÐÜ Ô ÔÐ Ó ÞÔ º¾ Ò R = {(x, y).4 x ÚÜ Ô Ñ Þ Þ ÔÝÔ I Ð Ø ÐÜ Ô Ü ÛÐ Õ Þ Ý Þ Ý Ö Þ Ü Ô Ð ºR = {(u, v) u, v } ¹Ð {.0,.0 y.5} u = (x.4.0) Ý µ ÚÜ Ô ÔÞÝÒ Ô Ý º.0.4 v = ÐÖ ÞÜ ÒÝ Ö (y.0.5).5.0 I = ln(0.3u + 0.5v + u)dvdu. Ð ÛÔ Ó ÛÖ ÝÒÞÝ Ð I Ý Ð ÛÔ v ¹Ð Ñ u ¹Ð n = 3 Ü Ö Õ ÐÝ Þ Ô Þ ÝÒÞÝ Ð ÓÞ Ô Ý Ö ºÞ ÜØÕ 8 ÞÐÖ Õ ÔÒ ÐÝ ØÚ Þ ÛÔ I ÔÐ Ò Ý Ó Ð Ø ÐÜ Ô Þ ÜÖ Ð Ñ Ô Ô ÖÒ Ô ÐÐ ÜÞ ÜÛÒ ÓÔ ÞÔ Ý Ö º µ º µ d(x) c(x) d (y) c (y) f(x, y)dxdy f(x, y)dxdy. Þ Þ Ó ÕØÒ Õ ÐÐ ÑÖØ Ö ÝÒÞÝÔ Ô µ º ÕÒ Ñ Ð Ø Ñ ÐÜ Ô Þ ÜÖ Ð Ò x Ü Ú ÐÖ Ñ ÖÚ Ð Þ Ö ÛÔ Ü Ú ÝÖÔ ºÑ ÔÞÝÒ Þ ÞÖ Û

12 ½¾ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ d(x) = h 3 { c(x) f(x, y)dydx k(x) 3 f(x, c(x)) + 4f(x, c(x) + k(x)) + f(x, d(x))]dx k() (f(, c()) + 4f(, c() + k()) + f(, d())) 3 h = b + 4k(+b) 3 f( + h, c( + h)) + 4f( + b, c( + h) + k( + h)) + f( + h, d( + h))] + k(b) 3 f(b, c(b)) + 4f(b, c(b) + k(b)) + f(b, d(b))] }. h = b n J = 0 J = 0 ºµ º ÕÒ Ð Ø ÐÜ Ô ÐÝ Þ ÜÖ Ð ÓÞ Ô Ò Ü Ú ºI = d(x) c(x) (Ó Ý Ü Ü ÐÝ ÑÛÒ ). ( Ü ÐÝ ÑÛÒ ). ( ¹ Ü ÐÝ ÑÛÒ ). J 3 = 0 For i = 0,,,..., n, do x = + ih Hx = d(x) c(x) m k = f(x, c(x)) + f(x, d(x)), k = 0 f(x, y)dydx Ü ÛÐ ÑÞÜ Ð º½ ÑÞ Ü Ð n, m Ñ Ñ ÒÐÝ Ñ ÜØÕÒ, b ÚÛ Þ ÛÔ ÐÛ ºI ÜÖÐ ÜÛ J ÜØÕÒ ÐØ (Ñ Þ Ò ÛÒ Þ ÛÔ ÐÝ Ñ Õ Ü Ö) (Ñ ¹ Þ Ò ÛÒ Þ ÛÔ ÐÝ Ñ Õ Ü Ö) k 3 = 0 For j =,,..., m, do y = c(x) + j Hx z = f(x, y) If j mod = 0, k + z k else k 3 + z k 3 L = (k + k + 4k 3 ) Hx 3 ( ) d(xi ) f(x i, y)dy Ý Ò L : ÜÖ c(x i ) If i = 0 or i = n, J + L J elseif i mod = 0, J + L J, else J 3 + L J 3 J = (J + J + 4J 3 ) h 3 print J. Stop.

