Analysis of Remaining Uncertainties and Exponents under Various Conditional Rényi Entropies

Size: px
Start display at page:

Download "Analysis of Remaining Uncertainties and Exponents under Various Conditional Rényi Entropies"

Transcription

1 nlyi of Rmining Uncrini nd Exponn undr Vriou Condiionl Rényi Enropi Vincn Y F Tn, Snior mbr, IEEE, nd hio Hyhi, Snior mbr, IEEE rxiv: v cit] 3 y 206 brc In hi ppr, w nlyz h ympoic of h normlizd rmining uncriny of ourc whn comprd or hhd vrion of i nd corrld id-informion i obrvd For hi ym, commonly known Slpin-Wolf ourc coding, w blih h opiml minimum) r of comprion of h ourc o nur h h rmining uncrini vnih W lo udy h xponnil r of dcy of h rmining uncriny o zro whn h r i bov h opiml r of comprion In our udy, w conidr vriou cl of rndom univrl hh funcion Ind of muring rmining uncrini uing rdiionl Shnnon informion mur, w do o uing wo form of h condiionl Rényi nropy mong ohr chniqu, w mploy nw on-ho bound nd h momn of yp cl numror mhod for h vluion W how h h ympoic rul r gnrlizion of h rong convr xponn nd h rror xponn of h Slpin-Wolf problm undr mximum poriori P) dcoding Indx Trm Rmining uncriny, Condiionl Rényi nropi, Rényi divrgnc, Error xponn, Srong convr xponn, Slpin- Wolf coding, Univrl hh funcion, Informion-horic curiy, omn of yp cl numror mhod I INTRODUCTION In informion-horic curiy ], 2], i i of fundmnl impornc o udy h rmining uncriny of rndom vribl n givn comprd vrion of ilf f n ) nd nohr corrld ignl E n Thi modl, rminicn of h h Slpin-Wolf ourc coding problm 3], i illurd in Fig modl omwh imilr o h on w udy hr w udid by Tndon, Uluku nd Rmchndrn 4] who nlyzd h problm of cur ourc coding wih hlpr In priculr, pry would lik o rconruc ourc n givn hlpr ignl or comprd vrion of i) bu n vdroppr, who cn p on f n ) i lo prn in h ym Th uhor in 4] nlyzd h rdoff bwn h comprion r nd h quivocion of n givn f n ) Villrd nd Pinnid 5] nd Bro 6] conidrd h ing in which h vdroppr lo h cc o mmoryl id-informion E n h i corrld wih n Howvr, hr r mny wy h on could mur h quivocion or rmining uncriny Th rdiionl wy, ring from Wynr minl ppr on h wirp chnnl 7] nd lo in ], 2], 4] 6]), i o do o uing h condiionl Shnnon nropy H n f n ), E n ), lding o ndrd quivocion mur In hi ppr, w udy h ympoic of rmining uncrini bd on h fmily of Rényi informion mur 8] Th mur w conidr includ h condiionl Rényi nropy H n f n ), E n ) nd i o-clld Gllgr form, which w dno H n f n ), E n ) W no h unlik h condiionl Shnnon nropy, hr i no univrlly ccpd dfiniion for h condiionl Rényi nropy, o w dfin h qunii h w udy crfully in Scion II- Exniv dicuion of vriou pluibl noion of h condiionl Rényi nropy r providd in h rcn work by Tixir, o nd nun 9] nd Fhr nd Brn 0] W moiv our udy by fir howing h h limi of h normlizd) rmining uncriny n H n f n ), E n ) nd h xponn of h rmining uncriny n log H n f n ), E n ) for pproprily chon Rényi prmr ) r, rpcivly, gnrlizion of h rong convr xponn nd h rror xponn for dcoding n givn f n ), E n ) Rcll h h rong convr xponn ], 2] i h xponnil r which h probbiliy of corrc dcoding nd o zro whn on opr r blow h fir-ordr coding r, i, h condiionl Shnnon nropy H E) In conr, h rror xponn 3] 6] i h xponnil r which h probbiliy of incorrc dcoding nd o zro whn on opr r bov H E) Thu, udying h ympoic of h condiionl Rényi nropy llow u no only o undrnding h rmining uncriny for vriou cl of hh funcion 7], 8] bu lo llow u o provid ddiionl informion nd inuiion concrning h rong convr xponn nd h rror xponn for Slpin-Wolf coding 3] W lo moiv our udy by conidring cnrio in informion-horic curiy whr h hh funcion w udy ppr nurlly, nd coding cn b don in compuionlly fficin mnnr Th prn work cn b rgrdd follow-on from h uhor prviou work in 9] on h ympoic of h quivocion whr w udid h bhvior of C := nr H f n ) E n ) Vincn Y F Tn i wih h Dprmn of Elcricl nd Compur Enginring nd h Dprmn of hmic, Nionl Univriy of Singpor Emil: vn@nudug) hio Hyhi i wih h Grdu School of hmic, Ngoy Univriy, nd h Cnr for Qunum Tchnologi CQT), Nionl Univriy of Singpor Emil: mhio@mhngoy-ucjp) Thi ppr w prnd in pr h 206 Inrnionl Sympoium on Informion Thory ISIT) in Brclon, Spin In hi ppr, w bu rminology nd u h rm Slpin-Wolf coding 3] nd lol ourc coding wih dcodr id-informion inrchngbly

2 2 n f n f n n ) g n  H ± n f n n ), E n ) H ± n f n n ), E n ) E n Fig Th Slpin-Wolf 3] ourc coding problm W r inring in qunifying h ympoic bhvior of h rmining uncriny of n givn f n n ), E n ) murd ccording o h condiionl Rényi nropi H ± nd H ± dfind in 0) nd 2) nd C := nr H fn ) E n ) whr R = n log f i h r of h crdinliy of h rng of f) In 9], w lo udid h xponn nd cond-ordr ympoic of h quivocion Howvr, w no h bcu w conidr h rmining uncriny ind of h quivocion, vrl novl chniqu, including nw on-ho bound nd lrg-dviion chniqu, hv o b dvlopd o ingl-lriz vriou xprion Ppr Orgnizion: Thi ppr i orgnizd follow In Scion II, w rcp h dfiniion of ndrd Shnnon informion mur nd om l common Rényi informion mur 9], 0] W lo inroduc om nw qunii nd rlvn propri of h informion mur W om noion concrning h mhod of yp 6] In Scion III, w furhr moiv our udy by rling h qunii w wih o chrcriz o h rror xponn nd rong convr xponn of Slpin-Wolf coding Propoiion ) In Scion IV, w dfin vriou imporn cl of hh funcion 7], 8] uch univrl 2 nd rong univrl hh funcion) nd furhr moiv h udy of h qunii of inr by dicuing fficin implmnion of univrl 2 hh funcion vi circuln mric 20] Th finl pr of Scion IV conin our min rul concrning h ympoic of h normlizd rmining uncrini Thorm 2), h opiml r of comprion of h min ourc o nur h h rmining uncrini vnih Thorm 3), nd h xponn of h rmining uncrini Thorm 4) W how h h opiml r r igh in crin rng of h Rényi prmr For h vluion, w mk u of vrl novl on-ho bound, lrg-dviion chniqu wll h momn of yp cl numror mhod 2] 25] Thorm 2, 3 nd 4 r provd in Scion V, VI nd VII rpcivly W conclud our dicuion nd ugg furhr vnu for rrch in Scion VIII Som chnicl rul g, on-ho bound, concnrion inqulii) r rlgd o h ppndic Bic Shnnon nd Rényi Informion Qunii II INFORTION ESURES ND OTHER PRELIINRIES W now inroduc om informion mur h gnrliz Shnnon informion mur Fix normlizd diribuion P P) nd ub-diribuion non-ngiv vcor bu no ncrily umming o on) Q P) uppord on fini Thn h rliv nropy nd h Rényi divrgnc of ordr + r rpcivly dfind DP Q ) := P ) log P ) Q ) D P Q ) := log P ) Q ), 2) ) whr hroughou, log i o h nurl b I i known h lim 0 D P Q ) = DP Q ) o pcil limiing) c of h Rényi divrgnc i h uul rliv nropy I i lo known h h mp D P Q ) i concv in R nd hnc D P Q ) i monooniclly incring for R Furhrmor, h following d procing or informion procing inqulii for Rényi divrgnc hold for, ], DP W Q W ) DP Q ) 3) D P W Q W ) D P Q ) 4) Hr W : B i ny ochic mrix chnnl) nd P W b) := W b )P ) i h oupu diribuion inducd by W nd P W lo inroduc condiionl nropi on h produc lphb E bd on h divrgnc bov L I ) = for ch If P E i diribuion on E, h condiionl nropy, h condiionl Rényi nropy of ordr + nd h min-nropy rliv o nohr normlizd diribuion Q E on E H E P E Q E ) := DP E I Q E ), 5) H E P E Q E ) := D P E I Q E ), 6) P E, ) H min E P E Q E ) = log mx,):q E )>0 Q E ) 7)

