The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change

Size: px
Start display at page:

Download "The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change"

Transcription

1 The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change Clinton S. Willson, P.E., Ph.D. Department of Civil & Environmental Engineering Louisiana State University

2 Acknowledgements LSU Graduate Students: Erol Karadogan, Nathan Dill, Ryan Waldron, Joseph Tsai, Samantha Danchuk, Molly Friedmann Delft Technical University Hydraulic Engineering M.S. Students LSU Undergraduate Students working at SSPM: Kevin Hanegan, Mark Leblanc, Erin Rooney, Paul Leonard, Kyle Breaux, Brett McMann LA Department of Natural Resources CREST Program USACE CHL National Center for Earth surface Dynamics Paola, Parker, Kim LSU Center for Computation & Technology

3 River Dominated Delta Sand Sediment Salt (3 S s) & Nutrients Not a static system Natural detail cycle River changes course Solid land to barrier islands Barrier islands to submerged sand bars; and more Delta is threatened by waves, tides, and storm surges Sea level rise and subsidence Changes in sediment loading Coleman & Gagliano, 1964

4 Does this look like a natural Delta?

5 Possible Realignment of Lower Mississippi River The LACPR draft report does not consider this option, stating the alternative was considered to be beyond the scope of the current effort and could not be adequately evaluated within the scope of this effort. NRC recognizes that, while controversial, there needs to be careful study of a major realignment of the lower Mississippi River. An evaluation of how a major realignment of the lower Mississippi River mouth may affect sediment capture and diversion should be conducted 1 st Report from NRC on LACPR Program Review

6 The concept has been around

7 Small Scale Physical Model Pointe a la Hache (~ RM 55) Head of Passes (RM 0)

8 Model Scaling Distorted Scale Movable Bed Model E(L) = 1/12 000, E(H) = 1/500 (HIGH VERTICAL DISTORTION) Limits study to mostly 1D bulk movement in river The model is built according to: Froude similarity law for the hydraulics; and Schield s law for the inception of sediment (sand) transport. also utilize Re scaling to ensure turbulent flow in the river & through diversions Only able to test large scale diversions (~ k cfs) Sediment Time Scale: 1 prototype year = 30 minutes in model time

9 Methodology 1. Run two year hydrograph in one hour period 2. Introduce sediment over identical hydrograph 3. Raise sea level ~1 ft every 30 years Measure stage levels Measure hydrographs Measure dredged material Image to obtain spatial distribution Dye studies to obtain surface velocities and patterns At conclusion of test, spatially collect sediment and measure amount and then sieve

10 SSPM Results Large Diversion #2

11 Impact on Stage Level Relative Sea Level Rise Gauge 2 Water Surface Elevation (ft) Crest LD #2, Gage 2 ws el (ft) 1-2 years Crest LD #2, Gage 2 ws el (ft) 9-10 years Crest LD #2,Gage 2 ws el (ft) years Crest LD #2, Gage 2 ws el (ft) years Crest LD #2, Gage 2 ws el (ft) years Crest LD #2 Gage 2 ws el (ft) years Time Interval (annual hydrogaph)

12 Sediment Deposited

13 Sediment Dredged

14 SSPM Results # of Years % Dredged % Deposited % Out of Model Base Case Large Diversion # Large Diversion #2 (2) Multiple Diversions Multiple Diversions (w/mg) Eastern Navigation Channel DTU Pulsed LD#

15 Land loss by deltaic drowning is neither inevitable nor natural Seismic section: 45 km long, 1.4 km thick 15 cm These low-gradient, low-elevation delta tops are dynamic and self-maintaining

16 Delta area is set by a balance between sea-level rise + subsidence and deposition of sediment and organic matter:. where H is eustatic sea level, σ spatially averaged subsidence rate, A top the area of the delta top (subaerial wetlands and channels), Q s total volumetric sediment supply, f r the fraction retained in the delta top, and r org the rate of storage of organic matter in the sediment column, expressed as a rate of vertical accumulation (length/time).

17 Desktop Delta Model THE MODEL CAN REPRODUCE THE WAX LAKE DELTA S PAST Yellow: 38 Mt/yr White: 25 Mt/yr (suspended load)

18 VARIATION: SEA-LEVEL RISE = 4 mm/yr, SUBSIDENCE = 10 mm/yr Solid line: variant case Dotted line: base case And extra land-building due to organics is not yet included Worst case : still 701 km 2 of new land

19 Desktop Delta Model SSPM VERY preliminary comparisons Large Diversion w/ 2 medium size diversions 50 years: 440 km 2 from DDM vs km 2 from SSPM 100 years: 620 km 2 from DDM vs km 2 from SSPM Multiple medium size diversions 100 years: 600 km 2 from DDM vs km 2 from SSPM Differences most likely due to assumptions concerning independence of individual diversions and conveyance efficiency using DDM