13 ½ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Ñ Þ ÐÖ f(x, y) = e y x ÚÛÔ Ø Ü Ö ÑÞ Ü Ð ÑÝ Ô Ñ º Ò Þ Ò ÐÜ Ô ÜÖ º R = {(x, y) 0. x 0.5, x 3 y x }, 0.5 x 0. x 3 e y x dydx Ð ÛÔ n = m = 5 ÜÝ º Þ ÜØÕ 7 ÞÐÖ Õ ÔÒ ÐÝ ØÚ Þ ÛÔ Ñ ÜÒ Ñ Ð Ü Ô Þ ÜÖ ÐÖ Ñ Ð ÜÞ º Ó ÞÔ ÜÝ ÛÜØ ÖÚ Ý ÑÞÜ Ð Ø Ö Ñ Ñ Ð Ø Ñ Ð Ü Ô Þ ÜÖ º½ Ð ÜÞ Ý Þ ÜÖ n = m = xy dydx º½. x.0 x (x + y )dydx º¾ º e y x dxdy º 0 0 n = Ó ÞÔ ÜÝ ÛÜØ ÖÚ Ý ÑÞÜ Ð Ø Ö Ð Ø Ð Ü Ô Þ ÜÖ º¾ Ð ÜÞ Ý Þ ÜÖ 3, m = 5 π y cos( x)dydx. 0 0 ÝÐ ÝÒ Ð Ü Ô Þ ÜÖ Ð Ó ÕÒ Õ ÐÐ ÝÒÞÝ e xyz dxdydz, º Ð ÜÞ ºÑ Ý Ñ ÛÐ Ý ÐÝÐ Ñ Ô Ý Ñ Ü Ú ÐÖ Ñ Ö Û Þ ÛÐ ÜÝ Ý Ð ÝÒ Ð Ü Ô Þ ÜÖ Ð Ð Ø Ð Ü Ô Þ ÜÖ ÐÝ ÑÞÜ Ð Ò ÑÞÜ Ð Ô º Ð ÜÞ d(x) f(x,y) c(x) e(x,y) H(x, y, z)dzdydx. Ü Ú Ò

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1 Õ 83-25 Þ ÛÐ Þ Ð ÚÔÜØ Þ ÝÒ Þ Ô ÜÞØ ¹ 3 Ñ Ð ÜÞ u x + u y = x u u(x, 0) = e x2 ÝÒ Þ Ü ÞØ º½ dt =, dt = x = t + c, y = t + c 2 We can choose c to be zero without loss of generality Note that each characteristic

More information

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò ÝÒÑ Ò Ò Ö Ð Ö Ò Ó Ò Ö ÀÍ ÖÐ Òµ Ó Ò ÛÓÖ Û Ö Ò ÖÓÛÒ Ö Ú ½ ¼¾º ¾½ Û Åº Ä Ö Ö Ú ½ ¼¾º ¼¼ Û Äº Ñ Ò Ëº Ï ÒÞ ÖÐ Å ÒÞ ½ º¼ º¾¼½ ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ

More information

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ½¾ Ù Ö ÓÖ ÖÓÑ Ö ÓÒ Ò ÄÈ ÐØ Ö ½¾ ½¾ ½» ½½ ÓÖ Ò ÊÄ Ò Ò Û Ò Ò Ö Ý ¾ Á b 2 < 4ac Û ÒÒÓØ ÓÖ Þ Û Ö Ð Ó ÒØ Ó Û Ð Ú ÕÙ Ö º ËÓÑ Ñ ÐÐ ÕÙ Ö Ö ÓÒ Ò º Ù Ö ÓÖ ½¾ ÓÖ Ù Ö ÕÙ Ö ÓÖ Ò ØÖ Ò Ö ÙÒØ ÓÒ

More information

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 ÓÑÔÙØ Ö Ü Ö Ì ÓÓØ ØÖ Ô Ð ÓÖ Ø Ñ Ò Ý Ò Ò ÐÝ In this exercise we will

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER È Ö Ò Ò Ù Ò Ò Ò ÖÝ ÒÙÐ Ö Ý Ø Ñ Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER Radu.Gherghescu@nipne.ro IFIN-HH, Bucharest-Magurele, Romania and Frankfurt Institute for Advanced Studies, J