3 3 I i known h lim 0 H E P E Q E ) = H E P E Q E ) nd lim H E P E Q E ) = H E P E Q E ) = H min E P E Q E ) 8) If Q E = P E, w implify h bov noion nd dno h condiionl nropy, h condiionl Rényi nropy of ordr + nd h min-nropy H E P E ) := H E P E P E ) = P E ) P E ) log P E ), 9) H E P E ) := H E P E P E ) = log P E ) P E ), 0) H min E P E ) := H min E P E P E ) = log mx P E ) ),):P E )>0 Th mp H E P E ) i concv, nd H E P E Q E ) i monooniclly dcring for R \ 0} Th dfiniion of h condiionl Rényi nropy in 0) i du o Hyhi 26, Scion II] nd Škorić l 27, Dfiniion 7] W r lo inrd in h o-clld Gllgr form of h condiionl Rényi nropy nd h min-nropy for join diribuion P E P E): H E P E) := + log P E ) P E ) ) H min E P E) := H E P E ) = log P E ) mx P E ) 3) By dfining h fmilir Gllgr funcion 3], 4] prmrizd lighly diffrnly) φ ) ) E P E := log P E ) P E ) 4) w cn xpr 2) H E P E) = + φ E P E ), 5) + hu looly) juifying h nomnclur Gllgr form of h condiionl Rényi nropy in 2) No h H nd H r rpcivly dnod H 4 nd H in h ppr by Fhr nd Brn 0] Th Gllgr form of h condiionl Rényi nropy, lo commonly known rimoo condiionl Rényi nropy 28], w hown in 0] o ify wo nurl propri for, nmly, monooniciy undr condiioning or imply monooniciy) nd h chin rul H B, E P BE) H E P E), 6) H B, E P BE) H E P E) log B 7) Th monooniciy propry of H w lo hown oprionlly by Bun nd Lpidoh in h conx of lol ourc coding wih li nd id-informion 29] nd ncoding k wih id-informion 30] W xploi h propri in h qul Th qunii H nd H cn b hown o b rld follow 0, Thorm 4] mx H E P E Q E ) = H E P E) 8) Q E PE) for, ) \ 0} Th mximum on h lf-hnd-id i ind for h ild diribuion Q E ) = P E, ) ) P 9) E, ) ) Th mp H E P E) i concv nd h mp H E P E) i monooniclly dcring for, ) I cn b hown by L Hôpil rul h lim 0 H E P E) = H E P E ) Thu, w rgrd H E P E) H E P E ), i, whn = 0, h condiionl Rényi nropy nd i Gllgr form coincid nd r qul o h condiionl Shnnon nropy W lo find i uful o conidr wo-prmr fmily of h condiionl Rényi nropy 2 H + E P E ) := + log ) P E ) P E ) ã 2) P E ã ) + ) + 20) 2 Thi nw informion-horic quniy i omwh rld o H +θ,+θ in h work by Hyhi nd Wnb 3, Eq 4)-5)] bu i diffrn nd no o b confud wih H +θ,+θ

4 4 Clrly H E P E ) = H E P E), o h wo-prmr condiionl Rényi nropy i gnrlizion of h Gllgr form of h condiionl Rényi nropy in 2) For fuur rfrnc, givn join ourc P E, dfin h criicl r ˆR := d d H + E P E ), nd, 2) = ˆR := d d H + E P E ) 22) = B Noion for Typ Th proof of our rul lvrg on h mhod of yp 6, Ch 2], o w ummriz om rlvn noion hr Th of ll diribuion probbiliy m funcion) on fini i dnod P) Th yp or mpiricl diribuion of qunc n i h diribuion Q) = n n i= i = }, Th of ll qunc n wih yp Q P) i h yp cl nd i dnod T Q n Th of ll n-yp yp formd from lngh-n qunc) on lphb i n dnod P n ) Whn w wri n b n, w mn h inquliy on n xponnil cl, i, lim n n log b n 0 Th noion nd = r dfind nlogouly Throughou, w will u h fc h h numbr of yp P n ) n+) = III OTIVTION FOR STUDYING REINING UNCERTINTIES mniond in h inroducion, in hi ppr, w udy h rmining uncriny nd i r of xponnil dcy murd uing vriou Rényi informion mur In hi cion, w furhr moiv h rlvnc of hi udy by rling h rmining uncriny o h rong convr xponn for dcoding =, 2,, n ) n givn id informion =, 2,, n ) E n nd h comprd vrion of, nmly m = f) Slpin-Wolf problm) W lo rl h xponnil r of dcy of h rmining uncriny for ourc coding r bov h fir-ordr fundmnl limi o h rror xponn of h Slpin-Wolf problm Rlion o h Srong Convr Exponn for Slpin-Wolf Coding Conidr h Slpin-Wolf ourc coding problm hown in Fig For givn funcion ncodr) f n : n n nd id informion vcor E n, w my dfin h mximum -poriori P) dcodr g fn : n E n n follow: g fn m, ) := rg mx PE, n ) = rg mx P E n ) 23) n :f n)=m n :f n)=m Dfin h probbiliy of corrcly dcoding givn h ncodr f n nd h P dcodr g fn follow: P n) c f n ) := PE, n ) 24) Thn, by h dfiniion of H in 3), w immdily h :=g fn f n),) log Pn) c f n ) = n n H n f n n ), E n PE) n 25) Whn opimizd ovr f n } n=, h quniy on h lf of 25) or i limi) i clld h rong convr xponn i chrcriz h opiml xponnil r which h probbiliy of corrc dcoding h ru ourc givn f n ), ) dcy o zro Thu, by udying h ympoic of n H for ll 0, ) nd, in priculr, h limiing c of which w do in 53) in Pr 2) of Thorm 2), w obin gnrlizion of h rong convr xponn for h Slpin-Wolf problm In fc, i i known h lim n n log Pn) c f n ) > 0 for ny qunc of ncodr f n } n= if nd only if h r lim n n log f n < H E P E ) 2, Thorm 2] Thi fc will b uilizd in h proof of Thorm 3 B Rlion o h Error Exponn for Slpin-Wolf Coding Similrly, w my dfin h probbiliy of incorrcly dcoding givn h ncodr f n nd P dcodr g fn follow: P n) f n ) := PE, n ) 26) : g fn f n),) Thn w hv h following propoiion concrning h xponn of P n) f n ) Propoiion um h P n) f n ) nd o zro xponnilly f for givn qunc of hh funcion f n } n=, i, lim n n log Pn) f n ) > 0 h xinc of h limi i pr of h umpion) Thn for ny, w hv lim n n log Pn) f n ) = lim n n log H n f n n ), E n PE) n 27) = lim n n log H n f n n ), E n P n E) 28)

5 5 W rcll, by h Slpin-Wolf horm 3], h hr xi qunc of ncodr f n } n= uch h P n) f n ) nd o zro if nd only if lim n n log f n H E P E ) Whn opimizd ovr f n } n=, h quniy on h lf of 27) i clld h opiml rror xponn nd i chrcriz h opiml xponnil r which h rror probbiliy of dcoding givn f n ), ) dcy o zro Thu, Propoiion y h h xponn of H nd H for r gnrlizion of h rror xponn of dcoding n givn f n n ), E n ) W blih bound on h limi for crin cl of hh funcion in Pr 2) of Thorm 4 Proof: W fir conidr h Gllgr form of h condiionl Rényi nropy H For brviy, w l f = f n uppring h dpndnc on n) nd w lo dfin h probbiliy diribuion P := P f n ),E n nd Q := P n f n ),En Rcll h dfiniion of h P dcodr g f m, ) in 23) W hv H n f n ),E n P n E ) =,m P m, ),m Q m, ) ) 29) P m, ) Qg f m, ) m, ) ) 30) =,m P m, )Qg f m, ) m, ) 3) = P n) f) 32) In h following chin of inqulii, w will mploy Tylor horm wih h Lgrng form of h rmindr for h funcion + ) = 0, i, + ) = + + ) + + ) + ξ) 2 33) 2 for om ξ, 0] W choo o b Qg f m, ) m, ) in our pplicion in 36) o follow L ξm, ) b gnric lmn of Qg f m, ) m, ), 0], 0] king h rol of ξ in h Tylor ri xpnion in 33) W bound h condiionl Rényi nropy follow: Hn f n ),E n P n E ) = P m, ),m =,m P m, ) =,m P m, ) Q m, ) 34) Qg f m, ) m, ) + : g f m,) + + ) Qg f m, ) m, ) ] Q m, ) } + ) ) + + ξm, ) Qgf m, ) m, ) ] P m, ) + + ) Qg f m, ) m, ) ],m + ) + Qgf m, ) m, ) ] : g f m,) = + P m, ) + ) + ) Q m, ) +,m =,m P m, ) : g f m,) = P n) + ) f) + 2 : g f m,) Q m, ) + P m, ),m + ) 2 : g f m,) Q m, ),m : g f m,) } + ) 2 P m, ) Q m, ) } : g f m,) : g f m,) ] } 2 Q m, ) 35) 36) 37) 38) Q m, )] 2 39) Q m, )] 2 40) In 37), noing h 0, w uniformly uppr boundd + ξm, ) ) by W lo uppr boundd Q m, ) by Q m, ) In 40), w ud h dfiniion of P n) f) d in 26) Bcu P n) f) i umd o dcy xponnilly f,

6 6 w hv P n) f) = log P n) f) ) 4) H n f n ), E n PE) n 42) H n f n ), E n PE) n 43) log P n) + ) ] } 2 f) + P m, ) Q m, ) 44) 2,m : g f m,) = P n) + ) 2 f) P m, ) Q m, )], 45) 2,m : g f m,) whr 4) nd 45) follow from log ) = + O 2 ), 42) u 32), 43) u h fc h H H cf 8)) nd 44) u 40) Th cond rm in 45) i xponnilly mllr hn P n) f) bcu of h qur oprion nd h fc h : g f m,) Q m, ) < Now, inc i conn, h xponn of h qunii on h lf nd righ id of h bov chin r qul Thu hy r qul o h xponn of H n f n ), E n PE n ) nd H n f n ), E n PE n ) for vry Thi compl h proof of Propoiion IV IN RESULTS: SYPTOTICS OF THE REINING UNCERTINTIES In hi cion w prn our rul concrning h ympoic bhvior of h rmining uncrini nd i xponnil bhvior mniond in Scion III, h formr i gnrlizion of h rong convr xponn for h Slpin-Wolf problm 3], whil h lr i gnrlizion of h rror xponn for h m problm Bfor doing o, w dfin vriou cl of rndom hh funcion nd furhr moiv our nlyi uing n xmpl from informion-horic curiy Dfiniion of Vriou Cl of Hh Funcion W now dfin vriou cl of hh funcion W r by ing ligh gnrlizion of h cnonicl dfiniion of univrl 2 hh funcion by Crr nd Wgmn 7] Dfiniion rndom 3 hh funcion f X i ochic mp from o :=,, }, whr X dno rndom vribl dcribing i ochic bhvior Th of ll rndom hh funcion mpping from o i dnod R = R, ) hh funcion f X i clld n ɛ-lmo univrl 2 hh funcion if i ifi h following condiion: For ny diinc, 2, Pr f X ) = f X 2 ) ) ɛ 46) Whn ɛ = in 46), w imply y h f X i univrl 2 hh funcion 7] W dno h of univrl 2 hh funcion mpping from o by U 2 = U 2, ) Th following dfiniion i du o Wgmn nd Crr 8] Dfiniion 2 rndom hh funcion f X :,, } i clld rongly univrl whn h rndom vribl f X ) : } r indpndn nd ubjc o uniform diribuion, i, Pr f X ) = m ) = 47) for ll m,, } If f X i rongly univrl hh funcion, w mphiz hi fc by wriing f X n xmpl, if f X indpndnly nd uniformly ign ch lmn of ino on of bin indxd by m i, h fmilir rndom binning proc inroducd by Covr in h conx of Slpin-Wolf coding 32]), hn 47) hold, yilding rongly univrl hh funcion Th hirrchy of hh funcion i hown in Fig 2 univrl 2 hh funcion f cn b implmnd fficinly vi circuln pcil c of Topliz) mric Th complxiy i low pplying f o n m-bi ring rquir Om log m) oprion gnrlly For dil, h dicuion in Hyhi nd Turumru 20] nd h ubcion o follow So, i i nurl o um h h ncoding funcion f w nlyz in hi ppr r univrl 2 hh funcion B nohr oivion for nlyzing Rmining Uncrini To nur ronbl lvl of curiy in prcic, w ofn nd our mg vi mulipl ph in nwork um h lic wn o nd n m-bi mg o Bob vi l N ph, nd h Ev h cc o id-informion E 3 For brviy, w will omim omi h qulifir rndom I i undrood, hncforh, h ll o-mniond hh funcion r rndom hh funcion

