St. Clair River Conveyance Change 2007 to 2012

Size: px
Start display at page:

Download "St. Clair River Conveyance Change 2007 to 2012"

Transcription

1 St. Clair River Conveyance Change 2007 to 2012 Morphologic Change in the St. Clair River Conveyance Change Report U.S. Army Corps of Engineers, Detroit District Great Lakes Hydraulics and Hydrology Office July 27, 2016

2 Summary Swath bathymetry of the main stem of the St. Clair River was collected in 2007 and again in 2012, providing the data sets required for a thorough analysis of conveyance change. Conveyance change in the St. Clair River is examined through multiple methods and models. Each method and model are explored to gain a sense of how the conveyance capacity of the river may be changing. Depth change and cut-fill analyses with and without accounting for survey tolerance show change in the river but net change is minimal especially after accounting for survey uncertainties. Hydrodynamic modeling of the same discharge/water level scenarios in the 2007 geometry versus the 2012 geometry also show minimal changes in conveyance, with these differences being well within survey and numerical modeling tolerances. However, there is a spatial trend of apparent increased conveyance on the upper half of the river between 2007 and 2012 that deserves close monitoring. Introduction The International Joint Commission s International Upper Great Lakes Study (2009) highlighted the importance of conveyance change monitoring in the St. Clair and Detroit rivers, as the conveyance capacity of those rivers has a large impact on the water levels of Lakes Michigan, Huron, and Erie. The U.S. Army Corps of Engineers, Detroit District has since developed an operational plan to monitor the conveyance capacity of these connecting channels through regular bathymetric data collection and analysis. One of the datasets necessary to accomplish this mission is the regular collection of swath bathymetry in the rivers and delta. These data were collected in 2007 and 2012 on the St. Clair River and in 2012 on the Detroit River. Currently, the main stem of the St. Clair River is the only connecting channel with multiple swath bathymetry surveys. Details on these data sets are below and compiled in Bennion and Calappi (2015). Existing Studies and Data Repeat multibeam bathymetric survey data were collected in 2007 and 2012 on the St. Clair River by the U.S. Army Corps of Engineers and preliminarily analyzed. Generally, the extents of these surveys cover the main stem of the river from Fort Gratiot to Algonac, Figure 1. The 2007 data are provided on a 1.5 meter grid and is comprised of approximately 13 million points. The 2012 data were provided on a 0.6 meter grid and have more than 100 million points covering the same general extents. Due to the lack of swath bathymetry in the St. Clair River Delta, neither Bennion and Calappi (2015) nor this analysis examine conveyance change originating in the delta.

3 Figure 1: St Clair River

4 Swath bathymetry covering the main stem of the St. Clair River, St. Clair Delta and Detroit River are expected to be collected on a five to seven year rotation and similarly analyzed with depth change/cut-fill comparisons and hydrodynamic models. Similar analyses will be extended through the St. Clair River Delta and the Detroit River upon collection of multiple swath bathymetry data sets. The initial portion of the conveyance change analysis (Bennion and Calappi, 2015) was based on depth change/cut-fill analysis and total survey uncertainty with the goal to quantify geomorphic changes in the river. Based on cut-fill analysis, Bennion and Calappi (2015) summarized an average of m of depth gain (degradation) over the entire river if survey uncertainty is disregarded. When comparing volumes, a net loss of 273,000 m 3 of material was calculated between 2007 and However, when depth change analysis is restricted to data greater than the survey tolerance, a 0.5 m of depth loss (aggradation) and a net gain of 81,000 m 3 of material was calculated for the same time period. The remaining survey area after removing the areas inside the survey uncertainty is too small to be considered representative of the river. While this volume and depth change analyses are useful indicators, further analysis was required to determine the impacts of these changes on the overall conveyance of the river. Model Development In addition to the bathymetric change analysis between the 2007 and the 2012 surveys, a two dimensional hydraulic model was developed to examine changes in water surface elevation for the same flow conditions on the different geometries. Differences in water surface elevations are examined throughout the main stem of the St. Clair River for patterns and signs of conveyance change. The geometry for the hydraulic models are defined by merging several data sets together. The model geometry incorporates bathymetry from the NOAA Great Lakes Bathymetry model, the USGS 1/3 rd arcsecond DEM, as well as data collected by the U.S. Army Corps of Engineers, Detroit District. The navigation channels in Lake St. Clair and Lake Huron are regularly surveyed by the U.S. Army Corps of Engineers, Detroit Area Office using multibeam technology. These surveys are included in the overall model geometry. The survey defining the St. Clair River Delta is single beam performed by contractor and dates from The remaining geometry comes from the NOAA Great Lakes Model and generally fills in the large portions of Lake St. Clair and Lake Huron included in the model domain. The 2007 and 2012 model geometries share the same data sources outside of the main stem of the St. Clair River. The 2007 main stem of the St. Clair River survey data were removed from the overall geometry and replaced with the 2012 main stem of the St. Clair River survey data to form the new geometry analyzed for conveyance change.

