HEAT TRANSFER IN BOUNDARY LAYER VISCOLASTIC FLUID FLOW OVER ANEXPONENTIALLY STRETCHING SHEET

Size: px
Start display at page:

Download "HEAT TRANSFER IN BOUNDARY LAYER VISCOLASTIC FLUID FLOW OVER ANEXPONENTIALLY STRETCHING SHEET"

Transcription

1 cinc Foc Vol. 8 () pp - Fclty o Pr nd Applid cinc LAUTECH Printd in Nigri HEAT TRANFER IN BOUNDARY LAYER VICOLATIC FLUID FLO OVER ANEXPONENTIALLY TRETCHING HEET *Okdoy A.. hd A. Ayndokn O. O. Dprtmnt o thmtic Covnnt Univrity P.. B. Ot Ogn tt Nigri Dprtmnt o thmtic Emmnl Alynd Collg o Edction Oyo Oyo tt Nigri Atrct Th ppr prnt th tdy o momntm nd ht trnr chrctritic in vico-ltic ondry lyr lid low ovr n ponntilly trtching contino ht with non-niorm ht orc. Th low i gnrtd olly y th ppliction o two ql nd oppoit orc long th -i ch tht trtching o th ondry rc i o ponntil ordr in nd inlncd y niorm mgntic ild pplid vrticlly. Th non-linr ondry lyr qtion or momntm i convrtd into ordinry dirntil qtion y mn o imilrity trnormtion. Approimt nlyticl imilrity oltion i otind or th dimnionl trm nction nd vlocity ditrition nction tr trnorming th ondry lyr qtion into Riccti typ nd olving it qntilly. Ht trnr qtion i thn olvd ing Rng-Ktt orth ordr mthod. Th ccrcy o th nlyticl oltion i lo vriid y compring th oltion otind to tho in litrtr whn Hrtmnn nmr i zro. Th ct o vrio phyicl prmtr on vlocity kin riction tmprtr nd Nlt nmr proil r prntd grphiclly. Ky word: Eponntil trtching ht Prndtl nmr Non-niorm ht orc/ink imilrity oltion vico- ltic lid ondry lyr low kin-riction.. Introdction omntm nd ht trnr in vico-ltic ondry lyr low ovr trtching ht hv n tdid tnivly in th rcnt pt c o it vr incring g in polymr procing indtry in prticlr in mnctring proc o rtiicil ilm nd rtiicil ir in om ppliction o dilt polymr. Th trnport o momntm ht nd m in lminr ondry lyr on th moving intnil trtching rc h conidrl prcticl rlvnc. For mpl in lctrochmitry (Chin (975) Gorl (978)) polymr procing (Gith (964) Erickon (966)) nd in ir indtri. In viw o incring importnc o non-nwtonin low Rjgopl t l (984) mind pcil cl o Vico-ltic lid known cond ordr lid. h nd iddpp(986) tdid th low o Vico-ltic lid o th typ ltr liqid B pt trtching ht. inc th ltr liqid B i lid tht h hort mmory thy rrivd t th om non-linr qtion tht cn drivd with th ondry lyr pproimtion. h () tdid vico-ltic lid low nd ht trnr ovr trtching ht with vril vicoity. All th tdi dl with th tdi concrning non-nwtonin low nd ht trnr in th nc o mgntic ild t prnt yr w ind vrl indtril ppliction ch polymr tchnology nd mtllrgy ( Chkrrti nd Gpt (979)) whr th mgntic ild i pplid in th vico-ltic lid low. Andron (99) invtigtd th low prolm o lctriclly *Corrponding thor mil: dl.okdoy@covnntnivrity.d.ng cinc Foc: An Intrntionl Jornl o Biologicl nd Phyicl cinc IN