7 7 Srongly univrl Drminiic Univrl 2 ε-univrl 2 Rndom Fig 2 Hirrchy of hh funcion S Dfiniion nd 2 E Ev f) f) 2 f f - Â lic Bob f) k Fig 3 cur communicion cnrio h moiv our udy of rmining uncrini S Scion IV-B for dicuion corrld o nd inrcp on of h l ph W lo uppo m = kl for om k N lic ppli n invribl funcion f o nd divid f) ino k qul-izd pr f), f) 2,, f) k ) F m 2 = F l 2 F l 2 k im) S Fig 3 Bob rciv ll of hm, nd ppli f o dcod Hnc, Bob cn rcovr h originl mg lolly Howvr, if Ev omhow mng o p on h j-h pr f) j whr j, 2,, k}), Ev cn poibly im h mg from E nd f) j in Fig 3, w um Ev p on h fir pic of informion j = ) Ev uncriny wih rpc o i H f) j, E P E ) H hr i gnric nropy funcion; i will b kn o b vriou condiionl Rényi nropi in h ubqun ubcion) In hi cnrio, i i no y o im h uncriny H f) j, E P E ) i dpnd on h choic of j To void uch difficuly, w propo o pply rndom invribl funcion f X o To furhr rolv h formniond iu from compuionl prpciv, w rgrd F m 2 h fini xnion fild F 2 m Whn lic nd Bob choo invribl lmn X in h fini fild F 2 m ubjc o h uniform diribuion, nd f X ) i dfind f) := X, h mp f) j i univrl 2 hh funcion Thn, Ev uncriny wih rpc o cn b dcribd H f) j, E, X P E P X ) Whn, E) i kn o b n, E n ) = i, E i )} n i= whr h i, E i ) r indpndn nd idniclly diribud, our rul in h following ubcion r dircly pplicbl in vluing Ev uncriny murd ccording o vriou condiionl Rényi nropi W rmrk h if m i no mulipl of l, w cn mk h finl block mllr hn l bi wihou ny lo of gnrliy ympoiclly Indd, hi proocol cn b fficinly implmnd wih low) complxiy of Om log m) 20] bcu muliplicion in h fini fild F 2 m cn b rlizd by n pproprily-dignd circuln mrix, lding o f Fourir rnform-lik lgorihm Thrfor, hi communicion up, which conin n vdroppr, i prcicl in h n h ncoding nd dcoding cn b rlizd fficinly C ympoic of Rmining Uncrini Our rul in Thorm 2 o follow prin o h wor-c rmining uncrini ovr ll univrl 2 hh funcion W r inrd in up fxn U 2 n H ± nd up fxn U 2 n H ±, whr H ± i horhnd for H ± n f Xn n ), E n, X n PE n P Xn ) imilrly for H ± ) nd P E n i h n-fold produc mur W mphiz h h vluion of up f Xn U 2 n H ± nd up fxn U 2 n H ± r rongr hn ho in ndrd chivbiliy rgumn in Shnnon hory whr on ofn u

8 8 rndom lcion rgumn o r h n objc g, cod) wih good propri xi In our clculion of h ympoic of up fxn U 2 n H ± nd up fxn U 2 n H ±, w r h ll hh funcion in U 2 hv crin dirbl propry; nmly, h h rmining uncrini cn b pproprily uppr boundd In ddiion, in Thorm 3 o follow, w lo qunify h minimum r R uch h h b-c rmining uncrini ovr ll rndom hh funcion inf fxn R n H ± nd inf fxn R n H ± vnih For mny vlu of, w how h minimum r for h wo diffrn vluion wor-c ovr ll f Xn U 2 nd b-c ovr ll f Xn R) coincid, blihing ighn for h opiml comprion r L + := mx0, } Th following i our fir min rul Thorm 2 Rmining Uncrini) For ch n N, l h iz 4 of h rng of f Xn b n = nr Fix join diribuion P E P E) Dfin h wor-c limiing normlizd rmining uncrini ovr ll univrl 2 hh funcion GR, ) := lim n n up H n f Xn n ), E n, X n PE n P Xn ), f Xn U 2 nd 48) G R, ) := lim n n up H n f Xn n ), E n, X n PE n P Xn ) f Xn U 2 49) Rcll h dfiniion of h criicl r ˆR nd ˆR in 2) nd 22) rpcivly Th following chivbiliy mn hold: ) For ny 0, ], w hv GR, ) H E P E ) R +, 50) nd for ny 0, /2], w hv 2) For 0, ), w hv nd GR, ) G R, ) G R, ) H E P E) R + 5) H E P E ) R R ˆR mx 0,] H + E P E ) R) R > ˆR, 52) H E P E) R R ˆR mx 0,] H + E P E ) R) R > ˆR 53) Thorm 2 i provd in Scion V nd u vrl novl on-ho bound on h rmining uncriny ummrizd in ppndix ) coupld wih ppropri u of lrg-dviion rul uch Crmér horm nd Snov horm 33] In Fig 4 nd 5, w plo h uppr bound in 50) 53) for corrld ourc P E P0, } 2 ) wih P E 0, 0) = 07 nd P E 0, ) = P E, 0) = P E, ) = 0 For h uppr bound in 50) nd 5), w from Fig 4 h h r which h curv rniion from poiiv quniy o zro r clrly h condiionl Rényi nropi H E P E ) nd H E P E) In conr, from Fig 5, w obrv h h r which h normlizd rmining uncrini rniion from poiiv qunii o zro r h m nd r qul o h condiionl Shnnon nropy H E P E ) 044 n D Opiml R for Vnihing Rmining Uncrini Th ighn of h bound in Thorm 2 i prilly ddrd in h following horm whr w r concrnd wih h minimum comprion r R uch h h vriou normlizd rmining uncrini nd o zro To h nx rul uccincly, w rquir fw ddiionl dfiniion L P P) b givn diribuion L γ) := H + P ) = log P ) + nd l P ) ) := P ) + γ) b ild diribuion 5 rliv o P Dfin 0 P ) := mx 0, ] : H P ) H P ) ) } 54) W clim h 0 P ) i lwy poiiv; hi i bcu H P ) nd H P ) ) r coninuou nd H P ) = 0 H P ) =, nd 55) log = H P ) log = 0 ) = H P ) = 56) If P i no uniform on, 0 P ) 0, ) In fc inc H P ) nd H P ) ) r monooniclly incring nd dcring 6 rpcivly, 0 P ) 0, ) cn lo b xprd h uniqu oluion o h quion 4 Whn w wri n = nr, w mn h n i h ingr nr 5 P ) ) i indd vlid diribuion P ) ) = 6 Inuiivly, H P ) ) i monooniclly dcring bcu incr, P ) convrg o drminiic diribuion, which h h low Shnnon nropy 0

9 9 Rmining Uncriny Uppr bound on GR, ) = 00 = 0 = 02 = 03 Rmining Uncriny Uppr bound on G R, ) = 00 = 0 = 02 = R R R R Fig 4 Illurion of h uppr bound on h rmining uncrini GR, ) nd G R, ) in 50) nd 5) rpcivly ll curv rniion from poiiv quniy o zro h Rényi condiionl nropi H E P E ) lf) nd H E P E) righ) Rmining Uncriny Uppr bound on GR, ) = 00 = 0 = 02 = 03 Rmining Uncriny Uppr bound on G R, ) = 00 = 0 = 02 = R R R R Fig 5 Illurion of h uppr bound on h rmining uncrini GR, ) nd G R, ) in 52) nd 53) rpcivly ll curv rniion from poiiv quniy o zro h condiionl Shnnon nropy H E P E ) 044 n 0 0 P = 0 8, 0 8 ] 07 P = 025, 075] 0693 P = 049, 05] Enropi 0 4 Enropi Enropi Fig 6 Plo of H P ) olid) nd H P ) ) dod) for P P0, }) whr P 0) = 0 8 lf; lmo drminiic), P 0) = 025 middl) nd P 0) = 049 righ; lmo uniform) For h hr c, 0 P ) 0549, 0 P ) 065 nd 0 P ) 068 rpcivly H P ) = H P ) ) If P i uniform on, H P ) = H P ) ) for ny 0, ] nd uch, 0 P ) = S Fig 6 for illurion of h rgumn Now, givn P E P E), dfin 0 = 0 E P E ) := min 0 P E= ) : E} 57) Clrly, by h prcding rgumn nd h fc h E i fini, 0 i poiiv Thorm 3 Opiml R for Vnihing Normlizd Rmining Uncrini) For ch n N, l h iz of h rng of