5 All 13 million survey points from the 2007 survey were used in the mesh development for the 2007 model. However, the 100 million points from the 2012 survey were thinned to a more manageable size to facilitate efficient mesh development. The data were filtered using an adjacent normal filtering scheme. This scheme removes points from areas of the channel with locally constant gradients while preserving high point density in critical areas of changing elevation necessary to capture the unique geometry of the channel. The resulting data set from 2012 had 39 million points. The Adaptive Hydraulics (AdH) model extends from approximately Lakeport on Lake Huron to Windmill Point on Lake St. Clair, Figure 2. The upstream model extent was chosen to be reasonably well removed from the head of the river. The model mesh has approximately 130,000 nodes with a grid resolution of 400 m at the upper end of Lake Huron and 30 m in the St. Clair River; maximum grid resolution in Lake St. Clair is on the order of 1500 m. The same mesh with the same friction values, eddy viscosity, iteration tolerances and wetting and drying parameters were used in the 2007 and 2012 model. Friction values ranged from to and the Smagorinsky method for eddy viscosity was used with a constant value of 0.1 used throughout the model. The AdH model was calibrated from July through August 2007 using the 2007 geometry. This was chosen because it coincides with the collection of the bathymetry and acoustic Doppler current Profiler (adcp) data are available to evaluate the flow splits through the delta. The models were calibrated under dynamic flow conditions with a flow hydrograph upstream and tail-water at Windmill Point (NOAA gauge ). The model was forced with hourly discharge values developed from the Fort Gratiot (NOAA gauge ) and Algonac (NOAA gauge ) stage-fall-discharge relationship developed in 2009 (Fay and Kerslake, 2009). Calibration results are shown in Figure 3 for three gauges along the river, Dunn Paper (NOAA ), Dry Dock (NOAA ) and St Clair State Police (NOAA ).

6 Figure 2: AdH model domain

7

8 Figure 3: Water Surface Elevations. Calibration at NOAA gages for 01-Jul-2007 to 31- Aug The vertical Y-axis is the water surface elevations in meters, and the horizontal X-axis is the hours of the calibration run. Conveyance Change Analysis High and low flows were modeled at steady state to determine if conveyance capacity of the river changed between the 2007 survey and 2012 survey. Modeled flows in this analysis were chosen based on historic monthly average discharge values from 1918 through The 90 th and 10 th percentile flow for each month was computed, the month with the highest, 90 th percentile flow was chosen for conveyance change analysis. On the St. Clair River, August has the highest 90 th percentile flow. The most recent occurrence of the 90 th percentile flow in August, was in This flow was used as the upstream boundary condition. The downstream boundary condition is the monthly average water level at Windmill Point (NOAA gauge ) from August Steady state modeled output were compared to monthly average water levels at gauge locations along the St. Clair River. The conveyance change analysis is performed by examining differences in modeled water surface elevation resulting from geometric changes in the main stem of the river. Decreased water surface elevation for the same discharge is indicative of an increased conveyance capacity. A similar analysis was done for the low flows. Of the ice free months, May has the lowest 10 th percentile flow at 4,770 cms; however, this discharge never occurred in the monthly mean flow

9 record for May, so a corresponding monthly mean tailwater elevation could not be matched to the discharge. Observed conditions were desired for this analysis. In order to use an observed combination of sufficiently low flow and water levels to evaluate conveyance change on the low end of the flow spectrum, the 15 th percentile flow was used, which occurred in May of The high flow scenario used a discharge of 6,170 cms and water level of m, IGLD85. The low flow scenario used a discharge of 4,830 cms and a water level of m, IGLD85. The AdH modeled differences between the 2007 and 2012 geometries are shown at water level gauge locations along the river in Table 1. Under the low flow scenario, the two dimensional model has a maximum difference in water surface elevation of 8mm between the two geometries with the 2012 geometry yielding lower water surface elevations. Similar results are noted for the high flow scenario. Lower water surface elevation in 2012 for the same boundary conditions could suggest an increase in conveyance, however, due to the low magnitude in change in comparison to the uncertainty in the numerical model and bathymetric survey, it is premature to conclude conveyance has increased. Table 1: Conveyance Change Water Surface Elevation Change Results Location AdH WSE (m)- Low Q AdH WSE (m) - High Q Fort Gratiot Dunn Paper Point Edward MBR Dry Dock SC Police Port Lambton Algonac SCS Figure 4 shows a more holistic view of conveyance change and examines spatial changes and trends in water surface elevation between the two geometries. It also shows a water surface elevation for the 2012 geometry is up to 1cm lower than the 2007 geometry in the upper half of the river, especially for the high flow scenario. The magnitude of the change in water surface elevation is small, especially compared to uncertainty associated with the bathymetry, model and rating equations used to determine the upstream boundary condition. However, given the spatial trend of a lower water surface elevation, careful monitoring is warranted. In addition to using the best calibration parameters for Manning s n, a sensitivity analysis was done. The model is discretized into 21 separate material zones with the potential for each zone to have a different Manning s value. Manning values ranged from to The Manning n values were all increased by ten-percent and the conveyance change analysis was repeated.

10 Another sensitivity test on Manning s n was performed, this time reducing the optimal values by ten-percent and performing the conveyance change analysis again. All three versions of the conveyance change analysis show similar spatial trends with the same magnitude of water surface elevation differences between the 2012 geometry and the 2007 geometry. Figure 4: Change in water surface elevations between the 2007 and 2012 model geometries based on high flow (left) and low flow (right). Changes are reported in meters and range from m to 0.01m in both figures. Given both versions of the model (2007 and 2012) are forced with the same discharge and tail water condition, examining differences in water levels is the appropriate, independent comparison between the two models. However, quantifying the geometric changes in terms of discharge makes more intuitive sense. So the model was run to steady state for both high and low flow conditions. The hydraulic parameters necessary to compute change in flow using both the stage-fall-discharge relationships based on NOAA gauges and at Fort Gratiot and Algonac, respectively and the index velocity relationship developed for USGS gauge at Port Huron were extracted from both the 2007 and 2012 models. Based on the stage-fall-discharge relationship, shown in equation 1, there would be a predicted change in flow of 60 cms with more flow occurring in the model built on the 2007 geometry. This