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Ordinary Differential Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SKMM 3023 Applied Numerical Methods Ordinary Differential Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Ordinary

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Solution of Nonlinear Equations

More information

Proving observational equivalence with ProVerif

Proving observational equivalence with ProVerif Proving observational equivalence with ProVerif Bruno Blanchet INRIA Paris-Rocquencourt Bruno.Blanchet@inria.fr based on joint work with Martín Abadi and Cédric Fournet and with Vincent Cheval June 2015

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Solution of Nonlinear Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, 202 Abstracts ÁÒÚ Ö Ð Ñ Ø Ó Ø¹Ú ÐÙ ÙÒØ ÓÒ ÁÞØÓ Ò ÞØÓ º Ò ÙÒ ¹Ñ º ÙÐØÝ Ó Æ ØÙÖ Ð Ë Ò Ò Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó Å Ö ÓÖ ÃÓÖÓ ½ ¼ Å Ö ÓÖ ¾¼¼¼

More information

2 Hallén s integral equation for the thin wire dipole antenna

2 Hallén s integral equation for the thin wire dipole antenna Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾ ¾¼½½µ ½ ¹½ ¾ ÆÙÑ Ö Ð Ñ Ø Ó ÓÖ Ò ÐÝ Ó Ö Ø ÓÒ ÖÓÑ Ø Ò Û Ö ÔÓÐ ÒØ ÒÒ Ëº À Ø ÑÞ ¹Î ÖÑ ÞÝ Ö Åº Æ Ö¹ÅÓ Êº Ë Þ ¹Ë Ò µ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò

More information

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÁÒØÖÐ ÓÙÒÖ Ò Ë»Ì Î ÊÐ ÔÖØÑÒØ Ó ÅØÑØ ÍÒÚÖ ØÝ Ó ÓÖ Á̳½½ ØÝ ÍÒÚÖ ØÝ ÄÓÒÓÒ ÔÖÐ ½ ¾¼½½ ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ ÇÙØÐÒ ËÙÔÖ ØÖÒ Ò Ë»Ì Ì ØÙÔ ÏÓÖÐ Ø Ë¹ÑØÖÜ ÍÒÖÐÝÒ ÝÑÑØÖ ÁÒØÖÐ ÓÙÒÖ ÁÒØÖÐØÝ Ø Ø ÓÙÒÖÝ» ÖÒ Ò ØÛ Ø ÒÒ Ú»Ú

More information

INRIA Sophia Antipolis France. TEITP p.1

INRIA Sophia Antipolis France. TEITP p.1 ÌÖÙ Ø ÜØ Ò ÓÒ Ò ÓÕ Ä ÙÖ ÒØ Ì ÖÝ INRIA Sophia Antipolis France TEITP p.1 ÅÓØ Ú Ø ÓÒ Ï Ý ØÖÙ Ø Ó ÑÔÓÖØ ÒØ Å ÒÐÝ ÈÖÓÚ Ò ÌÖÙØ Ø Ò ÑÔÐ Ã Ô ÈÖÓÚ Ò ÌÖÙ Ø È Ó ÖÖÝ Ò ÈÖÓÓ µ Ò Ö ØÝ ÓÑ Ò ËÔ ÔÔÐ Ø ÓÒ TEITP p.2 ÇÙØÐ

More information

a P (A) f k(x) = A k g k " g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8

a P (A) f k(x) = A k g k  g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8 M M, d A Ď M f k : A Ñ R A a P A f kx = A k xña k P N ta k u 8 k=1 f kx = f k x. xña kñ8 kñ8 xña M, d N, ρ A Ď M f k : A Ñ N tf k u 8 k=1 f : A Ñ N A f A 8ř " x ď k, g k x = 1 k x ą k. & g k x = % g k

More information

Applications of Discrete Mathematics to the Analysis of Algorithms

Applications of Discrete Mathematics to the Analysis of Algorithms Applications of Discrete Mathematics to the Analysis of Algorithms Conrado Martínez Univ. Politècnica de Catalunya, Spain May 2007 Goal Given some algorithm taking inputs from some set Á, we would like