2 Okdoy t l. Nomncltr dimnionl trm nction p clr prr k ltic prmtr min trm vlocity/r trm w k vicoltic prmtr v th vlocity componnt l rrnc lngth y th coordint i R non-dimnionl Rynold nmr C p pciic ht T tr tnor Q Ht orc/ink prmtr imilrity vril Grk lttr th norml tr modli cclrtion/dclrtion prmtr A nd A kinmticl tnor; dynmic vicoity B pplid mgntic ild kinmtic vicoity HD prmtr Flid dnity Ec Eckrt nmr lctricl condctivity c dimnionl kin-riction coicint Ht orc/ink prmtr Pr Prndtl nmr condcting vico-ltic lid pt lt nd imprml ltic ht. Lwrnc nd Ro (99) tdid th non-niqn o th HD low o cond ordr lid pt trtching ht. A nw dimnion w ddd to thi invtigtion y Elhhy () who mind th low nd ht trnr chrctritic y conidring n ponntilly trtching contino rc. h t l ( ) in thir ppr rport ht trnr in HD Vico-ltic lid ovr trtching rc. Kmri nd Nth () tdid HD low o Non-Nwtonin lid ovr continoly moving rc with prlll r trm. h t l (4) invtigt Non-Nwtonin gnto hydrodynmic low ovr trtching rc with ht nd m trnr. Rcntly iddhhwr nd hlhwr (5) mind th ct o rdition nd ht orc on HD low o vico-ltic liqid nd ht trnr ovr trtching ht. In hi work jit (6) otind irt nd cond ordr imilrity oltion o ondry lyr vico-ltic lid low ovr n ponntilly trtching ht with niorm ht orc. In idy prnt th tdy o diion o rctiv pci ndrgoing irt-ordr chmicl rction in ondry lyr low o n incompril homogno cond ordr lid ovr linrly hrinking ht in th prnc o trnvr mgntic ild. Th tdy rvl tht th vlocity i gtting clor towrd wll or incring mgntic prmtr whr it i going wy rom th wll or incring vico-ltic prmtr. It i lo ond tht th diion o rctiv pci i conidrly rdcd with incring vl o chmidt nmr mgntic nd rction rt prmtr whr it i incrd or nhncd vl o vico-ltic prmtr. Ngtiv concntrtion i orvd in om c which my not hv rl world ppliction. In rlity mot o th lid conidrd in indtril ppliction r mor non-nwtonin in ntr pcilly o vico-ltic typ thn vico typ. otivtd y ll th tdi w intnd to tdy th vicoltic lid low nd ht trnr ovr trtching ht in th prnc o niorm mgntic ild in th ondry lyr rgion. inc or HD low th ct o intrnl ht gnrtion i importnt nd hnc it i tkn into conidrtion nd comind ct o vico-lticity mgntic ild nd Rynold nmr on th kin riction coicint r conidrd.. Formltion o th prolm.. Prliminri Th contittiv qtion o n incompril cond ordr lid i givn y T pi A A A Kinmticl tnor A nd A r dind y A grd q grd q da A A dt T A T grd q grd q A (.) (.)

3 Ht trnr in ondry lyr vicoltic lid low Eqtion (.) w drivd y Colmn nd Noll (96) ing th potlt o grdlly ding mmory. Uing om primntl dt vriiction Fodick nd Rjgopl (979) gv th rng o vl o nd. (.) king o Eq.(.) Brd nd ltr (964) drivd th tdy tt two-dimnionl ondry lyr qtion or vico-ltic lid low in th orm v k v (.4) y y y y y y y Thi qtion h n drivd with th mption tht th norml tr i o th m ordr o mgnitd tht o th hr tr in ddition to th l ondry lyr pproimtion... Flow govrning qtion In ormlting th prolm w conidr th ollowing mption. (i) (ii) Th ondry ht i md to moving illy with vlocity o ponntil ordr in th il dirction nd gnrting th ondry lyr typ o low. A tdy two-dimnionl lminr low o n incompril lctriclly condcting vico-ltic liqid (ltr liqid B modl) d to n ponntilly trtching ht i conidrd. B B B B Imprml trtching lit w p ; v ; T Tw T A( ) t y l L Figr : Bondry lyr ovr n imprml ponntilly trtching ht. Th ht li in th pln y = with th low ing conind to y >. Th coordint i ing tkn long th trtching ht nd y i norml to th rcd two ql nd oppoit orc r pplid long th -i o tht th ht i trtchd kping th origin id. Thi low oy th rhologicl qtion o tt drivd y Brd nd ltr (964).For o nlyi w m tht diiption d to ltic tr i ngligil. It i lo md tht ondry lyr pproimtion cn d to impliy th ic qtion govrning th trnport o momntm nd ht. Frthr thi low pod ndr th inlnc o niorm trnvr mgntic ild. Th t o ic qtion togthr with th continity qtion thn com: v (.5) y