20 Is there enough sediment? Timing of the sediment?

21 Hydrodynamic Modeling of SSPM Area USACE Adaptive Hydraulics Code - Unstructured FE - Adaptive mesh capabilities - Runs on multiple platforms including HPCs Number of Nodes: 131,042 Number of Elements: 66,468 Total Mesh Area: 3530 km 2 Resolution is down to: 60 m Karadogan, 2008, in progress

22 Model Results vs Observation Data Karadogan, 2008, in progress

23 SSPM Mesh; Water Surface Elevations, 500K, 750K, 1000K cfs Karadogan, 2008, in progress

24 Hypothetical Diversion near Empire, LA Freeport Sulphur Canal Lake Washington Grand Mississippi Bay Lanaux Bay De La Cheniere Diversion Channel River Lake Grande Ecaille Bayou Adam s Bay N Bayou Huertes Bastian Bay Caprien Bay Bay Joe Wise Reference Map Elevations (Dill, 2007)

25 Mesh and Boundary Conditions 1000K cfs Mesh Adaption TAIL WATER ELEVATION of 0.4 m TAIL WATER ELEVATION of 0.4 m TAIL WATER ELEVATION of 1.16 m

26 Water Surface Elevations & Velocities Karadogan, 2008, in progress

27 Geophysical processes and geomorphic features control ecological patterns. Thus the structure and function of coastal ecosystems are dependent on critical processes specific to evolution of deltas. Links Delta Evolution to Ecological succession.

28 Final Thoughts Multiple tools are necessary Geological data (historical and current) Physical modeling High resolution numerical modeling Desktop/screening models Land building/ecological Models Accurate elevation data! Need to quantify rates and understand their context (short versus long term)

29 Final Thoughts Sediment Quantity? Occurrence/Frequency? Abandon Lower Mississippi River Delta? Alternative navigation channels? Paired with diversions in upper part? Subsidence rates combined with eustatic sea level rise makes the LMRD a valuable natural lab

The Mississippi River and its Role in Restoration Efforts

The Mississippi River and its Role in Restoration Efforts The Mississippi River and its Role in Restoration Efforts Clinton S. Willson, P.E., Ph.D. Department of Civil & Environmental Engineering Louisiana State University Acknowledgements LA Department of Natural

More information

Optimal Design of Sediment Diversions for Delta Restoration: lessons learned from examples

Optimal Design of Sediment Diversions for Delta Restoration: lessons learned from examples Optimal Design of Sediment Diversions for Delta Restoration: lessons learned from examples Samuel Bentley 1, Angelina Freeman 2, Clinton S. Willson 1, Liviu Giosan 3, Jaye Cable 4 1 LSU 2 EDF 3 WHOI 4

More information

MISSISSIPPI RIVER DELTA OVERVIEW

MISSISSIPPI RIVER DELTA OVERVIEW MISSISSIPPI RIVER DELTA OVERVIEW Science and Engineering Special Team Conference Louisiana State University October 9, 2012 Introduction Basics of the Mississippi Delta Natural and Human-Induced Land Loss

More information

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Freddie Pinkard and Charlie Little Research Hydraulic Engineers ERDC-CHL-River Engineering Branch 27 February 2009 Lane

More information

Appendix O. Sediment Transport Modelling Technical Memorandum

Appendix O. Sediment Transport Modelling Technical Memorandum Appendix O Sediment Transport Modelling Technical Memorandum w w w. b a i r d. c o m Baird o c e a n s engineering l a k e s design r i v e r s science w a t e r s h e d s construction Final Report Don

More information

River Model (Delft3D)

River Model (Delft3D) A Short River Model (Delft3D) & DIVERSION ANALYSIS presented by Nina J. Reins, PE, PhD, PMP State of the Coast May 30-June 1, 2018 Overview of Presentation Problem Statement & Background Analysis Key Findings

More information

Mississippi River and Tributaries Project Mississippi River Geomorphology and Potamology Program

Mississippi River and Tributaries Project Mississippi River Geomorphology and Potamology Program Mississippi River and Tributaries Project Mississippi River Geomorphology and Potamology Program Barb Kleiss, Mississippi Valley Division Freddie Pinkard, Vicksburg District June, 2016 Program Objectives

More information

THE IMPORTANCE OF SCIENCE IN COASTAL RESTORATION IN LOUISIANA

THE IMPORTANCE OF SCIENCE IN COASTAL RESTORATION IN LOUISIANA THE IMPORTANCE OF SCIENCE IN COASTAL RESTORATION IN LOUISIANA Barb Kleiss USACE, Mississippi Valley Division August 3, 2011 LCA S&T Office Authorized under WRDA 2007 Designed to address technical issues

More information

Coastal Litigation in the Context of Science Literacy

Coastal Litigation in the Context of Science Literacy Coastal Litigation in the Context of Science Literacy Chris McLindon New Orleans Geological Society February 6, 7 Science Literacy The value of community participation in scientific research is widely