11 was the case for both the high and low flow scenario. This seems to contradict data represented in Figure 4, which shows slightly lower water levels for 2012 when compared to 2007 over the upper reach of the river, indicating a conveyance increase. However, it is important to note that the root mean square error of equation 1 is 140 cms, (Fay and Kerslake, 2009), and the change in flow of 60cms is quite small and well within the uncertainty of the equation itself so it is difficult to draw any conclusions from this apparent flow change. In equation 1 below, Q is total discharge, AL is the water surface elevation at Algonac and FG is the water surface elevation at Fort Gratiot. QQ = (AAAA ) (FFFF AAAA) Eq. 1 Similarly, the parameters needed to estimate discharge based on the index velocity method developed by the U.S. Geological Survey and Water Survey Canada and shown in equations 2 and 3 were extracted from the model for both the 2007 and 2012 geometries. These equations are developed and shown in English units. Changes in discharge were 100 cms for the high flow scenario and 60 cms for the low flow scenario. However, using this method, the 2012 geometry conveyed more flow, which is more consistent with figure 4. The root mean square error for the index velocity method is approximately 110 cms. Equation 2 is used to estimate the average cross section velocity while equation 3 is used to estimate the total flow area based on the water level gauge operated by Department of Fisheries and Oceans gauge11940 at Point Edward. Total discharge is obtained by multiplying equation 2 and 3 together. The estimated, average velocity in the cross section is determined by measuring the velocity (Vindex) over a 40 meter portion of the river 40 to 80 meters from the shoreline. The depth-averaged velocity from a similar location from within the model domain is used in this implementation of the index-velocity method for discharge. However, the index-velocity method is not developed from depth-averaged velocities, but this simplification must be accepted if changes in flow are to be explored in this manner. VV cccccccccc ssssssssssssss aaaaaaaaaaaaaa = VV iiiiiiiiii Eq. 2 AAAAAAAA = PPPP , Eq. 3 Due to the uncertainties associated with the bathymetric surveys, numerical models, hydraulic measurements and the regression equations Eq. 1 to Eq. 3, it is unclear if the conveyance capacity in the St. Clair River has changed over this period. However, any change during this period was small in magnitude. The spatial distribution of lower water surface elevations based on the 2012 geometry suggests minor scouring in the upper reach of the river and further conveyance change monitoring is recommended. This analysis will be repeated when new bathymetry is collected, most likely in the time frame. Future analysis will not only look at potential conveyance change between the most recently collected bathymetry, but also the potential gradual changes back to 2007.

12 REFERENCES Bennion, D. and Calappi, T Morphologic Change in the St. Clair River Phase 1 Report, unpublished Fay, D and kerslake, H Development of New Stage-Fall-Discharge Equations for the St. Clair River, International Joint Commission Holtschlag, D.J. and Hoard, C.J., 2009 Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling: U.S. Geological Survey Scientific Investigations Report , 39 p. International Upper Great Lakes Study Board, 2009, Impacts on Upper Great Lakes Water Levels: St. Clair River, Final Report to the International Joint Commission, 224 p.

Hydrodynamic model of St. Clair River with Telemac-2D Phase 2 report

Hydrodynamic model of St. Clair River with Telemac-2D Phase 2 report Hydrodynamic model of St. Clair River with Telemac-2D Phase 2 report Controlled Technical Report CHC-CTR-084 revision 1 March 2009 NRC-CHC has prepared this report for the International Joint Commission

More information

Preparation of a Hydrodynamic model of. Detroit River- St. Clair River waterways. with Telemac-2D

Preparation of a Hydrodynamic model of. Detroit River- St. Clair River waterways. with Telemac-2D Preparation of a Hydrodynamic model of Detroit River- St. Clair River waterways with Telemac-2D Controlled Technical Report CHC-CTR-085 March 2009 CTR-CHC-085 NRC-CHC has prepared this report for the International

More information

Chapter 5 St. Clair River Hydraulic Regime

Chapter 5 St. Clair River Hydraulic Regime 5.1 Introduction Chapter 5 St. Clair River Hydraulic Regime DRAFT REPORT FOR PUBLIC REVIEW This chapter summarizes and integrates the findings of the various hydraulic analyses conducted for the Study

More information

ESTIMATION OF THE HYDRAULIC ROUGHNESS OF RIVER ICE USING DATA ASSIMILATION

ESTIMATION OF THE HYDRAULIC ROUGHNESS OF RIVER ICE USING DATA ASSIMILATION ESTIMATION OF THE HYDRAULIC ROUGHNESS OF RIVER ICE USING DATA ASSIMILATION Steven F. Daly 1 and Carrie Vuyovich 1 1 ERDC Cold Regions Research and Engineering Laboratory Hanover, NH 03755 ABSTRACT Ice

More information

Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River

Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River W.F. & Associates Coastal Engineers (in association with Frank Quinn) April 13, 2005 Outline Problem Definition Understanding

More information

UNITED STATES. St. Clair Pine River. Marine City Belle River L'ANSE CREUSE BAY. St. Clair Light wind station LAKE ST. CLAIR.

UNITED STATES. St. Clair Pine River. Marine City Belle River L'ANSE CREUSE BAY. St. Clair Light wind station LAKE ST. CLAIR. In cooperation with the Michigan Department of Environmental Quality, Detroit Water and Sewerage Department, and the American Water Works Association Research Foundation Hydrodynamic Simulation and Particle-Tracking

More information

Appendix O. Sediment Transport Modelling Technical Memorandum

Appendix O. Sediment Transport Modelling Technical Memorandum Appendix O Sediment Transport Modelling Technical Memorandum w w w. b a i r d. c o m Baird o c e a n s engineering l a k e s design r i v e r s science w a t e r s h e d s construction Final Report Don

More information

Great Lakes Regional Collaboration and U.S. GEOSS/IOOS/GLOS Initiative Focus on the Huron to Erie Corridor

Great Lakes Regional Collaboration and U.S. GEOSS/IOOS/GLOS Initiative Focus on the Huron to Erie Corridor Great Lakes Regional Collaboration and U.S. GEOSS/IOOS/GLOS Initiative Focus on the Huron to Erie Corridor USEPA Grosse Ile Lab October 17, 2005 Great Lakes Interagency Task Force Draft Plan calls for