More information

Periodic monopoles and difference modules

Periodic monopoles and difference modules Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential

More information

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most ÁÑÔÖÓÚ ÇÒÐÒ ÐÓÖØÑ ÓÖ Ù«Ö ÅÒÑÒØ Ò ÉÓË ËÛØ ÅÖ ÖÓ ÏÓ ÂÛÓÖ ÂÖ ËÐÐ Ý ÌÓÑ ÌÝ Ý ØÖØ We consider the following buffer management problem arising in QoS networks: packets with specified weights and deadlines arrive

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

Lecture 16: Modern Classification (I) - Separating Hyperplanes

Lecture 16: Modern Classification (I) - Separating Hyperplanes Lecture 16: Modern Classification (I) - Separating Hyperplanes Outline 1 2 Separating Hyperplane Binary SVM for Separable Case Bayes Rule for Binary Problems Consider the simplest case: two classes are

More information

MATH2111 Higher Several Variable Calculus Integration

MATH2111 Higher Several Variable Calculus Integration MATH2 Higher Several Variable Calculus Integration Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester, 26 [updated: April 3, 26] JM Kress (UNSW Maths & Stats)

More information

Multi-agent learning

Multi-agent learning Multi-agent learning Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Gerard Vreeswijk, Intelligent Systems Group, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands. Gerard Vreeswijk. Last modified

More information

I118 Graphs and Automata

I118 Graphs and Automata I8 Graphs and Automata Takako Nemoto http://www.jaist.ac.jp/ t-nemoto/teaching/203--.html April 23 0. Û. Û ÒÈÓ 2. Ø ÈÌ (a) ÏÛ Í (b) Ø Ó Ë (c) ÒÑ ÈÌ (d) ÒÌ (e) É Ö ÈÌ 3. ÈÌ (a) Î ÎÖ Í (b) ÒÌ . Û Ñ ÐÒ f

More information

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3) Physics Department Royal Holloway University of London PH2510 - Nuclear Physics Laboratory Gamma spectroscopy (NP3) 1 Objectives The aim of this experiment is to demonstrate how γ-ray energy spectra may

More information

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University.

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University. Random Signals and Systems Chapter 3 Jitendra K Tugnait Professor Department of Electrical & Computer Engineering Auburn University Two Random Variables Previously, we only dealt with one random variable

More information

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÙÑÔ ÐØÖ ÓÖ ÙÒÖØÒ ÝÒÑ Ý ØÑ ÛØ ÖÓÔÓÙØ º ÓÐÞ ½ º º ÉÙÚÓ ¾ Áº ÈÖÖÓ ½ ʺ ËÒ ½ ½ ÔÖØÑÒØ Ó ÁÒÙ ØÖÐ ËÝ ØÑ ÒÒÖÒ Ò Ò ÍÒÚÖ ØØ ÂÙÑ Á ØÐÐ ËÔÒ ¾ ËÓÓÐ Ó ÐØÖÐ ÒÒÖÒ

More information

A Language for Task Orchestration and its Semantic Properties

A Language for Task Orchestration and its Semantic Properties DEPARTMENT OF COMPUTER SCIENCES A Language for Task Orchestration and its Semantic Properties David Kitchin, William Cook and Jayadev Misra Department of Computer Science University of Texas at Austin

More information

II. FOURIER TRANSFORM ON L 1 (R)

II. FOURIER TRANSFORM ON L 1 (R) II. FOURIER TRANSFORM ON L 1 (R) In this chapter we will discuss the Fourier transform of Lebesgue integrable functions defined on R. To fix the notation, we denote L 1 (R) = {f : R C f(t) dt < }. The

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3 ÈÖÑÙØØÓÒ ÔØØÖÒ Ò Ø ÅÙ ÙÒØÓÒ ÙÖ ØÒ ÎØ ÂÐÒ Ú ÂÐÒÓÚ Ò ÐÜ ËØÒÖÑ ÓÒ ÒÖ Ì ØÛÓµ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ ½ Ì ÔÓ Ø Ó ÔÖÑÙØØÓÒ ÛºÖºØº ÔØØÖÒ ÓÒØÒÑÒØ ½ 2314 ½¾ ½ ¾ ¾½ ¾ ½ ½¾ ¾½ ½¾ ¾½ Ì ÒØÖÚÐ [12,2314] ½ ¾ ÓÑÔÙØÒ