10 0 f Xn b n = nr Dfin h b-c limiing normlizd rmining uncrini ovr ll rndom hh funcion GR, ) := lim n n G R, ) := lim n n inf H n f Xn n ), E n, X n PE n P Xn ), nd 58) f Xn R inf f Xn R H n f Xn n ), E n, X n PE n P Xn ) 59) lo dfin h limiing normlizd rmining uncriny for rongly univrl hh funcion f Xn : n,, n } GR, ) := lim n n H n f Xn n ), E n, X n PE n P Xn ) 60) Now dfin h opiml comprion r ) For 0, ], w hv nd for 0, 0 ], w hv 2) For 0, ), w hv 3) For 0, /2], w hv nd for 0, ), w hv T := infr R : GR, ) = 0}, 6) T := infr R : GR, ) = 0}, 62) T := infr R : G R, ) = 0}, 63) T := infr R : G R, ) = 0}, nd 64) T := infr R : GR, ) = 0} 65) T H E P E ) 66) T H E P E ) 67) T = T = H E P E ) 68) T = T = H E P E), 69) T = T = H E P E ) 70) Th proof of hi rul i providd in Scion VI For Pr ) of h bov rul, unforunly, w do no hv mching lowr bound o T Howvr, for 0, 0 ], h bound in 67) y h rricd o h imporn cl of rongly univrl hh funcion g, h ubiquiou rndom binning procdur 32]), h rul in 66) i igh hr i mching lowr bound Hnc, 67) rv pril convr o 66) In ohr word, 66) i igh wih rpc o h nmbl vrg 34] whn h nmbl i chon o b rongly univrl hh funcion Th qulii in 68) 70) imply h in h pcifid rng of, h opiml r for h b-c rmining uncriny ovr ll hh funcion nd wor-c rmining uncriny ovr ll univrl 2 hh funcion r h m I i inring o obrv h h opiml r for h c in 69) dpnd on 0, 0 ] bu h opiml r for h + c in 68) nd 70) do no Thi i lo clrly obrvd in Fig 4 nd 5 Th proof of h chivbiliy pr uppr bound) of h rul follow dircly from Thorm 2 For h convr pr lowr bound), w ppl o h mhod of yp 6, Ch 2], h momn of yp cl numror mhod 2] 25], nd h xponnil rong convr for Slpin-Wolf coding 2, Thorm 2] W lo xploi rul by Fhr nd Brn 0, Thorm 3] concrning h monooniciy 6) nd chin rul 7) for Gllgr form of h condiionl Rényi nropy H E P E) E Exponnil R of Dcr of Rmining Uncrini Lly, w conidr h r of xponnil dcr of h vriou wor-c rmining uncrini Thorm 4 Exponn of Rmining Uncrini) For ch n N, l h iz of h rng of f Xn b n = nr Fix join diribuion P E P E) Dfin h xponn of 48) nd 49) ] ER, ) := lim n n log up H n f Xn n ), E n, X n PE n P Xn ), nd 7) f Xn U 2 ] E R, ) := lim n n log up H n f Xn n ), E n, X n PE n P Xn ) f Xn U 2 72)

11 = 00 = 0 = 02 = 03 Lowr bound o xponn ER, ) = 00 = 0 = 02 = 03 Lowr bound o xponn E R, ) Exponn R R Exponn R R Fig 7 Illurion of h lowr bound on h xponn ER, ) nd E R, ) in 73) nd 74) rpcivly Th curv rniion from 0 o poiiv quniy H E P E ) lf) nd H E P E) righ) Th r h xponn of h wor-c rmining uncrini ovr ll univrl 2 hh funcion Th following chivbiliy mn hold: ) For 0, ], w hv nd for ny 0, /2], w hv ER, ) up E R, ),) up,/2) R H E P E ) ) +, 73) ) + R H E P E) 74) 2) For 0, ), w hv nd ER, ) E R, ) up 0,/2) up 0,/2) ) R H E P E), 75) ) R H E P E) 76) Thorm 4 i provd in Scion VII W obrv from Propoiion h h righ-hnd-id of h bound in Pr 2), which cn b hown o b non-ngiv for R H E P E ), r lowr bound on h opiml rror xponn 2], 4], 5] for h Slpin-Wolf 3] problm, dnod ESW R) In fc, i cn b infrrd from Gllgr work 4] or 6, Problm 25)] for h E = c) h if w rplc h domin of h opimizion ovr from 0, /2) o 0, ), h lowr bound in 75) 76) r qul o ESW R) for crin rng of coding r bov H E P E ) Th ron why w obin ponilly mllr xponn i bcu w conidr h wor-c ovr ll univrl 2 hh funcion f Xn U 2 in h dfiniion of ER, ) nd E R, ) in 7) nd 72) rpcivly For h Slpin-Wolf problm, w cn choo h b qunc of hh funcion In Fig 7, w plo h lowr bound in 73) nd 74) for h m ourc P E in Fig 4 nd 5 in Scion IV-C W no h h r which h lowr bound on h xponn rniion from bing zro o poiiv i givn by H E P E ) for 73) nd H E P E) for 74) Th lr obrvion corrobor 69) of Thorm 3 Furhrmor, dicud in h prviou prgrph, h = 0 c in h righ plo of Fig 7 i lowr bound on ESW R) For hi ourc, if w chng h domin of opimizion of from 0, /2) o 0, ), h plo do no chng i, h opiml < /2) o for r in mll nighborhood bov H E P E ) 044 n, h curv indd rc ou h opiml rror xponn ESW R) V PROOF OF THEORE 2 W prov mn 50), 5), 52), nd 53) in Subcion V-, V-B, V-C, nd V-D rpcivly

12 2 Proof of 50) in Thorm 2 To prov h uppr bound in 50), w u h on-ho bound in 76) in Lmm 3 ppndix ) W fir um h H E P E ) R > 0 In hi c, ɛ H n E n P n E ), 77) for n ufficinly lrg Thn h on-ho bound in 76) impli h for ny ɛ-lmo univrl 2 hh funcion f Xn, H n f Xn n ), E n, X n P n E P Xn ) = log E X n H n f Xn n ),E n P n )) E 78) log + ɛ H n E n P n E ) ) 79) log 2 ɛ H n E n P n E ) ) 80) = log 2ɛ ) + n H E P E ) R ), 8) whr in 80) w ud 77) nd in 8) w ud h fc h h condiionl Rényi nropy i ddiiv for indpndn rndom vribl, i, H n E n PE n ) = nh E P E ) Sinc hi bound hold for ll ɛ-univrl 2 hh funcion f Xn U 2 including ɛ = ), normlizing by n, king h lim, nd ppling o h dfiniion GR, ) in 48) blih h GR, ) H E P E ) R if H E P E ) R 0 Now, whn H E P E ) R 0, w follow h p lding o 79) bu u log + ) o blih h H n f Xn n ), E n, X n P n E P Xn ) ɛ nh E P E) R) 82) From 82), w conclud h if H E P E ) R 0, w hv GR, ) = 0 bcu GR, ) cnno b ngiv) Sinc h wo bound in 8) nd 82) hold for ll qunc of univrl 2 hh funcion f Xn U 2 king ɛ = bov), oghr hy blih 50) B Proof of 5) in Thorm 2 To prov h uppr bound in 5), w u h on-ho bound in 77) in Lmm 3 ppndix ) Similrly, o h nlyi in Scion V-, w my conidr wo c H E P E) R > 0 or H E P E) R 0 W will only conidr h formr inc h nlyi of h lr prlll h in Scion V- Undr h formr condiion, w my um h ɛ H n E n P n E ) 83) for n ufficinly lrg Th on-ho bound in 77) impli h for ny ɛ-lmo univrl 2 hh funcion f Xn, H n f Xn n ), E n, X n PE n P Xn ) = log E Xn H n f Xn n ),E n P n )) E 84) ) log + ɛ H n E n P n E ) 85) = log 2 ɛ H n E n P n E ) log ) 2ɛ + n H E P E) R ) 86) ), 87) whr in 86) w ud 83) Sinc hi bound hold for ll qunc of univrl 2 hh funcion f Xn U 2 king ɛ = bov), normlizing by n nd ppling o h dfiniion G R, ) in 49), w blih h uppr bound in 5) C Proof of 52) in Thorm 2 To prov h uppr bound in 52), w will ror o h on-ho bound in 56) in Lmm ppndix ) W fir obrv by Crmér horm 33, Scion 22] h lim n n log P E n, ) : P E n ) ɛ nr} = up H+ E P E ) R) } 88) 0

13 3 Thi i bcu h cumuln gnring funcion of h rndom vribl log P E E) whr, E) i diribud P E i ] log E log P E E) = log P E ) P E ) + = H + E P E ) 89) Nx, w pply gnrlizion of Crmér horm concrning rbirry fini non-ngiv mur 7 no ncrily probbiliy mur) o h qunc of rndom vribl log P E n n E n ) = n i= log P E i E i ) undr h qunc of non-ngiv fini join mur B,) B P E n, )P E n ) o blih h lim n n log =,):P n E )<ɛ nr P n E, )P n E ) nr Th mn in 90) hold bcu h rlvn cumuln gnring funcion i H E P E ) R) R ˆR mx 0,] H + E P E ) R) R ˆR 90) τ ) = log, P E, )P E ) log P E ) 9) from h dfiniion of h condiionl Rényi nropy in 0) Hnc, Γ := lim n n log = )H + ) E P E ), 92),):P n E )<ɛ nr P n E, )P n E ) 93) = up R τ )} 94) 0 = up R + )H+ ) E P E ) } 95) 0 By diffrniing h objciv funcion in 95), w h if R ˆR = d d H + = cf h dfiniion of h criicl r in 2)), h opiml oluion i ind = 0 rcll h H + i concv o ˆR i dcring) nd o Γ = H E P E ), lding o h fir clu in 90) Convrly, whn R > ˆR, h opiml oluion i ind > 0 Thi ld o h cond clu on h righ-hnd-id of 90) bcu h lf-hnd-id of 90) i now Γ R = up )R + )H+ ) E P E ) } 96) 0 = mx H + E P E ) R} 97) 0,] Sinc 88) i no mllr hn 90), h lr domin Now uing h on-ho bound in 56) in Lmm w h for ny qunc of ɛ-lmo univrl 2 hh funcion f Xn, lim n n H n f Xn n ), E n, X n PE n P Xn ) = lim n n log E X n lim n n log = Hn f Xn n ),E n P n E )] 98) 2 PE, n ),):P n E ) ɛ nr ] + 2 PE, n )P E n ) nr,):p n E )<ɛ nr H E P E ) R R ˆR mx 0,] H + E P E ) R) R ˆR 00) Sinc hi bound hold for ll qunc of univrl 2 hh funcion f Xn U 2 king ɛ = bov), w hv blihd h uppr bound in 52) 7 Th ndrd Crmér horm 33, Scion 22] or Snov horm 33, Scion 2]) i lrg-dviion rul concrning h xponn of P n B) whr P i probbiliy mur nd B i n vn in h mpl pc Ω If P i no ncrily probbiliy mur bu fini non-ngiv mur i i in our pplicion), y µ, Crmér horm clrly lo ppli by dfining h nw probbiliy mur B P B) := µb)/µω) 99)