More information

Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River

Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River W.F. & Associates Coastal Engineers (in association with Frank Quinn) April 13, 2005 Outline Problem Definition Understanding

More information

Lab 12 Coastal Geology

Lab 12 Coastal Geology Lab 12 Coastal Geology I. Fluvial Systems Hydrologic Cycle Runoff that flows into rivers = precipitation (rain and snowmelt) [infiltration (loss to groundwater) + evaporation (loss to atmosphere) + transpiration

More information

L7/ Historical Perspec=ve, Deltas

L7/ Historical Perspec=ve, Deltas Colin Woodroffe (2002) Coasts: Form, Process and Evolu=on, Outline of Chapter 7: L7/1 L7/2 7.1. Historical Perspec=ve, 7.1.1. Deltas Herodotus (450, B.C.) delta = Shape of Nile River Delta = Δ Gilbert

More information

SEGMENTED BREAKWATERS AND THEIR USE IN COASTAL LOUISIANA

SEGMENTED BREAKWATERS AND THEIR USE IN COASTAL LOUISIANA SEGMENTED BREAKWATERS AND THEIR USE IN COASTAL LOUISIANA Prepared by: Louisiana Coastal Protection and Restoration Authority Engineering Division March 2016 The geology of Louisiana s coastal zone is intimately

More information

RESULTS FROM THE TEXAS COASTAL SEDIMENT SOURCES: A GENERAL EVALUATION STUDY

RESULTS FROM THE TEXAS COASTAL SEDIMENT SOURCES: A GENERAL EVALUATION STUDY RESULTS FROM THE TEXAS COASTAL SEDIMENT SOURCES: A GENERAL EVALUATION STUDY JUAN MOYA KELSEY CALVEZ CRIS WEBER ANTHONY RISKO *KEVIN FRENZEL FREESE AND NICHOLS, INC. COASTAL AND WATERWAYS GROUP OBJECTIVES

More information

Influence of the Major Drainages to the Mississippi River and Implications for System Level Management

Influence of the Major Drainages to the Mississippi River and Implications for System Level Management Influence of the Major Drainages to the Mississippi River and Implications for System Level Management Brian M. Vosburg Geologist Louisiana Coastal Protection and Restoration Authority brian.vosburg@la.gov

More information

Eco-hydromorphic Characterization of the Louisiana Coastal Region Using Multiple Remotely Sensed Data Sources and Analyses

Eco-hydromorphic Characterization of the Louisiana Coastal Region Using Multiple Remotely Sensed Data Sources and Analyses National Wetlands Research Center Eco-hydromorphic Characterization of the Louisiana Coastal Region Using Multiple Remotely Sensed Data Sources and Analyses 1Holly Beck, 2 Brady Couvillion, 1 Nadine Trahan

More information

ΛTKINS. Applications of Regional Sediment Management Concepts in Texas Estuarine Restoration Projects. Riparian Workshop Fort Worth, October 17, 2012

ΛTKINS. Applications of Regional Sediment Management Concepts in Texas Estuarine Restoration Projects. Riparian Workshop Fort Worth, October 17, 2012 Juan C Moya, PhD., PG Coastal Planning and Restoration Applications of Regional Sediment Management Concepts in Texas Estuarine Restoration Projects Riparian Workshop Fort Worth, October 17, 2012 West

More information

MISSISSIPPI COASTAL IMPROVEMENTS

MISSISSIPPI COASTAL IMPROVEMENTS MISSISSIPPI COASTAL IMPROVEMENTS PROGRAM (MsCIP) Comprehensive Barrier 237 27 200 237 27 200 Island 237 Restoration 27 200 Plan 80 9 27 252 74.59 255 255 255 0 0 0 63 63 63 3 32 22 239 65 53 0 35 20 2

More information

ERDC/LAB TR-0X-X 100. Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event

ERDC/LAB TR-0X-X 100. Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event ERDC/LAB TR-0X-X 100 Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event ERDC/LAB TR-0X-X 101 Figure 7-4 Model schematization of Option 1 Figure 7-5 Bed displacement

More information

The Coast: Beaches and Shoreline Processes

The Coast: Beaches and Shoreline Processes 1 2 3 4 5 6 7 8 9 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions.