More information

Great Lakes Update. Volume 193: 2015 January through June Summary. Vol. 193 Great Lakes Update August 2015

Great Lakes Update. Volume 193: 2015 January through June Summary. Vol. 193 Great Lakes Update August 2015 Great Lakes Update Volume 193: 2015 January through June Summary The U.S. Army Corps of Engineers (USACE) monitors the water levels of each of the Great Lakes. This report provides a summary of the Great

More information

Remaining Capacity in Great Lakes Reservoirs

Remaining Capacity in Great Lakes Reservoirs US Army Corps of Engineers Detroit District Remaining Capacity in Great Lakes Reservoirs Storage Capacity Behind Great Lakes Dams Field Data and Modeling Motivation for project Project overview Data and

More information

Great Lakes Update. Great Lakes Winter and Spring Summary January June Vol. 187 Great Lakes Update August 2012

Great Lakes Update. Great Lakes Winter and Spring Summary January June Vol. 187 Great Lakes Update August 2012 Great Lakes Update Great Lakes Winter and Spring Summary January June 2012 The US Army Corps of Engineers (USACE) Detroit District monitors hydraulic and hydrologic conditions of the Great Lakes. This

More information

Great Lakes Update. Volume 191: 2014 January through June Summary. Vol. 191 Great Lakes Update August 2014

Great Lakes Update. Volume 191: 2014 January through June Summary. Vol. 191 Great Lakes Update August 2014 Great Lakes Update Volume 191: 2014 January through June Summary The U.S. Army Corps of Engineers (USACE) monitors the water levels of each of the Great Lakes. This report provides a summary of the Great

More information

Great Lakes Update. Volume 188: 2012 Annual Summary

Great Lakes Update. Volume 188: 2012 Annual Summary Great Lakes Update Volume 188: 2012 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks the water levels of each of the Great Lakes. This report highlights hydrologic conditions of

More information

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Engineering Hydrology (ECIV 4323) CHAPTER FOUR Stream flow measurement Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib -١ 4.1 Introduction - Surface water hydrology deals with the movement of water

More information

Great Lakes Update. Volume 194: 2015 Annual Summary

Great Lakes Update. Volume 194: 2015 Annual Summary Great Lakes Update Volume 194: 2015 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks and forecasts the water levels of each of the Great Lakes. This report summarizes the hydrologic

More information

Water Level Analysis of Lower St. Marys River September 15, 2010

Water Level Analysis of Lower St. Marys River September 15, 2010 Water Level Analysis of Lower St. Marys River September 15, 21 Purpose and Scope This report presents the results of the data analysis of the St. Marys River levels and flows in support of several study

More information

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Freddie Pinkard and Charlie Little Research Hydraulic Engineers ERDC-CHL-River Engineering Branch 27 February 2009 Lane

More information

Appendix D. Model Setup, Calibration, and Validation

Appendix D. Model Setup, Calibration, and Validation . Model Setup, Calibration, and Validation Lower Grand River Watershed TMDL January 1 1. Model Selection and Setup The Loading Simulation Program in C++ (LSPC) was selected to address the modeling needs

More information

Great Lakes Update. Volume 199: 2017 Annual Summary. Background

Great Lakes Update. Volume 199: 2017 Annual Summary. Background Great Lakes Update Volume 199: 2017 Annual Summary Background The U.S. Army Corps of Engineers (USACE) tracks and forecasts the water levels of each of the Great Lakes. This report is primarily focused

More information

Riverine Modeling Proof of Concept

Riverine Modeling Proof of Concept Technical Team Meeting Riverine Modeling Proof of Concept Version 2 HEC-RAS Open-water Flow Routing Model April 15-17, 2014 Prepared by R2 Resource Consultants, Brailey Hydrologic, Geovera, Tetra Tech,

More information

River Model (Delft3D)

River Model (Delft3D) A Short River Model (Delft3D) & DIVERSION ANALYSIS presented by Nina J. Reins, PE, PhD, PMP State of the Coast May 30-June 1, 2018 Overview of Presentation Problem Statement & Background Analysis Key Findings

More information

Modeling of Hydrodynamics and Sediment Transport in. St. Clair River

Modeling of Hydrodynamics and Sediment Transport in. St. Clair River Research Project Report Modeling of Hydrodynamics and Sediment Transport in St. Clair River Submitted To International Joint Commission (IJC) International Upper Great Lakes Study (IUGLS) by Xiaofeng Liu

More information

Real-Time Hydraulic and Hydrodynamic Model of the St. Clair River, Lake St. Clair, Detroit River System

Real-Time Hydraulic and Hydrodynamic Model of the St. Clair River, Lake St. Clair, Detroit River System CASE STUDIES Real-Time Hydraulic and Hydrodynamic Model of the St. Clair River, Lake St. Clair, Detroit River System Eric J. Anderson 1 ; David J. Schwab 2 ; and Gregory A. Lang 3 Downloaded from ascelibrary.org

More information

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River September 2015 0 Table of Contents 1. Introduction... 2 2. Data collection... 3 2.1 Additional data...

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

Workshop: Build a Basic HEC-HMS Model from Scratch

Workshop: Build a Basic HEC-HMS Model from Scratch Workshop: Build a Basic HEC-HMS Model from Scratch This workshop is designed to help new users of HEC-HMS learn how to apply the software. Not all the capabilities in HEC-HMS are demonstrated in the workshop

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies

Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies John V. Sloat Chief Technical officer WaterCube, LLC Overview Water depth, water-velocity, and water-surface

More information

Two-Dimensional Simulation of Truckee River Hydrodynamics

Two-Dimensional Simulation of Truckee River Hydrodynamics Two-Dimensional Simulation of Truckee River Hydrodynamics by Stephen H. Scott PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate the use of multidimensional

More information

Varying Bathymetric Data Collection Methods and their Impact on Impoundment Volume and Sediment Load Calculations I.A. Kiraly 1, T.