14 4 D Proof of 53) in Thorm 2 W now prov h uppr bound in 53) For hi purpo, w u h on-ho bound 67) in Lmm 2 ppndix ) W mploy Crmér horm 33, Scion 22] wih h qunc of rndom vribl log P E n ) ã P E n ã ) ) whr ã = ã, ã 2,, ã n ) n ) undr h qunc of join diribuion PE n, ) W clim h lim n n log PE) n P :P n E ) ɛ E n ) nr ã P n E ã ) = lim n n log PE, n ) 0),):P n E ) ã P n E ã ) ) ɛ n R = mx 0 + H + E P E ) R) 02) L u juify h clim in 02) crfully Th drivion hr i imilr o h in 92) 95) nd involv clculing h rlvn cumuln gnring funcion τ ) := log ) ]) P E, ) xp log P E ) P E ã ) 03), = log ) ) P E ) P E ) + P E ã ) 04) ã = + H + E P E ), 05) whr h l p rul from h dfiniion of h wo-prmr condiionl Rényi nropy in 20) By n pplicion of Crmér horm, h corrponding xponn i 02) In ddiion, w pply h gnrlizd vrion of Crmér horm foono 7) o compu nohr lrg dviion quniy Conidr h qunc of rndom vribl log P E n ) ã P E n ã ) ) diribud ccording o h qunc of non-ngiv fini join mur B,) B P E n)p E n )) ã P E n ã ) ) W clim h h xponn cn b clculd o b lim n n log = n R P n E) ã ) ] P n :P n E ) <ɛ E ) P E n ã ) 06) nr ã P n E ã ) ã mx 0,] H E P E) R) R ˆR H + E P E ) R) R > ˆR 07) L u juify h clim in 07) crfully Thi p follow bcu h rlvn cumuln gnring funcion i τ ) := log xp = log P E ) log P E ) P E ) ã P E ) ã P E ) ã P E ã ) ) P E ã ) ) ] ) 08) P E ã ) ) 09) Thu 06) rduc o mx τ ) } 0 + R = mx log P E ) ) P E ) + P E ã ) + R 0) ã = mx + H + E P E ) } + R, )

15 5 whr h l p follow from h dfiniion of h wo-prmr condiionl Rényi nropy in 20) Now from h dfiniion of h criicl r ˆR in 22) nd h fc h H = H, w know h if R ˆR, h mximizion in ) i ind =, ruling in h fir c in 07) Convrly, h cond c rul from R > ˆR whr h domin of i 0, ] inc h vnul xponn cnno b ngiv Thi prov 07) Sinc 07) i no grr hn 02), h formr domin h xponnil bhvior of G R, ), nd o plugging h vluion ino h on-ho bound in 67) which hold for ny ɛ-lmo univrl 2 hh funcion f Xn, lim n n H n f Xn n ), E n, X n PE n P Xn ) = lim + n n log E X n H n f Xn n ),E n P n )] E 2) lim + n n log 2 PE) n :P n E ) ɛ nr ã P n E ã ) P n E ) + 2 ɛ n R PE) n ) ] P n :P n E ) <ɛ E ) P E n ã ) 3) nr ã P n E ã ) ã H = E P E) R R ˆR mx 0,] H + E P E ) R) R > ˆR 4) Sinc hi bound hold for ll qunc of univrl 2 hh funcion f Xn U 2 king ɛ = bov), w hv blihd h uppr bound in 53) VI PROOF OF THEORE 3 Th bound on h opiml comprion r corrponding o h condiionl Rényi nropy nd Gllgr form of h condiionl Rényi nropy r provd in Subcion VI- nd VI-B rpcivly Proof of 66), 67), nd 68) Proof: Rcll h dfiniion of h opiml r T, T, nd T in Thorm 3 Sinc GR, ) GR, ), nd boh funcion r monooniclly non-incring in R, i hold h T T for ll Fir, w prov h uppr bound o T nd T in Scion VI-; nx w prov h lowr bound o T in Scion VI-2; nd finlly w prov h lowr bound o T in Scion VI-3 For h + c, h uppr nd lowr bound mch for ll 0, ) nd o hi prov 68) ) Uppr Bound: W rfr o h mn in 50) W obrv h if R H E P E ), GR, ) = 0 inc GR, ) i uppr boundd by H E P E ) R + nd GR, ) i non-ngiv Hnc, T H E P E ) for ll 0, ] Thi prov 66) Nx w rfr o h mn in 52) If R H E P E ), w know from h monooniclly dcring nur of H E P E ) h H + E P E ) R i non-poiiv for 0, ] Thu, h opiml in h opimizion in mx 0,] H + E P E ) R) i = 0 nd conqunly, h opiml objciv vlu i lo 0 On h ohr hnd, for R ˆR, H E P E )), h opiml 0, ] nd o h h opiml objciv vlu i poiiv W conclud for 0, ) h h opiml ky gnrion r i uppr boundd by h condiionl Shnnon nropy H E P E ) In ummry, w conclud h T H E P E ) for ll 0, ), proving h uppr bound for 68) 2) Lowr Bound o T : W now conidr rongly univrl hh funcion 8] cf Dfiniion 2) nd 0, 0 ], whr 0 = 0 E P E ) i dfind in 57) or prcily, w hll how h for h qunc of rongly univrl hh funcion f Xn : n,, nr }} n N nd ny 0, 0 ], w hv GR, ) = lim n n H n f Xn n ), E n, X n PE n P Xn ) H E P E ) R +, 5) immdily implying h T H E P E ) In fc, for hi rng of, no only i i ru h h minimum vlu of R uch h GR, ) = 0 coincid wih h in 66), h bound in 5) rv igh lowr bound o h chivbiliy uppr) bound for GR, ) in 50) l for rongly univrl hh funcion) In h following, w mk u hvy u of h mhod of yp; rlvn noion i ummrizd in Scion II-B

16 6 For of xpoiion, w fir conidr h c in which E = or quivlnly, E = Subqunly, w gnrliz our rul o h gnrl c in which E > Sring wih h on-ho bound in 80) in Lmm 3), w hv E Xn H n f Xn n ),X n P n )] = E Xn P) n n P ã f Xn f Xn )) 2 E Xn P) n P) n + = E Xn P) n P) n + = E Xn P) n P) n + = = P) n P) n + E Xn P) n P) n + Q P n) ã) 6) n P ã f Xn f Xn ))\} Q P n) ã T Q \}:f Xn )=f Xn ã) mx Q P n) ã T Q \}:f Xn )=f Xn ã) mx Q P n) E Xn ã T Q \}:f Xn )=f Xn ã) ã T Q \}:f Xn )=f Xn ã) ] ã) 7) ] Pã) n 8) ] Pã) n 9) ] Pã) n 20) ] Pã) n, 2) whr in 7) w ud h bound b + c) 2 b + c ) for b, c 0 nd 0, ] conqunc of Jnn inquliy pplid o h concv funcion for 0, ]), in 8), w pli h innr um ino n-yp on, nd in 9) nd 2) w ud h fc h hr r polynomilly mny yp o w cn inrchng um ovr yp wih mximum ovr yp nd vic vr Thi drivion i imilr o 2, Eqn 20)] Now, w w um h R < H P ) nd lo h 0 P ) Th lr umpion mn h H P ) H P ) ) Scion IV-D) In hi c, w my u h bound in 205) in Lmm 4 in ppndix B) o lowr bound h innr) um ovr xpcion in 2) W hv E Xn ] Pã) n Q P n) ã T Q \}:f Xn )=f Xn ã) Q P n) E ] X n Pã) n 22) ã T Q \}:f Xn )=f Xn ã) ] E Xn Pã) n 23) Q P n) ã T Q \}:f Xn )=f Xn ã) = E ] X n Pã) n 24) ã :f Xn )=f Xn ã) = P n ã) Pr f Xn ) = f Xn ã) } 25) ã = nr Pã) n, 26) ã whr 22) u 205) in Lmm 4, nd 23) u h inquliy i b i i b i) which hold for non-ngiv b i nd 0, ] 3, Problm 45f)] nd 26) u h fc h f Xn i rongly univrl hh funcion cf Dfiniion 2)