More information

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10

The Coast: Beaches and Shoreline Processes Trujillo & Thurman, Chapter 10 The Coast: es and Shoreline Processes Trujillo & Thurman, Chapter 10 Oceanography 101 Chapter Objectives Recognize the various landforms characteristic of beaches and coastal regions. Identify seasonal

More information

Carbon Sequestration Potential from Coastal Wetlands Restoration Sites

Carbon Sequestration Potential from Coastal Wetlands Restoration Sites Carbon Sequestration Potential from Coastal Wetlands Restoration Sites Insert then choose Picture select your picture. Right click your picture and Send to back. Paul Krause, Alyssa Beach Emily Cooper,

More information

An analysis of storm surge attenuation by wetlands using USGS, FEMA, and NASA data

An analysis of storm surge attenuation by wetlands using USGS, FEMA, and NASA data An analysis of storm surge attenuation by wetlands using USGS, FEMA, and NASA data Pat Fitzpatrick Geosystems Research Institute Mississippi State University Walter Peterson and Courtney Buckley NASA Marshall

More information

THC-T-2013 Conference & Exhibition

THC-T-2013 Conference & Exhibition Modeling of Shutter Coastal Protection against Storm Surge for Galveston Bay C. Vipulanandan, Ph.D., P.E., Y. Jeannot Ahossin Guezo and and B. Basirat Texas Hurricane Center for Innovative Technology (THC-IT)

More information

Modeling the response of a beach restoration project in Louisiana to two consecutive hurricanes

Modeling the response of a beach restoration project in Louisiana to two consecutive hurricanes Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2011 Modeling the response of a beach restoration project in Louisiana to two consecutive hurricanes Naveen Khammampati

More information

Primer on Coastal Erosion And Habitat Creation

Primer on Coastal Erosion And Habitat Creation 2 nd Regional Conference Dredging, Beach Nourishment & Bird Conservation Primer on Coastal Erosion And Habitat Creation Timothy Kana Ph.D Source: Newsday 1962 Photo by Kelsey Aerials 1978 Source: U Mass

More information

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX C SEA LEVEL RISE ANALYSIS

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX C SEA LEVEL RISE ANALYSIS HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX C SEA LEVEL RISE ANALYSIS Rev. 18 Feb 2015 1.0 Introduction 1.1 Guidance The Department of the

More information

One-Dimensional Modeling of Sedimentation Impacts for the Mississippi River at the West Bay Diversion

One-Dimensional Modeling of Sedimentation Impacts for the Mississippi River at the West Bay Diversion Journal of Water Resource and Protection, 2013, 5, 16-29 http://dx.doi.org/10.4236/jwarp.2013.59a002 Published Online September 2013 (http://www.scirp.org/journal/jwarp) One-Dimensional Modeling of Sedimentation

More information

An Integrated Storm Surge, Hurricane Wave, Salinity and Sediment Transport Modeling System for Breton Sound, LA

An Integrated Storm Surge, Hurricane Wave, Salinity and Sediment Transport Modeling System for Breton Sound, LA An Integrated Storm Surge, Hurricane Wave, Salinity and Sediment Transport Modeling System for Breton Sound, LA Q. Jim Chen Department of Civil and Environmental Engineering qchen@lsu.edu Acknowledgements

More information

A Proposal to Create an Atlas of Surface Fault Traces in South Louisiana

A Proposal to Create an Atlas of Surface Fault Traces in South Louisiana A Proposal to Create an Atlas of Surface Fault Traces in South Louisiana Executive Summary The common conception of land loss in the south Louisiana wetlands is that is has been caused by the dredging

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia

Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia Chris Massey and Jeff Melby USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil

More information

MODELING THE EVOLUTION OF THE WAX LAKE DELTA

MODELING THE EVOLUTION OF THE WAX LAKE DELTA ERASMUS MUNDUS MSC PROGRAMME COASTAL AND MARINE ENGINEERING AND MANAGEMENT COMEM MODELING THE EVOLUTION OF THE WAX LAKE DELTA IN ATCHAFALAYA BAY, LOUISIANA Delft University of Technology June 2011 Kevin

More information

Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP

Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP A Technical Report Submitted to: The Lake Pontchartrain Basin Foundation Submitted

More information

GIS 2010: Coastal Erosion in Mississippi Delta

GIS 2010: Coastal Erosion in Mississippi Delta 1) Introduction Problem overview To what extent do large storm events play in coastal erosion rates, and what is the rate at which coastal erosion is occurring in sediment starved portions of the Mississippi

More information

Sediment Diversions on the Lower Mississippi River: Insight from Simple Analytical Models

Sediment Diversions on the Lower Mississippi River: Insight from Simple Analytical Models Sediment Diversions on the Lower Mississippi River: Insight from Simple Analytical Models Author(s): Robert G. Dean, John T. Wells, H.J. Fernando, and Peter Goodwin Source: Journal of Coastal Research,

More information

St. Clair River Conveyance Change 2007 to 2012

St. Clair River Conveyance Change 2007 to 2012 St. Clair River Conveyance Change 2007 to 2012 Morphologic Change in the St. Clair River 2007 2012 Conveyance Change Report U.S. Army Corps of Engineers, Detroit District Great Lakes Hydraulics and Hydrology

More information

West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach)

West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach) West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach) Juan Moya, Matthew Mahoney and Mike Smith Restore America s Estuaries Conference Tampa, FL, October 23, 2012 Atkins