Varying Bathymetric Data Collection Methods and their Impact on Impoundment Volume and Sediment Load Calculations I.A. Kiraly 1, T. Varying Bathymetric Data Collection Methods and their Impact on Impoundment Volume and Sediment Load Calculations I.A. Kiraly 1, T. Sullivan 2 1 Gomez and Sullivan Engineers, D.P.C., 41 Liberty Hill Road,

More information

UNDERSTANDING GREAT LAKES WATER LEVEL FLUCTUATIONS AND CURRENT CONDITIONS APRIL 2013

UNDERSTANDING GREAT LAKES WATER LEVEL FLUCTUATIONS AND CURRENT CONDITIONS APRIL 2013 UNDERSTANDING GREAT LAKES WATER LEVEL FLUCTUATIONS AND CURRENT CONDITIONS IL 213 John Allis Chief, Great Lakes Hydraulics and Hydrology Office (313) 226-2137 John.T.Allis@usace.army.mil Keith Kompoltowicz

More information

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Michael McKay 1 and Francisco Lopez 2 1 Dams Engineer, GHD Pty 2 Principal Dams/Structural Engineer, GHD Pty

More information

Flow estimations through spillways under submerged tidal conditions

Flow estimations through spillways under submerged tidal conditions Computational Methods and Experimental Measurements XIII 137 Flow estimations through spillways under submerged tidal conditions P. D. Scarlatos 1, M. Ansar 2 & Z. Chen 2 1 Department of Civil Engineering

More information

Geomorphology Studies

Geomorphology Studies Geomorphology Studies Technical Workgroup Meeting February 14, 2012 Prepared by: Tetra Tech Prepared for: Alaska Energy Authority Overall Goal Geomorphology Studies Two studies Geomorphology Study (RSP

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Final Report V2 November 13, PREPARED BY: Tetra Tech, Inc Powers Ferry Rd. SE, Suite 202 Atlanta, Georgia Phone: (770)

Final Report V2 November 13, PREPARED BY: Tetra Tech, Inc Powers Ferry Rd. SE, Suite 202 Atlanta, Georgia Phone: (770) PREPARED BY: Tetra Tech, Inc. 2110 Powers Ferry Rd. SE, Suite 202 Atlanta, Georgia 30339 Phone: (770) 850-0949 Final Report V2 November 13, 2015 PREPARED FOR: Department of the Army Savannah District,

More information

Assessment of the Hood River Delta Hood River, Oregon

Assessment of the Hood River Delta Hood River, Oregon Assessment of the Hood River Delta Hood River, Oregon Pacific Northwest Waterways Association Annual Meeting October 13, 2010 Michael McElwee, Executive Director Port of Hood River Overview U.S. Army Corps

More information

Savannah Harbor Expansion Project

Savannah Harbor Expansion Project Savannah Harbor Expansion Project Evaluation of Hurricane Surge Impacts with Proposed Mitigation Plan December 2007 Introduction This report summarizes the results of hurricane surge impacts with implementation

More information

Coastal and Hydraulics Laboratory

Coastal and Hydraulics Laboratory ERDC/CHL TR-15-12 Numerical Sedimentation Study of Shoaling on the Ohio River near Mound City, Illinois David Abraham, PhD., P.E., Nate Clifton, and Barry Vessels August 2015 Coastal and Hydraulics Laboratory

More information

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan U.S. Army Corps of Engineers Detroit District December 2001 December 2001 This report has been prepared for USACE, Detroit District by: W.F. BAIRD & ASSOCIATES LTD. 2981 YARMOUTH GREENWAY MADISON, WISCONSIN

More information

Hydraulic and Sediment Transport Modeling Strategy

Hydraulic and Sediment Transport Modeling Strategy Appendix B Hydraulic and Sediment Transport Modeling Strategy May 2014 Technical Memorandum Channel Capacity Report January 2015 San Joaquin River Restoration Program Hydraulic and Sediment Transport Modeling

More information

Sessom Creek Sand Bar Removal HCP Task 5.4.6

Sessom Creek Sand Bar Removal HCP Task 5.4.6 Sessom Creek Sand Bar Removal HCP Task 5.4.6 Prepared by: Dr. Thomas Hardy Texas State University Dr. Nolan Raphelt Texas Water Development Board January 6, 2013 DRAFT 1 Introduction The confluence of

More information

Calibration of Manning s Friction Factor for Rivers in Iraq Using Hydraulic Model (Al-Kufa River as Case study)

Calibration of Manning s Friction Factor for Rivers in Iraq Using Hydraulic Model (Al-Kufa River as Case study) Calibration of Manning s Friction Factor for Rivers in Iraq Using Hydraulic Model (Al-Kufa River as Case study) Luay Kadhim Hameed, Civil Engineering Dept./ University of Kufa Hayder Sami Mohammed, Structure

More information

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED 1.0 Introduction The Sg. Lui watershed is the upper part of Langat River Basin, in the state of Selangor which located approximately 20

More information

Section 4: Model Development and Application

Section 4: Model Development and Application Section 4: Model Development and Application The hydrologic model for the Wissahickon Act 167 study was built using GIS layers of land use, hydrologic soil groups, terrain and orthophotography. Within

More information

Final Report for TWDB Contract No

Final Report for TWDB Contract No Final Report for TWDB Contract No. 1004831127 Sediment Transport Modeling of Channel Scale Geomorphic Processes J.K. Haschenburger University of Texas at San Antonio July 31, 2012 1 Introduction This study

More information

UPPER COSUMNES RIVER FLOOD MAPPING

UPPER COSUMNES RIVER FLOOD MAPPING UPPER COSUMNES RIVER FLOOD MAPPING DRAFT BASIC DATA NARRATIVE FLOOD INSURANCE STUDY SACRAMENTO COUTY, CALIFORNIA Community No. 060262 November 2008 Prepared By: CIVIL ENGINEERING SOLUTIONS, INC. 1325 Howe