4 Okdoy t l. v k y y y c p T T v y T k y v y y y y y Q T T B B (.6) (.7) whr ll prmtr hv thir l mning. Th pproprit ondry condition or thi prpo r: t y ; w p ; v ; T Tw T A( ) l L t y ; ; T T (.8) whr A i poitiv prmtr. Aming tht mtril proprti ppring in th ov qtion r contnt th momntm qtion cn olvd rgrdl o th nrgy qtion.. oltion o th ondry lyr qtion At thi tg w try to ind itl imilrity vril ch tht th prolm cn rdcd to t o ODE intd o PDE. And it trn ot tht th ollowing imilrity vril cn mt or prpo: w l y l Uing thi imilrity vril th trm nction ( y) nd th tmprtr ild T (y) cn md dimnionl nd rpctivly: l y) lw ( ) T T ( ; () (.) Tw T Aming th low to two-dimnionl th vlocity componnt cn rltd to th trm nction : w l l w v (.) y l titting th dimnionl prmtr into th govrning qtion (.) to (.4) on wold otin: v k (.4) Pr Pr Pr Ec (.5) Pr c p Q k B w l Ec c k c p p w c p wk In trm o dimnionl prmtr th ondry condition rqird to olv Eqtion(.4) nd (.5) r: () () () ( ) Intgrting qtion (.4) w otin whr. For w gt ( ) v k d (.) (.6) (.7)

5 Ht trnr in ondry lyr vicoltic lid low 4 v k d intgrt qtion (.7) onc gin nd pply ondry condition (.6). Thi yild v k d d (.9) Now th oltion procdr o th qtion (.9) my rdcd to th qntil oltion o th Riccti-typ qtion n n n n n v n RH Thi itrtion lgorithm h to olvd y titting itl zro-ordr pproimtion on th R.H. o qtion (.9). m zro-ordr pproimtion o p or (.8) (.) (.) which tii th ondry condition t ininity. Intgrting th Eq.(.) nd mking o ondry condition t o (.6) w gt p (.) titting ll th drivtiv o zro-ordr pproimtion into R.H. o qtion (.9) nd ming tht irt-ordr itrtion on th L.H. o qtion (.9) tiying ll th ondry condition t (.6) w otin th vl o 4 k (.) Hr th qtion or irt-ordr itrtion tk th orm k k 4 (.4) Eqtion (.4) i th non-linr Riccti qtion nd thi cn olvd or hypr-gomtric hittkr nction (Armowitz nd tgn 964): Ltting in trm o conlnt k k k 4 4 / 5 c 4 w hv 6 C / C

6 Okdoy t l. 5 hitt C hitt hitt hitt hitt C hitt hitt hitt C hitt C C hitt hitt hitt C 6 5 kr kr kr kr kr kr kr kr kr kr kr kr (.5) whr kr kr hitt hitt kr kr hitt hitt nd C C with / Th dimnionl kin-riction coicint c i prd l B y v y y k y c w p t y R 7 k c Hr w l R i th non-dimnionl Rynold nmr.