17 7 Subiuing 26) ino 2), w obin E Xn H n f Xn n ),X n P n )] P) n P) n + nr Pã) n 27) ã = + nr P) n P) n } 28) = + xp nh P ) R] ) 29) = xp nh P ) R] ), 30) whr in 29) w ud h fc h mx P n) 2 y) for n lrg nough o P n)} P n) 2 ) > 0, nd in 30), w ud h condiion H P ) > R o h xprion in 29) i xponnilly lrg In h ohr c, whn R H P ), w imply lowr bound h um ovr yp rm in 2) by 0 nd hnc, h nir xprion in 2) cn b lowr boundd by Thu, w conclud h E Xn H n f Xn n ),X n P n )] xp n H P ) R +) 3) For h c E =, hi blih 5) for 0, 0 P )] Now w xnd our nlyi o E > Nurlly, w opr on yp-by-yp bi ovr E n nlogouly o h drivion of 3) vi Lmm 4, w h if 0 0 = min 0 P E= ), w hv E Xn H n f Xn n ),E n,x n P n )] E +) Q E P ne) P n ET QE ) xp n Q E )H P E= ) R E 32) S Rmrk 2 in ppndix B for dild dcripion of hi p In fc, hi drivion i imilr o h corrponding clculion in rhv work in 2, Scion IV-C] nd 22, Scion IV-D] Bcu PE nt Q E ) = ndq E P E ), E Xn H n f Xn n ),E n,x n P n )] E xp n mx Q E PE) +}) DQ E P E ) + Q E )H P E= ) R 33) Dno h opimizr in h mximizion in 33) Q E If h + i inciv for Q E, by righforwrd clculu, Q E) = E P E ) H P E=) E P, E, 34) E ) H P E= ) whil if h + i civ for Q E, obviouly Q E ) = P E) for ll E By uing h form of h opimizr Q E nd h fc h h condiionl Rényi nropy H E P E ) dfind in 0)) i rld o h diribuion P E nd h uncondiionl Rényi nropi H P E= ) : E} follow H E P E ) = log E P E ) H P E=), 35) w h h mximizion in 33) rduc o H E P E ) R + Upon king h log, dividing by n, nd king h lim, w compl h proof of 5) for h c whr E >, uming 0, 0 ] uch, w hv compld h proof of h lowr bound on h opiml comprion r for rongly univrl hh funcion in 67) 3) Lowr Bound o T : For h lowr bound o T, w no from h work by Hyhi in 35, Lmm 5] h for ny, ) \ 0} h h condiionl Rényi nropy nd i Gllgr form ify Furhrmor, bcu H i monooniclly non-incring, n H n f n n ), E n PE) n H E P E ) H E P E ) 36) n H n f n n ), E n PE) n 37) = n H n f n n ), E n P n E) 38)

18 8 W rquir h h rm on h lfmo rm of hi inquliy o vnih o inc h conrin GR, ) = 0 i prn Thi impli h h normlizd Gllgr min-nropy n H ncrily vnih From h rlion bwn h rong convr xponn nd H in 25), w h n log Pn) c f n ) 0, whr P n) c f n ) i h probbiliy of corrc opiml P) dcoding undr ncodr f n By h xponnil rong convr for Slpin-Wolf coding by Oohm nd Hn 2, Thorm 2], w know h if R < H E P E ), i i lo ncrily ru h lim n n log Pn) c f n ) > 0 Hnc, by conrpoiion, R H E P E ) Thu, T H E P E ) Thi, oghr wih h corrponding uppr bound provd in Scion VI-, immdily blih h lowr bound o 68) for ll 0, ) B Proof of 69) nd 70) Proof: To prov 69) nd 70), fir rcll h dfiniion of h opiml r T nd T in Thorm 3 Sinc G R, ) G R, ), nd boh funcion r monooniclly non-incring in R, i hold h T T for ll ) Uppr Bound: Th uppr bound for T nd T cn b hown in h m wy h rgumn o uppr bound T nd T in Scion VI- nd uing h rul in 5) nd 53) Dil r omid for brviy 2) Lowr Bound: For h lowr bound o T, w u n imporn rul by Fhr nd Brn 0, Thorm 3], which in our conx h for ny hh funcion f n :,, }, w hv H f n), E P E ) H E P E) log 39) for ll, ) No h, ) includ h rng of inr for T which i 0, /2] Th inquliy in 39) i conqunc of monooniciy undr condiioning nd h chin rul for h Gllgr form of h condiionl Rényi nropy S 6) nd 7) Sinc = nr nd H n E n PE n ) = nh E P E), hi impli h for 0, /2], w hv G R, ) H E P E) R + which immdily ld o h bound T H E P E), blihing 69) Now, for h lowr bound of T in 70), w no from h monooniclly dcring nur of H h n H n f n n ), E n PE) n n H n f n n ), E n PE) n 40) for ll 0, ) W rquir h h rm on h lf o vnih inc h conrin G R, ) = 0 i prn Hnc, n H lo vnih Similrly o h rgumn in Scion VI-3 fr 38), by invoking h xponnil rong convr o h Slpin-Wolf horm 2, Thorm 2], w know h T H E P E ) Thi blih 70) Rmrk W rmrk h h proof of h lowr bound o T bov i much implr hn h proof of h lowr bound of T for rongly univrl hh funcion in Scion VI-2 bcu w cn lvrg wo uful propri of H monooniciy nd chin rul) lding o 40) In conr, H do no po h propri Obrv h h proof in h fir hlf of Scion VI-B2 lo llow u o conclud h h uppr bound in 5) for h dirc pr i coincidn wih h lowr bound on G R, ) for ll 0, /2], i, G R, ) = G R, ) = H E P E) R + 4) VII PROOF OF THEORE 4 W prov mn 73) nd 74) in Subcion VII- nd VII-B rpcivly Smn 75) nd 76) r joinly provd in Subcion VII-C Proof of 73) in Thorm 4 Fir w no h ll h xponn r non-ngiv inc H n f Xn n ), E n, X n P n E P X n ) = On) nd imilrly for ll h ohr Rényi informion qunii Thi giv h + ign in ll lowr bound in 73) 76) Fix, ] Th on-ho bound in 76) in Lmm 3 impli h for ny ɛ-lmo univrl 2 hh funcion f Xn, log E Xn H n f Xn n ), E n, X n P n E)] log E Xn H n f Xn n ), E n, X n PE)] n 42) = log E X n log H n f Xn n ),E n,x n P n )]]} E 43) log log E X n H n f Xn n ),E n,x n P n )]} E 44) log log + ɛ H n E n P n E ) )} 45) log ɛ nh E PE) } 46) } = log ɛ + nr H E P E )), 47)

19 9 whr in 42) w ud h fc h H i monooniclly non-dcring, in 44) w pplid Jnn inquliy o h concv funcion log, nd in 46) w mployd h bound log + ) Th bound in 47) hold for ll f Xn U 2 nd ll, ] Now, w normliz by n nd k h lim n Finlly, w mximiz ovr ll, ] Thi yild 73), concluding h proof B Proof of 74) in Thorm 4 Fix, /2] Th on-ho bound in 77) in Lmm 3 impli h for ny ɛ-lmo univrl 2 hh funcion f Xn, ] log E Xn H n f Xn n ), E n, X n PE) n ] log E Xn H n f Xn n ), E n, X n PE) n 48) = log E Xn log H n f Xn n ),E n,x n P n )]]} E 49) log log E Xn H n f Xn n ),E n,x n P n )]} E 50) )} log log + ɛ H n E n P n E ) 5) log ɛ = log ɛ n H E P E) } + n } R H E P E) In 48), w ud h fc h for H i monooniclly non-dcring Thi bound hold for ll f X n U 2 nd ll, /2] Now, w normliz by n nd k h lim n Finlly, w mximiz ovr ll, /2] Thi yild 74), concluding h proof C Proof of 75) nd 76) in Thorm 4 W prov 76) bfor proving 75) W no h lim n n log H n f Xn n ), E n, X n PE n P Xn ) ) 52) 53) lim n n log H n f Xn n ), E n, X n PE n P Xn ) 54) for ll 0, ) nd 0, ] Thi i bcu α Hα i monooniclly non-incring Thi bound impli h E R, ) E R, ) Combining hi wih h lowr bound on h xponn of H in 74) nd noing h h lowr bound i mximizd = 0 immdily blih 76) Finlly, w no from 8) h H H o lim n n log H n f Xn n ), E n, X n PE n P Xn ) lim n n log H n f Xn n ), E n, X n PE n P Xn ) 55) Combining hi wih h lowr bound on E R, ) in 76) compl h proof of 75) VIII CONCLUSION ND FUTURE WORK In hi ppr, w hv dvlopd novl chniqu o bound h ympoic bhvior of rmining uncrini murd ccording o vriou condiionl Rényi nropi Thi i in conr o ohr work ], 2], 4] 7] h qunify uncriny uing Shnnon informion mur W moivd our udy by howing h h qunii w chrcriz r gnrlizion of h rror xponn nd h rong convr xponn for h Slpin-Wolf problm W udid vriou imporn cl of hh funcion, including univrl 2 nd rongly univrl hh funcion Finlly, w lo howd h in mny c, h opiml comprion r o nur h h normlizd rmining uncrini vnih cn b chrcrizd xcly, nd h hy xhibi bhvior h r omwh diffrn o whn Shnnon informion mur r ud In h fuur, w hop o driv lowr bound o h normlizd rmining uncrini nd uppr bound on hir xponn h mch or pproximly mch hir chivbiliy counrpr in Thorm 2 nd 4 In ddiion, ju in h uhor rlir work in 9], w my lo udy h cond-ordr or n bhvior 36] of h rmining uncrini Th chllnging ndvor rquir h dvlopmn of nw on-ho bound wll h pplicion of nw lrg-dviion nd cnrl-limiyp bound on vriou probbilii