More information

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir ISSN 2320-9100 11 International Journal of Advance Research, IJOAR.org Volume 1, Issue 8,August 2013, Online: ISSN 2320-9100 MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq

More information

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES Memorandum To: David Thompson From: John Haapala CC: Dan McDonald Bob Montgomery Date: February 24, 2003 File #: 1003551 Re: Lake Wenatchee Historic Water Levels, Operation Model, and Flood Operation This

More information

J.B. Shaw and D. Mohrig

J.B. Shaw and D. Mohrig GSA DATA REPOSITORY 2014008 J.B. Shaw and D. Mohrig Supplementary Material Methods Bathymetric surveys were conducted on 26 June- 4 July, 2010 (Fig. 2A), 7 March, 2011 (Fig. 2B), 11-12 August, 2011 (Figs.

More information

N 2 3. Lake Huron. St. Clair River. Black River Assessment. Figure 1. Major tributaries to the Black River. 1. Berry Drain 2. Elk Creek.

N 2 3. Lake Huron. St. Clair River. Black River Assessment. Figure 1. Major tributaries to the Black River. 1. Berry Drain 2. Elk Creek. 1. Berry Drain 2. Elk Creek Deckerville 3. Arnot Creek 4. Black Creek 5. Silver Creek 6. Plum Creek 7. Mill Creek 1 Sandusky Carsonville 8. Stocks Creek Applegate N 2 3 Croswell Peck 0 5 10 Brown City

More information

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS Probabilistic Evaluation of a Meandering Low-Flow Channel February 24 th, 2014 2014 UMSRS 1 2 acknowledgments Low- Flow Channel (LFC) overview Proposed Diversion Channel collects runoff from: The Rush

More information

ANALYSIS OF FLOW CONDITIONS AT THE IHNC-GIWW SECTOR GATE

ANALYSIS OF FLOW CONDITIONS AT THE IHNC-GIWW SECTOR GATE ANALYSIS OF FLOW CONDITIONS AT THE IHNC-GIWW SECTOR GATE SLFPA-E October 2016 Motivation SLFPA-E has observed high velocities within the opening of the GIWW sector gate at the surge barrier. Concern about

More information

Webinar and Weekly Summary February 15th, 2011

Webinar and Weekly Summary February 15th, 2011 Webinar and Weekly Summary February 15th, 2011 -Assessment of current water conditions - Precipitation Forecast - Recommendations for Drought Monitor Upper Colorado Normal Precipitation Upper Colorado

More information

Kaskaskia Morphology Study Headwaters to Lake Shelbyville

Kaskaskia Morphology Study Headwaters to Lake Shelbyville Kaskaskia Morphology Study Headwaters to Lake Shelbyville KWA Mini Summit 5 March 2012 1 Kaskaskia Morphology Study Headwaters to Lake Shelbyville Conducted by U.S. Army Corps of Engineers, St. Louis District

More information

Bed-load measurements on large, sand-bed rivers in the United States

Bed-load measurements on large, sand-bed rivers in the United States Bed-load measurements on large, sand-bed rivers in the United States David Abraham 1,*, Tate McAlpin 1, and Keaton Jones 1 1 US Army Corps of Engineers, Coastal and Hydraulics Laboratory, Vicksburg MS,

More information

JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology VOLUME

JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology VOLUME JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology VOLUME 18 2010 REDUCED CHANNEL CONVEYANCE ON THE WICHITA RIVER AT WICHITA FALLS, TEXAS,

More information

Annual transport rates at two locations on the fore-slope.

Annual transport rates at two locations on the fore-slope. Sediment Transport by Currents Fore-slope Sediment transport rates and sediment concentrations were computed from the hydrodynamic model runs as well as from direct measurements of current velocities at

More information

Pompton Lakes Dam Downstream Effects of the Floodgate Facility. Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner

Pompton Lakes Dam Downstream Effects of the Floodgate Facility. Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner Pompton Lakes Dam Downstream Effects of the Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner ASFPM 2013: Overview Page 2 Overview Page 3 Overview Page 4 Overview Page 5 Overview - Historical Pompton

More information

Quantification of Bed-Load Transport on the Upper Mississippi River Using Multibeam Survey Data and Traditional Methods

Quantification of Bed-Load Transport on the Upper Mississippi River Using Multibeam Survey Data and Traditional Methods Quantification of Bed-Load Transport on the Upper Mississippi River Using Multibeam Survey Data and Traditional Methods by David D. Abraham and Thad Pratt PURPOSE: This Coastal and Hydraulics Engineering

More information

ESTIMATING JOINT FLOW PROBABILITIES AT STREAM CONFLUENCES USING COPULAS

ESTIMATING JOINT FLOW PROBABILITIES AT STREAM CONFLUENCES USING COPULAS ESTIMATING JOINT FLOW PROBABILITIES AT STREAM CONFLUENCES USING COPULAS Roger T. Kilgore, P.E., D. WRE* Principal Kilgore Consulting and Management 2963 Ash Street Denver, CO 80207 303-333-1408 David B.