More information

Holocene Lower Mississippi River Avulsions: Autogenic Versus Allogenic Forcing*

Holocene Lower Mississippi River Avulsions: Autogenic Versus Allogenic Forcing* Holocene Lower Mississippi River Avulsions: Autogenic Versus Allogenic Forcing* Eric Prokocki 1,2 Search and Discovery Article #50330 (2010) Posted October 14, 2010 *Adapted from oral presentation at AAPG

More information

Quantifying i the GLRI Metric for Annual Sediment Deposition in Great Lakes Harbors:

Quantifying i the GLRI Metric for Annual Sediment Deposition in Great Lakes Harbors: USACE 516(e) Annual Meeting Ann Arbor, MI (May 15, 2013) Quantifying i the GLRI Metric for Annual Sediment Deposition in Great Lakes Harbors: A Pilot Evaluation for Toledo Harbor Todd Redder Joe DePinto

More information

OVERWASHED SEDIMENT INTO THE GAMO LAGOON IN NANAKITA RIVER MOUTH AND EFFECTIVENESS OF THE OVERWASH PREVENTION CONSTRUCTION

OVERWASHED SEDIMENT INTO THE GAMO LAGOON IN NANAKITA RIVER MOUTH AND EFFECTIVENESS OF THE OVERWASH PREVENTION CONSTRUCTION 東北地域災害科学研究第 6 巻 (010) 191 OVERWASHED SEDIMENT INTO THE GAMO LAGOON IN NANAKITA RIVER MOUTH AND EFFECTIVENESS OF THE OVERWASH PREVENTION CONSTRUCTION ABSTRACT Xuan Tinh Nguyen 1, Ryutaro Hirao, Hitoshi

More information

Technical Memorandum. To: From: Copies: Date: 10/19/2017. Subject: Project No.: Greg Laird, Courtney Moore. Kevin Pilgrim and Travis Stroth

Technical Memorandum. To: From: Copies: Date: 10/19/2017. Subject: Project No.: Greg Laird, Courtney Moore. Kevin Pilgrim and Travis Stroth Technical Memorandum To: From: Greg Laird, Courtney Moore Kevin Pilgrim and Travis Stroth 5777 Central Avenue Suite 228 Boulder, CO 80301 www.otak.com Copies: [Electronic submittal] Date: 10/19/2017 Subject:

More information

DESIGN OF DIVERSIONS OF THE MISSISSIPPI RIVER TO BUILD NEW LAND IN SOUTHERN LOUISIANA

DESIGN OF DIVERSIONS OF THE MISSISSIPPI RIVER TO BUILD NEW LAND IN SOUTHERN LOUISIANA DESIGN OF DIVERSIONS OF THE MISSISSIPPI RIVER TO BUILD NEW LAND IN SOUTHERN LOUISIANA Gary Parker, University of Illinois Urbana-Champaign along with Matthew Czapiga, Benjamin Hobbs, Melissa Kenney, Wonsuck

More information

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan U.S. Army Corps of Engineers Detroit District December 2001 December 2001 This report has been prepared for USACE, Detroit District by: W.F. BAIRD & ASSOCIATES LTD. 2981 YARMOUTH GREENWAY MADISON, WISCONSIN

More information

Bishopville Prong Study

Bishopville Prong Study Bathymetric and Sediment Assessment in the Bishopville Prong of St. Martin River Darlene V. Wells, Richard A. Ortt, Jr., and Stephen Van Ryswick Funded by MCBP 2011-2012 Implementation Grant Objectives

More information

Flow estimations through spillways under submerged tidal conditions

Flow estimations through spillways under submerged tidal conditions Computational Methods and Experimental Measurements XIII 137 Flow estimations through spillways under submerged tidal conditions P. D. Scarlatos 1, M. Ansar 2 & Z. Chen 2 1 Department of Civil Engineering

More information

Numerical modeling of sediment flushing from Lewis and Clark Lake

Numerical modeling of sediment flushing from Lewis and Clark Lake University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2013 Numerical modeling of sediment flushing from Lewis and Clark Lake Jungkyu

More information

EAGLES NEST AND PIASA ISLANDS

EAGLES NEST AND PIASA ISLANDS EAGLES NEST AND PIASA ISLANDS HABITAT REHABILITATION AND ENHANCEMENT PROJECT MADISON AND JERSEY COUNTIES, ILLINOIS ENVIRONMENTAL MANAGEMENT PROGRAM ST. LOUIS DISTRICT FACT SHEET I. LOCATION The proposed

More information

Reducing Nitrogen Removal Uncertainty for Operation of Mississippi River Sediment Diversions: Nitrate Reduction Rates In Turbulent Flow Conditions

Reducing Nitrogen Removal Uncertainty for Operation of Mississippi River Sediment Diversions: Nitrate Reduction Rates In Turbulent Flow Conditions Reducing Nitrogen Removal Uncertainty for Operation of Mississippi River Sediment Diversions: Nitrate Reduction Rates In Turbulent Flow Conditions Nia R. Hurst, John R. White, Kehui Xu, and MingCheng Ren

More information

Annual transport rates at two locations on the fore-slope.