More information

Planning for Reactive Behaviors in Hide and Seek

Planning for Reactive Behaviors in Hide and Seek University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science May 1995 Planning for Reactive Behaviors in Hide and Seek Michael B. Moore

More information

FINAL REVIEW Answers and hints Math 311 Fall 2017

FINAL REVIEW Answers and hints Math 311 Fall 2017 FINAL RVIW Answers and hints Math 3 Fall 7. Let R be a Jordan region and let f : R be integrable. Prove that the graph of f, as a subset of R 3, has zero volume. Let R be a rectangle with R. Since f is

More information

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation register allocation instruction selection Code Low-level intermediate Representation Back-end Assembly array references converted into low level operations, loops converted to control flow Middle2 Low-level

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

Chebyshev Spectral Methods and the Lane-Emden Problem

Chebyshev Spectral Methods and the Lane-Emden Problem Numer. Math. Theor. Meth. Appl. Vol. 4, No. 2, pp. 142-157 doi: 10.4208/nmtma.2011.42s.2 May 2011 Chebyshev Spectral Methods and the Lane-Emden Problem John P. Boyd Department of Atmospheric, Oceanic and

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

Continuous r.v practice problems

Continuous r.v practice problems Continuous r.v practice problems SDS 321 Intro to Probability and Statistics 1. (2+2+1+1 6 pts) The annual rainfall (in inches) in a certain region is normally distributed with mean 4 and standard deviation

More information

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION For Class 6th to 0th, NTSE & Olympiads REGIONAL MATHEMATICAL OLYMPIAD-07. Let AOB be a given angle less than 80 and let P be an interior point of the angular region determined by ÐAOB. Show, with proof,

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Double Integrals Today 1 / 21 Introduction In this section we define multiple

More information

Seminar to the lecture Computer-based Engineering Mathematics

Seminar to the lecture Computer-based Engineering Mathematics Seminar to the lecture Computer-based Engineering Mathematics N T S Prof. Dr.-Ing. A. Czylwik Mohammad Abdelqader, M.Sc. Room: BA 249, Tel: +49-203-379-3474 E-Mail: abdelqader@nts.uni-duisburg-essen.de

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Multiple Integrals Spring 2012 1 / 21 Introduction In this section

More information

Let X and Y denote two random variables. The joint distribution of these random

Let X and Y denote two random variables. The joint distribution of these random EE385 Class Notes 9/7/0 John Stensby Chapter 3: Multiple Random Variables Let X and Y denote two random variables. The joint distribution of these random variables is defined as F XY(x,y) = [X x,y y] P.

More information

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

Green s function, wavefunction and Wigner function of the MIC-Kepler problem Green s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa

More information

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING F F V à y y > * y y y! F! * * F k y è 2 3 U D Y F B U Y 3 * 93 G U P B PU FF; JH H D V 50 JHP QJ (J) BY UDY P G y D; P U F P 0000 GUU VD PU F B U q F' yyy " D Py D x " By ; B x; x " P 93 ; Py y y F H j

More information

MATH 411 NOTES (UNDER CONSTRUCTION)

MATH 411 NOTES (UNDER CONSTRUCTION) MATH 411 NOTES (NDE CONSTCTION 1. Notes on compact sets. This is similar to ideas you learned in Math 410, except open sets had not yet been defined. Definition 1.1. K n is compact if for every covering

More information

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods. 4.7.1 Multiple Integrals Chapter 4 Section 7 4.7.2 Double Integral R f ( x, y) da 4.7.3 Double Integral Apply Simpson s rule twice R [ a, b] [ c, d] a x, x,..., x b, c y, y,..., y d 0 1 n 0 1 h ( b a)