20 20 PPENDIX ONE-SHOT DIRECT PRT BOUNDS In hi ppndix, w nd prov vrl on-ho bound on h vriou condiionl Rényi nropi Lmm nd 2 r ud in h proof for h rmining uncrini Thorm 2) Lmm 3 i ud in h proof for h xponn Thorm 4) Lmm For ɛ-lmo univrl 2 hh funcion f X : =,, }, w hv E X H f X ),E,X P E ) 2 P E ) P E ) :P E ) ɛ ɛ ) + 2 P E ) for ny 0, ] f Xn :P E )< ɛ P E ) 56) Proof: W fir blih om bic inqulii: For ny, ) E, nd ny ɛ-lmo univrl 2 hh funcion : =,, }, E X P E ) P E ) + ɛ P E ) 57) Uing 59), w hv f X f X )) P E ) + ɛ 58) ɛ } 2 mx P E ), 59) E X H f X ),E,X P E ) = E X P E ) P E ) ) P E ) i f X i) f X i) f X i) P 60) E ) = E X P E ) P E ) P E ) 6) i f X i) f X i) = E X P E ) P E ) P E ) 62) f X f X )) P E ) P E ) E X P E ) 63) = 2 P E ) P E ) P E ) 2 mx f X f X )) P E ), P E ) mx P E ), ɛ }) 64) ɛ ) } 65) = 2 P E ) ɛ ) P E ) + 2 P E ) P E ) 66) :P E ) ɛ :P E )< ɛ Thu, w obin 56) Lmm 2 For ɛ-lmo univrl 2 hh funcion f X : =,, }, w hv E X H f X ),E,X P E ) 2 P E ) P E ) :P E ) ɛ P E ) + 2 ɛ ) P E ) P E ) P E ) P E ) for ny 0, ) :P E ) < ɛ ) 67)

21 2 Proof: Uing 59), w hv E X H f X ),E,X P E ) = E X P E ) P E ) ) P E ) i f X i) f X i) f X i) P E ) = E X P E ) P E ) P E ) i f X i) f X i) = E X P E ) P E ) P E ) f X f X )) P E ) P E ) E X P E ) P E ) P E ) + P E ) = 2 P E ) P E ) 2 mx :P E ) ɛ f X f X )) P E ), }) ɛ P E ) P E ) P E ) 2P E ) ) :P E ) < ɛ :P E ) ɛ + 2 ɛ ) Thu, w obin 67) P E ) P E ) P E ) P E ) P E ) :P E ) < ɛ 2 ɛ P E ) P E ) P E ) Lmm 3 For ɛ-lmo univrl 2 hh funcion f X : =,, }, w hv for ll 0, ] In ddiion, w lo hv for ll 0, /2] Proof: W hv E X H f X ),E,X P E ) + ɛ H E P E) E X H f X ),E,X P E ) + ɛ H E P E) ) P E ) ) 68) 69) 70) 7) 72) 73) 74) 75), 76), 77) E X H f X ),E,X P E ) = E X P E ) P E ) ) P E ) i f X i) f X i) f X i) P 78) E ) = E X P E ) P E ) P E ) 79) i f X i) f X i) = E X P E ) P E ) P E ) 80) f X f X )) P E ) P E ) E X P E ) 8) f X f X ))

22 22 P E ) P E ) P E ) P E ) + ɛ ) 82) ɛ ) ) P E ) P E ) + = P E ) P E ) + P E ) ɛ ) ) 84) = + P E ) P E ) ɛ ) 85) = + ɛ H E P E) 86) In 8), w pplid Jnn inquliy wih h concv funcion Hr i whr h condiion 0, ] i ud In 82), w ud 58) nd in 83), w ud h fc h b + c) b + c for b, c 0 nd 0, ] 3, Problm 45f)] Thu, w obin 76) For 77), conidr, E X H f X ),E,X P E ) = E X P E ) P E ) ) P E ) i f X i) f X i) f X i) P E ) = E X P E ) P E ) i f X i) = E X P E ) P E ) P E ) i f X i) f X i) = E X P E ) P E ) P E ) f X f X )) P E ) P E ) E X P E ) f X f X )) P E ) P E ) P E ) + ɛ P E ) P E ) P E ) P E ) + ɛ P E ) = + P E ) P E ) ɛ ) = + ɛ ) = + P E ) P E ) + ɛ P E ) ɛ P E ) ) + P E ) P E ) P E ) = + ɛ H E P E) P E ) ) P E ) ) 83) 87) 88) 89) 90) 9) 92) 93) ) 94) 95) 96) 97) 98)

23 23 In 9), w pplid Jnn inquliy wih h concv funcion Hr i whr h condiion 0, /2] i ud Th xplnion for h ohr bound prlll ho for h proof of 76) nd r omid for h k of brviy Thi compl h proof of 77) PPENDIX B BOUND ON THE SU OF EXPECTTIONS IN 2) Rcll h dfiniion of γ) = H + P ) nd h ild diribuion P ) ) = P ) + γ) inroducd in Scion IV-D I i ily n cf Scion II-) h γ) i ricly concv for > I lo hold h DP ) P ) = γ) γ ), nd 99) HP ) ) = + )γ ) γ) 200) fc w u in h qul i h if >, h funcion HP ) ) i monooniclly dcring; hi cn b n by conidring h driviv d ) dhp ) = + )γ ) < 0 Lmm 4 L h um of xpcion in 2) b dnod Ψ n := E Xn Q P n) ã T Q \}:f Xn )=f Xn ã) ] Pã) n 20) L R, ) b h uniqu numbr ifying HP R) ) = R log Thn, Ψ n xp nλ, R)) 202) whr Λ, R) := R + DP R ) P )) R R + γ ) > R 203) Furhrmor, if R < H P ), hn for ll 0, 0 P )] cf dfiniion in 54)), Ψ n xp nr + DP R) P ))]) 204) = E ] X n Pã) n 205) Q P n) ã T Q \}:f Xn )=f Xn ã) Th inquliy in 204) impli h undr h d condiion on R nd, h fir clu in 203) i civ Th clculion hr r omwh imilr o ho in rhv work in 2, Scion IV-C] nd 22, Scion IV-D] bu h whol proof for h c in which E = i includd for compln S Rmrk 2 for kch of how o xnd h nlyi o h mmoryl bu non-ionry c in which E = W rmrk h whn = R, Λ, R) =+R = + R )γ R ) 206) By uing HP R) ) = R, 99), nd 200), w immdily h hi boundry c coincid wih h wo c of 203) o Λ, R) i coninuou + R Proof: L G R := Q P) : HQ) > R}, G R,n := G R P n ) nd clg R ) b h clour of G R W pli Ψ n ino h following wo um Ψ n = ] E Xn Pã) n Q G R,n ã T Q \}:f Xn )=f Xn ã) }} α n + ] E Xn Pã) n 207) Q G R,n c ã T Q \}:f Xn )=f Xn ã) }} β n

24 24 Dfin N Q := ã T Q \} f X n ) = f Xn ã)} Thi i um of L Q := T Q \ } indpndn nd idniclly diribud 0, }-rndom vribl Y i } L i= wih PrY i = ) = nr =: p propry of rong univrl 2 hh funcion) L Q T Q b ny gnric vcor of yp Q L u now lowr bound α n nd β n For h xpcion wihin α n, w hv E Xn ã T Q \}:f Xn )=f Xn ã) = P n Q ) E Xn = P n Q ) E NQ ] ] Pã) n ã T Q \}:f Xn )=f Xn ã) ] 208) 209) P n Q ) E N Q ]} 20) = E ] X n Pã) n, 2) ã T Q \}:f Xn )=f Xn ã) whr 208) follow bcu ll ã in h um hv h m yp Q, 209) from h dfiniion of N Q, 20) follow from Lmm 5 in ppndix C) undr h condiion h Q G R,n o L Q p = EN Q ] n+) xpnhq) R]) nd 228) ppli) Thu, w conclud h α n EN Q ]) P n Q ) 22) Q G R,n = mx EN Q]) P n Q ) 23) Q clg R ) By furhr uing h fc h P n Q) = xp ndq P ) + HQ)]) 6, Lmm 26], w hv ) α n xp nr) xp n min DQ P ) =: α n 24) Q clg R ) Nx, w lowr bound h xpcion in β n Th p from 208) o 209) rmin h m bu w bound EN Q ] diffrnly W hv E NQ] PrN Q = ) 25) ) = LQ p p) L Q 26) = L Q p xp L Q ) log p) ) 27) ) p L Q p xp L Q ) 28) p L Q p = EN Q ], 29) whr 28) follow from h bic inquliy log ) nd 29) follow from h fc h L Q )p nr T Q \ } xpnhq) R]) whn Q GR,n c = Q P n) : HQ) R} Thu, w hv β n Q G c R,n = mx Q G c R = xp nr) xp EN Q ]P n Q ) 220) EN Q ]P n Q ) 22) n min DQ P ) )HQ) ]) =: β n 222) Q GR c W rmrk h h vluion in 20) nd 29) r, in fc, xponnilly igh 8 2, Eqn 34)] Thi impli h α n nd β n = βn Howvr, w only rquir h lowr bound = αn 8 Th inuiion hr i h if HQ) > R, h rndom vribl N Q concnr doubly-xponnilly f o i xpcion, which ilf i xponnilly lrg On h ohr hnd, if HQ) < R, N Q i ypiclly xponnilly mll, o EN Q ] i domind by h rm PrN Q = )