Annual transport rates at two locations on the fore-slope. Sediment Transport by Currents Fore-slope Sediment transport rates and sediment concentrations were computed from the hydrodynamic model runs as well as from direct measurements of current velocities at

More information

Programmatic Approaches to Assessing and Mitigating Risk to Pipelines from Natural Forces

Programmatic Approaches to Assessing and Mitigating Risk to Pipelines from Natural Forces Programmatic Approaches to Assessing and Mitigating Risk to Pipelines from Natural Forces 23 rd International Petroleum Environmental Conference New Orleans, Louisiana November 8-10, 2016 Introduction

More information

Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers

Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers Define the Problem Navigation Shore Protection Environmental Political So what is the problem? Management

More information

Ground Water Control of Tree Island Origin, Genesis and Destruction. By John F. Meeder and Peter W. Harlem SERC,FIU

Ground Water Control of Tree Island Origin, Genesis and Destruction. By John F. Meeder and Peter W. Harlem SERC,FIU Ground Water Control of Tree Island Origin, Genesis and Destruction By John F. Meeder and Peter W. Harlem SERC,FIU Functional Definition Our functional definition of a Tree Island is; an isolated scrub

More information

Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS

Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS Memo To: Jeff Robinson, P.E., GEC, Inc. From: Silong Lu, Ph.D., P.E., D.WRE, Dynamic Solutions, LLC. Date: 1/9/2014 CC: Re: Chris Wallen, Vice President,

More information

Long-Distance Pumping and Opportunities for Engineering with Nature

Long-Distance Pumping and Opportunities for Engineering with Nature Long-Distance Pumping and Opportunities for Engineering with Nature Tim Welp and Derek Wilson Tim Welp Research Hydraulic Engineer Coastal and Hydraulics Laboratory 23 October 2012 Engineering with Nature

More information

Bathymetric and Hydrodynamic Analysis of Wax Lake Delta

Bathymetric and Hydrodynamic Analysis of Wax Lake Delta Bathymetric and Hydrodynamic Analysis of Wax Lake Delta I. Introduction A. Motivation The ability to explain and predict how any physical system behaves is paramount in understanding how that system will

More information

Wetland attenuation of Hurricane Rita s storm surge

Wetland attenuation of Hurricane Rita s storm surge Wetland attenuation of Hurricane Rita s storm surge Pat Fitzpatrick, Yee Lau, Yongzuo Li, Nam Tran, Chris Hill, and Suzanne Shean Geosystems Research Institute, Mississippi State University Sponsors: NOAA

More information

MEMORANDUM. Scott Pickard, CELRB-TD-EH Michael Asquith, CELRB-PM-PM. From: Paul R. Schroeder, Ph.D., PE Earl Hayter, Ph.D. Date: 14 March 2016

MEMORANDUM. Scott Pickard, CELRB-TD-EH Michael Asquith, CELRB-PM-PM. From: Paul R. Schroeder, Ph.D., PE Earl Hayter, Ph.D. Date: 14 March 2016 DEPARTMENT OF THE ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER, CORPS OF ENGINEERS ENVIRONMENTAL LABORATORY WATERWAYS EXPERIMENT STATION, 3909 HALLS FERRY ROAD VICKSBURG, MISSISSIPPI 39180-6199 29 November

More information

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity.

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity. Activity at a Glance Grade: 6 9 Subject: Science Category: Physical Science, Earth Science Topic: Deposition, River Systems Time Required Two 45-minute periods Level of Complexity Medium Materials* TI-73

More information

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Workshop on Dredging, Beach Nourishment and Bird Conservation Atlantic

More information

Section 145 Climate Change and Sea Level Rise

Section 145 Climate Change and Sea Level Rise Section 145 Climate Change and Sea Level Rise A. Definitions Rhode Island Coastal Resources Management Program 1. Climate is the long-term weather average observed within a geographic region, and climate

More information

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation) Stream Restoration and Environmental River Mechanics Pierre Y. Julien Malaysia 2004 Objectives Brief overview of environmental river mechanics and stream restoration: 1. Typical problems in environmental

More information

Forecasting Gulf of Mexico Hypoxia under Scenarios of Watershed and River Management

Forecasting Gulf of Mexico Hypoxia under Scenarios of Watershed and River Management Forecasting Gulf of Mexico Hypoxia under Scenarios of Watershed and River Management Dubravko Justic and Lixia Wang Department of Oceanography and Coastal Sciences College of the Coast and Environment

More information

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS Probabilistic Evaluation of a Meandering Low-Flow Channel February 24 th, 2014 2014 UMSRS 1 2 acknowledgments Low- Flow Channel (LFC) overview Proposed Diversion Channel collects runoff from: The Rush