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016 µ45 µx ½ Ù Vol.45, No.x 206 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 206 doi: 0.845/sxjz.2050b ²Â» µ ¼ Ulam È ( Ų¼ Ò¼ Ã,,, 747000) : ÉÐ Ì Õ ÎÏÓ, ÊÔ Í - Í Ë 6f(x+y) 6f(x y)+4f(3y) = 3f(x+2y) 3f(x 2y)+9f(2y)

More information

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004 Queues Stack Modules and Abstact Data Types CS2023 Wnte 2004 Outcomes: Queues Stack Modules and Abstact Data Types C fo Java Pogammes Chapte 11 (11.5) and C Pogammng - a Moden Appoach Chapte 19 Afte the

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg Metric Spaces Exercises Fall 2017 Lecturer: Viveka Erlandsson Written by M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK 1 Exercises. 1. Let X be a non-empty set, and suppose

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Maryam Pazouki ½, Robert Schaback

Maryam Pazouki ½, Robert Schaback ÓÖ Ã ÖÒ Ð ËÔ Maryam Pazouki ½, Robert Schaback ÁÒ Ø ØÙØ Ö ÆÙÑ Ö ÙÒ Ò Û Ò Ø Å Ø Ñ Ø ÍÒ Ú Ö ØØ ØØ Ò Ò ÄÓØÞ ØÖ ½ ¹½ ¼ ØØ Ò Ò ÖÑ ÒÝ Abstract Since it is well known [4] that standard bases of kernel translates

More information

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete ÍÒ Ú Ö ØÝ Ó Ö Ø ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ È Ö ÓÒ Ð Þ Ò Ð Ö Ø Ú Ê Ô Ö Ò ÈÓÐ ÓÖ ÙÖ Ø Ã ÁÓ ÒÒ ÊÓÙ Å Ø Ö³ Ì À Ö Ð ÓÒ Ñ Ö ¾¼½¼ È Æ ÈÁËÌÀÅÁÇ ÃÊÀÌÀË ËÉÇÄÀ Â ÌÁÃÏÆ Ã Á Ì ÉÆÇÄÇ ÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÈÁËÌÀÅÀË ÍÈÇÄÇ ÁËÌÏÆ

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

arxiv:hep-ph/ v1 10 May 2001

arxiv:hep-ph/ v1 10 May 2001 New data and the hard pomeron A Donnachie Department of Physics, Manchester University P V Landshoff DAMTP, Cambridge University DAMTP-200-38 M/C-TH-0/03 arxiv:hep-ph/005088v 0 May 200 Abstract New structure-function

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Numerical solution of system of linear integral equations via improvement of block-pulse functions

Numerical solution of system of linear integral equations via improvement of block-pulse functions Journal of Mathematical Modeling Vol. 4, No., 16, pp. 133-159 JMM Numerical solution of system of linear integral equations via improvement of block-pulse functions Farshid Mirzaee Faculty of Mathematical

More information

Improving the Berlekamp algorithm for binomials x n a

Improving the Berlekamp algorithm for binomials x n a Improving the Berlekamp algorithm for binomials x n a Ryuichi Harasawa Yutaka Sueyoshi Aichi Kudo Nagasaki University July 19, 2012 1 2 3 Idea Example Procedure after applying the proposed mehod 4 Theoretical

More information

Loop parallelization using compiler analysis

Loop parallelization using compiler analysis Loop parallelization using compiler analysis Which of these loops is parallel? How can we determine this automatically using compiler analysis? Organization of a Modern Compiler Source Program Front-end

More information

Homework 9 (due November 24, 2009)

Homework 9 (due November 24, 2009) Homework 9 (due November 4, 9) Problem. The join probability density function of X and Y is given by: ( f(x, y) = c x + xy ) < x

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray. dwm/courses/1pd

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray.   dwm/courses/1pd P1 2017 1 / 39 P1 Calculus II Partial Differentiation & Multiple Integration Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/1pd 4 lectures, MT 2017 P1 2017 2 / 39 Motivation

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

MEEN 618: ENERGY AND VARIATIONAL METHODS

MEEN 618: ENERGY AND VARIATIONAL METHODS JN Reddy - 1 MEEN 618: ENERGY AND VARIATIONAL METHODS WORK, ENERGY, AND VARIATIONAL CALCULUS Read: Chapter 4 CONTENTS Work done External and internal work done Strain energy and strain energy density Complementary