More information

Mississippi River (Pool 2) 2-D ADH Model Development

Mississippi River (Pool 2) 2-D ADH Model Development Appendix E: Mississippi River (Pool 2) 2-D ADH Model Development (PREPARED BY WEST CONSULTANTS, 2011) Lower Pool 2 Channel Management Study: Boulanger Bend to Lock and Dam No. 2 US Army Corps of Engineers

More information

UNCERTAINTY ANALYSIS OF LAKE ERIE NET BASIN SUPPLIES AS COMPUTED USING THE RESIDUAL METHOD

UNCERTAINTY ANALYSIS OF LAKE ERIE NET BASIN SUPPLIES AS COMPUTED USING THE RESIDUAL METHOD UNCERTAINTY ANALYSIS OF LAKE ERIE NET BASIN SUPPLIES AS COMPUTED USING THE RESIDUAL METHOD By JACOB BRUXER, B.ENG., P.ENG. Abstract The Lake Erie net basin supply (NBS) is defined as the net volume of

More information

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA Dr. Gamal A. Sallam 1 and Dr. Medhat Aziz 2 ABSTRACT Bridges are critical structures that require a substantial investment to construct and serve an important

More information

ECOHYDRAULICS. Introduction to 2D Modeling

ECOHYDRAULICS. Introduction to 2D Modeling Introduction to 2D Modeling No one believes a model, except the person who wrote it; Everyone believes data, except the person who collected it. unknown wise scientist Two dimensional (depth averaged)

More information

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Richard A. Luettich, Jr. University of North Carolina at Chapel Hill Institute of Marine

More information

Lessons Learned from Fish Spawning Reef Restoration in the St. Clair Detroit River System. Photo Credit: Adam Lintz

Lessons Learned from Fish Spawning Reef Restoration in the St. Clair Detroit River System. Photo Credit: Adam Lintz Lessons Learned from Fish Spawning Reef Restoration in the St. Clair Detroit River System Photo Credit: Adam Lintz Outline and Presenters Jennifer Read, University of Michigan Water Center Introduction

More information

A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake

A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake Prepared by: Allan Chapman, MSc, PGeo Hydrologist, Chapman Geoscience Ltd., and Former Head, BC River Forecast Centre Victoria

More information

Creating a Bathymetric Database & Datum Conversion

Creating a Bathymetric Database & Datum Conversion Creating a Bathymetric Database & Datum Conversion Mitchell Brown Civil Engineering Technician Mitchell.E.Brown@erdc.dren.mil June 11, 2012 US Army Corps of Engineers BUILDING STRONG Introduction to Bathymetric

More information

U.S. ARMY CORPS OF ENGINEERS

U.S. ARMY CORPS OF ENGINEERS CORPS FACTS Regulating Mississippi River Navigation Pools U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG Historical Background Federal improvements in the interest of navigation on the Mississippi River

More information

The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change

The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change The Mississippi River: Its Role in Restoration Efforts and Potential Effects of Climate Change Clinton S. Willson, P.E., Ph.D. Department of Civil & Environmental Engineering Louisiana State University

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Great Lakes Update. A Geologic Perspective on Lake Michigan Water Levels By Todd A. Thompson, Ph. D. and Steve J. Baedke, Ph. D.

Great Lakes Update. A Geologic Perspective on Lake Michigan Water Levels By Todd A. Thompson, Ph. D. and Steve J. Baedke, Ph. D. Vol. No. 140 August 4, 2000 US Army Corps of Engineers Detroit District Great Lakes Update A Geologic Perspective on Lake Michigan Water Levels By Todd A. Thompson, Ph. D. and Steve J. Baedke, Ph. D. With

More information

Canal Velocity Indexing at Colorado River Indian Tribes (CRIT) Irrigation Project in Parker, Arizona using the SonTek Argonaut SL

Canal Velocity Indexing at Colorado River Indian Tribes (CRIT) Irrigation Project in Parker, Arizona using the SonTek Argonaut SL Canal Velocity Indexing at Colorado River Indian Tribes (CRIT) Irrigation Project in Parker, Arizona using the SonTek Argonaut SL Authors: Dr. Stuart Styles P.E., Mark Niblack, Beau Freeman Abstract An

More information

DATA ASSIMILATION IN RIVER ICE FORECASTING

DATA ASSIMILATION IN RIVER ICE FORECASTING Ice in the Environment: Proceedings of the 6th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research DATA ASSIMILATION

More information

Water Supply Outlook. Interstate Commission on the Potomac River Basin (ICPRB) 30 W. Gude Drive, Suite 450 Rockville, MD Tel: (301)

Water Supply Outlook. Interstate Commission on the Potomac River Basin (ICPRB) 30 W. Gude Drive, Suite 450 Rockville, MD Tel: (301) Water Supply Outlook June 2, 2016 To subscribe: please email aseck@icprb.org Interstate Commission on the Potomac River Basin (ICPRB) 30 W. Gude Drive, Suite 450 Rockville, MD 20850 Tel: (301) 274-8120

More information

Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP

Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP Measurements of lateral flow from the Mississippi River at Mardi Gras Pass in the Bohemia Spillway using synoptic ADCP A Technical Report Submitted to: The Lake Pontchartrain Basin Foundation Submitted

More information

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Company Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Inc. Courthouse Square 19001 Vashon Hwy SW Suite 201 Vashon Island, WA 98070 Phone: 206-463-1610 Columbia River

More information

Historical Bathymetric Data for the Lower Passaic River

Historical Bathymetric Data for the Lower Passaic River Historical Bathymetric Data for the Lower Passaic River 4th Passaic River Symposium June 22nd, 2010 Dr. William Hansen Jeffrey Cranson Worcester State College Project Supported by The Hudson River Foundation

More information

L OWER N OOKSACK R IVER P ROJECT: A LTERNATIVES A NALYSIS A PPENDIX A: H YDRAULIC M ODELING. PREPARED BY: LandC, etc, LLC

L OWER N OOKSACK R IVER P ROJECT: A LTERNATIVES A NALYSIS A PPENDIX A: H YDRAULIC M ODELING. PREPARED BY: LandC, etc, LLC L OWER N OOKSACK R IVER P ROJECT: A LTERNATIVES A NALYSIS A PPENDIX A: H YDRAULIC M ODELING PREPARED BY: LandC, etc, LLC TABLE OF CONTENTS 1 Introduction... 1 2 Methods... 1 2.1 Hydraulic Model... 1 2.2