25 25 I i y o h h opiml diribuion Q in h opimizion in h xponn of α n ifi HQ ) = R i, Q li on h boundry of G R ) In fc, h xponn which i h lol ourc coding rror xponn 6, Thorm 25]) cn b xprd DP R) P ) whr R i chon uch h HP R) ) = + R)γ R ) γ R ) = R Thu, α n = xp nr) xp nd P R) P )) 223) = xp nr + γ R ) R γ R )]) 224) Now, i i y o vrify Shyviz 37, Scion IV-8] for xmpl) by diffrniing h convx funcion gq) := DQ P ) )HQ) h h unconrind minimum in h xponn in β n k h form of iling of P, i, Q ) := P ) P ) = P ) ), 225) Now dpnding on h vlu of, w hv wo diffrn cnrio Fir, if > R or quivlnly, Q GR c β, hn n = xp nr + gq )]) = xp nr + γ )]) uing 99) nd 200)) On h ohr hnd, if R, h opiml oluion in h opimizion in β n i gin ind h boundry of G R nd GR c i, h conrin Q Gc R i civ) Thu, β n = αn whr α n i in 224) In ummry, β n = xp nλ, R)) whr Λ, R) i dfind in 203) Now, clrly βn lwy domin α n i, β n i xponnilly l lrg α n ) Thi i bcu whn R, hy r h m, nd whn > R, w r king n unconrind minimum of gq) in h xponn, mking h ovrll xprion lrgr W hu obin h concluion in 202) For h mn in 204) 205), w um h R < H P ) nd 0, 0 P )] W clim h h imply h R, i, h fir clu in 203) i civ No from h dfiniion of 0 P ) in 54) h 0 P ) mn h H P ) H P ) ) 226) Sinc R < H P ), i hold h R < H P ) ), bu hi in urn impli h R bcu H P ) ) i monooniclly non-incring Thu 204) hold Th 204) i xponnilly qul o 205) follow from h fc h whn R < H P ) nd 0, 0 P )], β n i of h m xponnil ordr α n nd h lr i lowr boundd on h xponnil cl) by 2) Rmrk 2 To driv condiionl vrion of Lmm 4 o obin 32), w um h h yp of E n i Q E P n E) Th bov drivion go hrough nilly unchngd by vrging wih rpc o Q E vrywhr Spcificlly, w conidr nd ã o blong o vriou V E -hll T V E ) := n :, ) T QE V E } 6, Ch 2] Th nropi HQ) r rplcd by condiionl nropi HV E Q E ), h rliv nropi DQ P ) by condiionl rliv nropi DV E P E Q E ) nd h ild condiionl diribuion i dfind P ) E ) P E ) + nd o on For h nlogu of 204) 205) o hold, w firly rquir R < Q E)H P E= ) If w furhr um h 0 0 = min 0 P E= ), H P E= ) H P ) E )) for ll E, nd o R < Q E)H P ) E )) giving h fir clu in h condiionl nlogu of 203), i, h Λ, R) = R + DP R) E P E Q E )) whr R ifi HP R) E Q E) = R Th obrvion yild 32) upon vrging ovr ll yp on E PPENDIX C USEFUL CONCENTRTION BOUND Th following lmm i nilly rmn of Lmm 0 in 38] Lmm 5 L Y,, Y L b indpndn rndom vribl, ch king vlu in 0, } uch h PrY i = ) = p L N := L i= Y i For vry 0, ] nd ny 0 < ɛ <, EN ] Lp ɛ) xp L p2 )] ɛ2 227) In priculr, if Lp i qunc in n h nd o infiniy n nd o infiniy) xponnilly f, hn by king ɛ = /2 y) in 227), EN ] Lp) = EN]} 228) In fc, w hv EN ] = EN]} bcu EN ] EN]} by Jnn inquliy cknowldgmn VYFT i prilly uppord n NUS Young Invigor wrd R B37-33) nd Singpor iniry of Educion Tir 2 grn Nwork Communicion wih Synchronizion Error: Fundmnl Limi nd Cod R B6-2) H i prilly uppord by EXT Grn-in-id for Scinific Rrch ) No H i lo prilly uppord by h Okw Rrch Grn nd Kymori Foundion of Informionl Scinc dvncmn Th Cnr for Qunum Tchnologi i fundd by h Singpor iniry of Educion nd h Nionl Rrch Foundion pr of h Rrch Cnr of Excllnc progrmm

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Multipath Interference Characterization in Wireless Communication Systems

Multipath Interference Characterization in Wireless Communication Systems Muliph Inrfrnc Chrcrizion in Wirl Communicion Sym Michl ic BYU Wirl Communicion Lb 9/9/ BYU Wirl Communicion 66 Muliph Propgion Mulipl ph bwn rnmir nd rcivr Conruciv/druciv inrfrnc Drmic chng in rcivd

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing hpr 2 uomi T Prn Gnrion Fundmnl hpr 2 uomi T Prn Gnrion Fundmnl Lirry uppor Nli ondiioning Orv Poin mn Vor Gnrion/imulion Vor omprion Vor Wriing Figur 2- Th Ovrll Prn Gnrion Pro Dign-or-T or Digil I nd

More information

DYNAMICS OF A POPULATION SUBJECT TO IMPULSE TYPE RANDOM LOSS

DYNAMICS OF A POPULATION SUBJECT TO IMPULSE TYPE RANDOM LOSS PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Scion B Vol. 7 (7 No. 4 (79 pp. 98 3. DOI:.55/prol-7-5 DYNAMICS OF A POPULATION SUBJECT TO IMPULSE TYPE RANDOM LOSS Jvgòij Crov nd Kârli Ðduri # Dprmn of

More information

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control UDC 621. 791. 75 : 681. 3 Proc Modling of Shor-Circuiing GMA Wlding nd I Applicion o Arc Snor Conrol Shinji KODAMA* 1 Yuomo ICHIYAMA* 1 Yuyuki IKUNO* 2 Norimiu BABA* 2 Abrc Th mhmicl modl of g ml rc (GMA)

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

A modified hyperbolic secant distribution

A modified hyperbolic secant distribution Songklnkrin J Sci Tchnol 39 (1 11-18 Jn - Fb 2017 hp://wwwsjspsuch Originl Aricl A modifid hyprbolic scn disribuion Pnu Thongchn nd Wini Bodhisuwn * Dprmn of Sisics Fculy of Scinc Kssr Univrsiy Chuchk

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Review: What s an FSM? EECS Components and Design Techniques for Digital Systems

Review: What s an FSM? EECS Components and Design Techniques for Digital Systems EECS 5 - Componn nd Dign Tchniqu for Digil Sym Lc 8 Uing, Modling nd Implmning FSM 9-23-4 Dvid Cullr Elcricl Enginring nd Compur Scinc Univriy of Cliforni, Brkly hp://www.c.brkly.du/~cullr hp://www-in.c.brkly.du/~c5

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit Univeriy of Souhern Cliforni Opimliy of Myopic Policy for Cl of Monoone Affine Rele Muli-Armed Bndi Pri Mnourifrd USC Tr Jvidi UCSD Bhkr Krihnmchri USC Dec 0, 202 Univeriy of Souhern Cliforni Inroducion

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Part 3 System Identification

Part 3 System Identification 2.6 Sy Idnificaion, Eiaion, and Larning Lcur o o. 5 Apri 2, 26 Par 3 Sy Idnificaion Prpci of Sy Idnificaion Tory u Tru Proc S y Exprin Dign Daa S Z { u, y } Conincy Mod S arg inv θ θ ˆ M θ ~ θ? Ky Quion:

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Network Design with Weighted Players

Network Design with Weighted Players Nwork Dign wih Wighd Playr Ho-Lin Chn Tim Roughgardn Jun 21, 27 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [2], whr lfih playr lc pah in a nwork o minimiz hir co, which

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Network Design with Weighted Players (SPAA 2006 Full Paper Submission) Nwork Dign wih Wighd Playr SPAA 26 Full Papr Submiion) Ho-Lin Chn Tim Roughgardn March 7, 26 Abrac W conidr a modl of gam-horic nwork dign iniially udid by Anhlvich al. [1], whr lfih playr lc pah in a

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES * Iranian Journal of Scinc & Tchnology, Tranacion A, Vol, No A Prind in h Ilamic Rpublic of Iran, 009 Shiraz Univriy THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES E KASAP, S YUCE AND N KURUOGLU Ondokuz

More information

Explaining Synthesis of Three-Phase Sinusoidal Voltages Using SV-PWM in the First Power Electronics Course

Explaining Synthesis of Three-Phase Sinusoidal Voltages Using SV-PWM in the First Power Electronics Course Explining Synhi of hr-ph Sinuoil olg Uing S-PWM in h Fir Powr Elcronic Cour Moh, Philip Jo, Brkkn, Kruhn Mohpr Uniriy of Minno, Minnpoli, USA Wlmr Sulkowki, rik Uniriy, rik, orwy or Unl, U, ronhim, orwy

More information

LGOVNATDEFUSAAD

LGOVNATDEFUSAAD ECONOMETRIC PROBLEMS WITH TIME-SERIES DATA Sionriy: A sris is sid o covrinc sionry if is mn nd covrincs r unffcd y chng of im origin Qusion : Do you hink h following sris r sionry? Log Rl Nionl Dfnc Expndiurs

More information

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk Y M B P V P U up civii r i d d Wh clu dy 1. B nur fr cll 2. Prcic 999 3. Hzrd hun d 4. B f lif d cld grm 5. Mk plic g hzrd 6. p cmp ln 7. Build p k pck? r hi p Bvr g c rup l fr y k cn 7 fu dr, u d n cun

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Embedding the Natural Hedging of Mortality/Longevity Risks into Product Design

Embedding the Natural Hedging of Mortality/Longevity Risks into Product Design Embing h Nurl Hging of Morliy/Longviy Rik ino Prouc Dign Bcky Fngwn Hung Jon Chng-Hin Ti 1 Dprmn of Rik Mngmn n Inurnc Rik n Inurnc Rrch Cnr Collg of Commrc, Nionl Chngchi Univriy Tipi, Tiwn ABSTRACT How

More information

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI#: PHA 527 Finl Exm Fll 2008 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pls rnsfr h nswrs ono h bubbl sh. Pls fill in ll h informion ncssry o idnify yourslf. h procors

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk Y M D B D K P S V P U D hi p r ub g rup ck l yu cn 7 r, f r i y un civi i u ir r ub c fr ll y u n rgncy i un pg 3-9 bg i pr hich. ff c cn b ll p i f h grup r b n n c rk ivii ru gh g r! i pck? i i rup civ

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

Generalized Half Linear Canonical Transform And Its Properties

Generalized Half Linear Canonical Transform And Its Properties Gnrlz Hl Lnr Cnoncl Trnorm An I Propr A S Guh # A V Joh* # Gov Vrh Inu o Scnc n Humn, Amrv M S * Shnkrll Khnlwl Collg, Akol - 444 M S Arc: A gnrlzon o h Frconl Fourr rnorm FRFT, h lnr cnoncl rnorm LCT

More information

A Study on the Nature of an Additive Outlier in ARMA(1,1) Models

A Study on the Nature of an Additive Outlier in ARMA(1,1) Models Europn Journl of Scinific Rsrch SSN 45-6X Vol3 No3 9, pp36-368 EuroJournls Publishing, nc 9 hp://wwwuroournlscom/srhm A Sudy on h Nur of n Addiiv Oulir in ARMA, Modls Azmi Zhrim Cnr for Enginring Rsrch

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information