More information

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES Lecture 17 Mahāvīra s Gaṇitasārasaṅgraha 3 M. S. Sriram University of Madras, Chennai. Outline Plane figures: Circle, Dīrghavṛtta,

More information

Topics in Probability and Statistics

Topics in Probability and Statistics Topics in Probability and tatistics A Fundamental Construction uppose {, P } is a sample space (with probability P), and suppose X : R is a random variable. The distribution of X is the probability P X

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Review for the Final Test

Review for the Final Test Math 7 Review for the Final Test () Decide if the limit exists and if it exists, evaluate it. lim (x,y,z) (0,0,0) xz. x +y +z () Use implicit differentiation to find z if x + y z = 9 () Find the unit tangent

More information

18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang 8.06 Quiz 2 April 7, 200 Professor Strang Your PRINTED name is:. Your recitation number or instructor is 2. 3.. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line in the

More information

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0.

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

SOLUTIONS OF SELECTED PROBLEMS

SOLUTIONS OF SELECTED PROBLEMS SOLUTIONS OF SELECTED PROBLEMS Problem 36, p. 63 If µ(e n < and χ En f in L, then f is a.e. equal to a characteristic function of a measurable set. Solution: By Corollary.3, there esists a subsequence

More information

Math Final Solutions - Spring Jaimos F Skriletz 1

Math Final Solutions - Spring Jaimos F Skriletz 1 Math 160 - Final Solutions - Spring 2011 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

 #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y " #$ +. 0. + 4 6 4 : + 4 ; 6 4 < = =@ = = =@ = =@ " #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y h

More information

Multi-electron and multi-channel effects on Harmonic Generation

Multi-electron and multi-channel effects on Harmonic Generation Multi-electron and multi-channel effects on Harmonic Generation Contact abrown41@qub.ac.uk A.C. Brown and H.W. van der Hart Centre for Theoretical Atomic, Molecular and Optical Physics, Queen s University

More information

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Part 5 (MA 751) Statistical machine learning and kernel methods Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Christopher Burges, A tutorial on support

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc * Note: Although every effort ws tken to get complete nd ccurte tble, the uhtor cn not be held responsible for ny errors. Vrious sources hd to be consulted nd MIF hd to be exmined to get s much informtion

More information

Optimal back-to-front airplane boarding

Optimal back-to-front airplane boarding Optimal back-to-front airplane boarding Research Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Computer Science Vassilii Khachaturov Ben-Gurion University

More information

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator E. D. Held eheld@cc.usu.edu Utah State University General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator

More information

Multi Variable Calculus

Multi Variable Calculus Multi Variable Calculus Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 03 Functions from R n to R m So far we have looked at functions that map one number to another

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,

More information

16.2. Line Integrals

16.2. Line Integrals 16. Line Integrals Review of line integrals: Work integral Rules: Fdr F d r = Mdx Ndy Pdz FT r'( t) ds r t since d '(s) and hence d ds '( ) r T r r ds T = Fr '( t) dt since r r'( ) dr d dt t dt dt does

More information

arxiv:cs.na/ v2 14 Oct 2003

arxiv:cs.na/ v2 14 Oct 2003 arxiv:cs.na/0300 v 4 Oct 003 Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices Arvind Sankar Department of Mathematics Massachusetts Institute of Technology Shang-Hua Teng Department

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) Fall, 2017 1 / 40 Outline Linear Model Introduction 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear

More information

CHM320: MATH REVIEW. I. Ordinary Derivative:

CHM320: MATH REVIEW. I. Ordinary Derivative: CHM30: MATH REVIEW I. Ordinary Derivative: Figure : Secant line between two points on a function Ordinary derivatives describe how functions of a single variable change in response to variation of the

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Chapter 5 Joint Probability Distributions

Chapter 5 Joint Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 5 Joint Probability Distributions 5 Joint Probability Distributions CHAPTER OUTLINE 5-1 Two

More information

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for the quality of its teaching and research. Its mission

More information