More information

Hydraulic Modeling of the Missoula Ice Dam Failure. Christopher R. Goodell, P.E., D.WRE WEST Consultants, Salem, OR

Hydraulic Modeling of the Missoula Ice Dam Failure. Christopher R. Goodell, P.E., D.WRE WEST Consultants, Salem, OR Hydraulic Modeling of the Missoula Ice Dam Failure Christopher R. Goodell, P.E., D.WRE WEST Consultants, Salem, OR 1 Introduction 10-40 thousand years ago during the last ice age Image courtesy gis4geomorphology.com

More information

H4: Steady Flow through a Channel Network

H4: Steady Flow through a Channel Network August 9, Chapter 7 H4: Steady Flow through a Channel Network Contents 7. Problem Specification............................. 7-7. Background................................... 7-3 7.3 Contra Costa Water

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC This threat overview relies on projections of future climate change in the Mekong Basin for the period 2045-2069 compared to a baseline of 1980-2005.

More information

State Water Survey Division SURFACE WATER SECTION

State Water Survey Division SURFACE WATER SECTION State Water Survey Division SURFACE WATER SECTION AT THE UNIVERSITY OF ILLINOIS Illinois Department of Energy and Natural Resources SWS Miscellaneous Publication 88 SEDIMENTATION OF POOL 19 ON THE MISSISSIPPI

More information

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report Developed in partnership with the Oklahoma Water Resources Board S. Jerrod

More information

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS M.L. Kavvas and L.Liang UCD J.Amorocho Hydraulics Laboratory University of California, Davis, CA 95616, USA Uncertainties

More information

Coastal and Hydraulics Laboratory

Coastal and Hydraulics Laboratory ERDC/CHL TR-17-1 Upper and Lower Hamburg Bend 2011 Flood Evaluation on the Missouri River near Hamburg, Iowa Nathan Clifton, David Abraham, and Dan Pridal January 2017 Coastal and Hydraulics Laboratory

More information

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY M. Jovanović 1, R. Kapor, B. Zindović University of Belgrade Faculty of Civil Engineering E-mail:

More information

Analysis of the Effects of Bendway Weir Construction on Channel Cross Sectional Geometry

Analysis of the Effects of Bendway Weir Construction on Channel Cross Sectional Geometry Mississippi River Miles 275.2 1.7 Analysis of the Effects of Bendway Weir Construction on Channel Cross Sectional Geometry By Timothy Lauth David Gordon, P.E. Katherine Clancey Adam Rockwell Brad Krischel

More information

Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River,

Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, 1861-2008 - Richard J. Huizinga, P.E. U.S. Geological Survey Missouri Water

More information

Valenciano Reservoir Safe Yield Study. Prepared by: CSA Architects & Engineers, LLP

Valenciano Reservoir Safe Yield Study. Prepared by: CSA Architects & Engineers, LLP Valenciano Reservoir Safe Yield Study Prepared by: CSA Architects & Engineers, LLP CSA Group Prepared for: Puerto Rico Aqueduct and Sewer Authority Planning TABLE OF CONTENTS 1 Introduction...1 1.1 Safe

More information

USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS

USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS ASHLEY EVANS While the state of Texas is well-known for flooding, the Guadalupe River Basin is one of

More information

NEW YORK STATE WATER RESOURCES INSTITUTE Department of Biological and Environmental Engineering

NEW YORK STATE WATER RESOURCES INSTITUTE Department of Biological and Environmental Engineering NEW YORK STATE WATER RESOURCES INSTITUTE Department of Biological and Environmental Engineering 230 Riley-Robb Hall, Cornell University Tel: (607) 254-7163 Ithaca, NY 14853-5701 Fax: (607) 255-4080 http://wri.cals.cornell.edu

More information

Estimation of Wave Heights during Extreme Events in Lake St. Clair

Estimation of Wave Heights during Extreme Events in Lake St. Clair Abstract Estimation of Wave Heights during Extreme Events in Lake St. Clair T. J. Hesser and R. E. Jensen Lake St. Clair is the smallest lake in the Great Lakes system, with a maximum depth of about 6

More information

Dam Removal Analysis Guidelines for Sediment

Dam Removal Analysis Guidelines for Sediment A review of: Dam Removal Analysis Guidelines for Sediment Joe Rathbun (Retired) rathbunj@sbcglobal.net Some Potential Sediment Issues Reservoir restoration Downstream water quality Downstream deposition

More information

Evaluation of the Potential for Hysteresis in Index-Velocity Ratings for the Chicago Sanitary and Ship Canal near Lemont, Illinois

Evaluation of the Potential for Hysteresis in Index-Velocity Ratings for the Chicago Sanitary and Ship Canal near Lemont, Illinois Prepared in cooperation with the Chicago District of the U.S. Army Corps of Engineers Evaluation of the Potential for Hysteresis in Index-Velocity Ratings for the Chicago Sanitary and Ship Canal near Lemont,

More information

REDWOOD VALLEY SUBAREA

REDWOOD VALLEY SUBAREA Independent Science Review Panel Conceptual Model of Watershed Hydrology, Surface Water and Groundwater Interactions and Stream Ecology for the Russian River Watershed Appendices A-1 APPENDIX A A-2 REDWOOD

More information

Design and Implementation of a NOAA/NOS Cook Inlet and Shelikof Straits Circulation Modeling System

Design and Implementation of a NOAA/NOS Cook Inlet and Shelikof Straits Circulation Modeling System Design and Implementation of a NOAA/NOS Cook Inlet and Shelikof Straits Circulation Modeling System Presented at a NOAA/AEA Stakeholders Meeting, August 24, 2011, Anchorage Alaska Richard Patchen and Lyon

More information

HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA

HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA Xiao Fei MEE08181 Supervisor: A.W. Jayawardena ABSTRACT In 1998, the worst flood recorded for over 200 years hit the Songhua River Basin

More information