More information

South Florida Coastal Storm Surge and Mapping Study

South Florida Coastal Storm Surge and Mapping Study South Florida Coastal Storm Surge and Mapping Study Presented by Christopher Bender, Ph.D., P.E., D.CE June 2, 2015 Presentation Overview FEMA risk studies outline Overview South Florida surge study Work

More information

Statement of Impact and Objectives. Watershed Impacts. Watershed. Floodplain. Tumblin Creek Floodplain:

Statement of Impact and Objectives. Watershed Impacts. Watershed. Floodplain. Tumblin Creek Floodplain: Tumblin Creek Floodplain: Impacts Assessment and Conceptual Restoration Plan Casey A. Schmidt Statement of Impact and Objectives Urbanization has increased stormflow rate and volume and increased sediment,

More information

Seagrass Transplantation & Environmental & Marine Consulting Services, Inc. Drew Campbell, Vice President & Lead Scientst.

Seagrass Transplantation & Environmental & Marine Consulting Services, Inc. Drew Campbell, Vice President & Lead Scientst. Indian River Lagoon Symposium Seagrass Transplantation & Project Considerations Environmental & Marine Consulting Services, Inc. Drew Campbell, Vice President & Lead Scientst March 26 th, 2013 Regulatory

More information

Semi-enclosed seas. Estuaries are only a particular type of semi-enclosed seas which are influenced by tides and rivers

Semi-enclosed seas. Estuaries are only a particular type of semi-enclosed seas which are influenced by tides and rivers Semi-enclosed seas Estuaries are only a particular type of semi-enclosed seas which are influenced by tides and rivers Other semi-enclosed seas vary from each other, mostly by topography: Separated from

More information

The rate and fate of coastal carbon burial

The rate and fate of coastal carbon burial The rate and fate of coastal carbon burial Matthew L. Kirwan, Virginia Institute of Marine Science Main Points Marsh size Marsh accretion 1. SLR drives wetland carbon burial in vertical and lateral dimensions

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

Sediment Traps. CAG Meeting May 21, 2012

Sediment Traps. CAG Meeting May 21, 2012 Sediment Traps CAG Meeting May 21, 2012 Agenda Background Fundamentals of Sediment Transport Sediment Trap Existing Information Next Steps 2 The Site Saginaw River 22 mile river beginning at confluence

More information

SEA LEVEL RISE IN THE 2017 COASTAL MASTER PLAN

SEA LEVEL RISE IN THE 2017 COASTAL MASTER PLAN SEA LEVEL RISE IN THE 2017 COASTAL MASTER PLAN James W. Pahl, Ph.D. Coastal Resources Scientist, Senior Presentation to the Barataria-Terrebonne National Estuary Program Management Conference Meeting Nicholls

More information

Sediment Management in the Coastal Bays

Sediment Management in the Coastal Bays Sediment Management in the Coastal Bays Introduction Need for ecosystem view of sediment management in Coastal Bays Island loss and restoration Navigation needs Habitat Trade offs Living Shoreline Requirements

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Predicting the Evolution of Tidal Channels in Muddy Coastlines

Predicting the Evolution of Tidal Channels in Muddy Coastlines Predicting the Evolution of Tidal Channels in Muddy Coastlines Sergio Fagherazzi Department of Earth Sciences and Center for Computational Science Boston University, Boston MA 02215 Phone: (617) 353-2092

More information

Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA

Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA Outline Sea-level and coastal processes Past sea-level change Predictions for the future Coastal responses

More information

River Restoration and Rehabilitation. Pierre Y. Julien

River Restoration and Rehabilitation. Pierre Y. Julien River Restoration and Rehabilitation Pierre Y. Julien Department of Civil and Environmental Engineering Colorado State University Fort Collins, Colorado River Mechanics and Sediment Transport Lima Peru

More information

AN ASSESSMENT OF RIVER RESOURCES FOR LOUISIANA COASTAL LAND PRESERVATION

AN ASSESSMENT OF RIVER RESOURCES FOR LOUISIANA COASTAL LAND PRESERVATION AN ASSESSMENT OF RIVER RESOURCES FOR LOUISIANA COASTAL LAND PRESERVATION Approved for Public Release; distribution unlimited Biedenharn Group, LLC Vicksburg, Mississippi Report Documentation Page Form

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Visualizing hurricanes

Visualizing hurricanes Visualizing hurricanes NAME: DATE: Scientific visualization is an integral part of the process of simulating natural phenomena. In the computational sciences, the main goal is to understand the workings

More information

EXTERNAL LAND FORMING PROCESSES

EXTERNAL LAND FORMING PROCESSES NAME SCHOOL INDEX NUMBER DATE EXTERNAL LAND FORMING PROCESSES WEATHERING 1 1998 Q 7 (a) (i) What is the difference between weathering and mass wasting (ii) List five processes involved in chemical weathering

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY Katsuhide YOKOYAMA, Dr.Eng. dredge Assistant Professor Department of Civil Engineering Tokyo Metropolitan University 1-1 Minami-Osawa Osawa, Hachioji,, Tokyo,

More information

Island Design. UMRS EMP Regional Workshop. Presentation for the

Island Design. UMRS EMP Regional Workshop. Presentation for the Island Design Presentation for the UMRS EMP Regional Workshop by Jon Hendrickson Hydraulic Engineer Regional Technical Specialist, Water Quality and Habitat Restoration August 17 19, 2005 Project Delivery

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

!"#$%&&'()*+#$%(,-./0*)%(!

!#$%&&'()*+#$%(,-./0*)%(! 8:30 Sign in Hoosic River Revival Coalition!"#$%&&'()*+#$%(,-./0*)%(! 12-#30+4/#"5-(60 9:00 Welcome and Introductions 9:15 Goals for Today s Program: A Description of the Planning Process 9:30 First Session:

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

A Thesis. The Department of Oceanography and Coastal Sciences. by Lauren Land B.S., University of Maryland College Park, 2008 December 2010

A Thesis. The Department of Oceanography and Coastal Sciences. by Lauren Land B.S., University of Maryland College Park, 2008 December 2010 PHYSICAL AND MICROBIAL RESPONSES OF DREDGED SEDIMENT TO TWO SOIL- STABILIZING AMENDMENTS, XANTHAN GUM AND GUAR GUM, FOR USE IN COASTAL WETLAND RESTORATION A Thesis Submitted to the Graduate Faculty of

More information

Sediment Transport Analysis for Stream Restoration Design: The Good, the Bad, and the Ugly.

Sediment Transport Analysis for Stream Restoration Design: The Good, the Bad, and the Ugly. Sediment Transport Analysis for Stream Restoration Design: The Good, the Bad, and the Ugly. Brett Jordan Phd, PE HydroGeo Designs LLC. Land and Water Services Inc. THE GOOD THE BAD THE UGLY THE GOOD THE

More information

Two-Dimensional Simulation of Truckee River Hydrodynamics

Two-Dimensional Simulation of Truckee River Hydrodynamics Two-Dimensional Simulation of Truckee River Hydrodynamics by Stephen H. Scott PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate the use of multidimensional

More information

Miami-Dade County Technical Update Meeting South Florida Coastal Study. May 11, 2016

Miami-Dade County Technical Update Meeting South Florida Coastal Study. May 11, 2016 Miami-Dade County Technical Update Meeting South Florida Coastal Study May 11, 2016 Welcome and Introductions FEMA Region IV Christina Lindemer Technical Lead Production and Technical Services (PTS) Contractor

More information

Red River Levee Panel

Red River Levee Panel Red River Levee Panel Mississippi River Commission Monday, August 9, 2017 Red River Levees in LA & AR NONE along TX & OK Boarder Red River Levee Issues Caddo Levee Cherokee Park Authorization Bossier Levee

More information

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY M. Jovanović 1, R. Kapor, B. Zindović University of Belgrade Faculty of Civil Engineering E-mail:

More information

Michael Walsworth, Ryan Sullivan, Simi Odueyungbo, William Budd

Michael Walsworth, Ryan Sullivan, Simi Odueyungbo, William Budd Michael Walsworth, Ryan Sullivan, Simi Odueyungbo, William Budd Estuarine Environment At first (Pritchard, 1967), an estuary was defined by the salinity of the water. Then by Clifton (1982) as an inlet

More information

Red River Flooding June 2015 Caddo and Bossier Parishes Presented by: Flood Technical Committee Where the Rain Falls Matters I-30 versus I-20 I-20 Backwater and Tributary Floods (Localized) 2016 Flood

More information

Ice Sheets and Sea Level -- Concerns at the Coast (Teachers Guide)

Ice Sheets and Sea Level -- Concerns at the Coast (Teachers Guide) Ice Sheets and Sea Level -- Concerns at the Coast (Teachers Guide) Roughly 153 million Americans (~53% of the US population) live in coastal counties. World wide some 3 billion people live within 200 km

More information

Wetland & Estuarine Formation & Development NREM 665

Wetland & Estuarine Formation & Development NREM 665 Wetland & Estuarine Formation & Development NREM 665 1 I. Wetland Formation & Development A. Favorable climate (PPT > ET), temperature 1. don t get WTLs in B. Favorable geol/substrate 1. high H 2 O holding

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

II Why study coastal landforms?

II Why study coastal landforms? COASTAL LANDFORMS (32) I Main topics A Why study coastal landforms? B Sediment budget and system response C Coastal landforms 3/26/15 GG454 1 II Why study coastal landforms? A Dynamic systems B Reflect

More information

Dam Removal Analysis Guidelines for Sediment

Dam Removal Analysis Guidelines for Sediment A review of: Dam Removal Analysis Guidelines for Sediment Joe Rathbun (Retired) rathbunj@sbcglobal.net Some Potential Sediment Issues Reservoir restoration Downstream water quality Downstream deposition

More information