7 Ht trnr in ondry lyr vicoltic lid low 6 Figr : Vrticl vlocity proil otind rom zro nd irt ordr oltion whn 5 nd k. Figr : Horizontl vlocity proil otind rom zro nd irt ordr oltion whn 5 nd k. 4. Ht Trnr Th govrning ondry lyr ht trnport qtion in th prnc o pc- nd tmprtr- dpndnt intrnl ht gnrtion/ orption or two-dimnionl low i Pr Pr Pr Ec (4.) (4.) Th nrgy qtion (4.) togthr with th ondry condition (4.) i linr cond ordr ordinry dirntil qtion with vril coicint (η) which i known rom th oltion o th low qtion (.) nd (.5) nd th Prndtl nmr Pr i md contnt. From Figr () nd () ov it i clr tht oth zro nd irt ordr oltion r vry clo. Hnc hv n md o zro ordr oltion in olving qtion (4.) nmriclly ndr th ondry condition (4.) ing cntrl dirn c or th drivtiv nd Thom lgorithm or th oltion o th t o dicritizd qtion. Th rlting ytm o qtion h to olvd in th ininit domin < η <. A init domin in th η-dirction cn d intd with η chon lrg nogh to nr tht th oltion r not ctd y impoing th ymptotic condition t init ditnc. Grid-indpndnc tdi how tht th compttionl domin cn dividd into intrvl ch o niorm tp iz.. Thi rdc th nmr o point twn withot criicing ccrcy. Th vl w ond to dqt or ll th rng o prmtr tdid hr. Convrgnc i md whn th rtio o vryon o or or th lt pproimtion 5 dird rom nity y l thn t ll vl o η in. 5. Rlt nd Dicion: In th ppr w invtigt th ondry lyr low nd ht trnr in vico-ltic liqid ovr n ponntilly trtching ht in prnc o non-niorm ht orc. imilrity oltion i d to otin th vlocity ditrition which i govrnd y non-linr dirntil qtion. Figr 4: Vrition o vrticl vlocity or vrio vl o Figr 5: Vrition o vrticl vlocity or vrio vl o k

8 Okdoy t l. 7 Figr 4 nd 6 i grphicl rprnttion which dpict th ct o gntic ild Prmtr on th vlocity proil rpctivly. It i ond tht th ct o gntic ild Prmtr i to nd rdc th vlocity igniicntly in th vico-ltic low in comprion with th vico low thi i d to th ct tht incr o ignii th incr o Lorntz orc which oppo th low in th rvr dirction. Th grph or th non-dimnionl vlocity proil or dirnt vl o th vico-ltic nd prmtr k r hown in Figr 5 nd 7 rpctivly. Th nlyi o th igr dmontrt tht th ct o th vico- ltic prmtr ki to dcr vlocity throghot th ondry lyr low ild which i qit ovio. Figr 6: Ect o th prmtr on th horizontl vlocity Figr 7: Ect o th prmtr k on th horizontl vlocity Figr 8: Tmprtr ditrition or vrio vl o Pr Figr 9: Tmprtr ditrition or vrio vl o k Figr : Tmprtr ditrition or vrio vl o Figr : Tmprtr ditrition or vrio vl o Figr (8) nd (9) i plottd or th tmprt r ditrition or vrio Prndtl nmr nd vico-ltic prmtr k rpctivly it i n intrting not tht thr i igniicnt nhncmnt o tmprtr in oth c. On comprion o th crv it cold n tht thr wold n incr in tmprtr in th low

9 Ht trnr in ondry lyr vicoltic lid low 8 rgion or lowr vl o Prndtl nmr which rlt in incr o thrml ondry lyr thickn Prndtl nmr incr. Alo incr in vico-ltic prmtr k ring ot n incr in tmprtr in th low rgion In Figr w diplyd th ct o tmprtr ditrition. On comprion o th crv it i n tht tmprtr incr in th low rgion d to th ppliction o mgntic ild. Hr incr o mgntic orc c igniicnt incr o thrml ondry lyr thickn in th lid low. Figr how th ct o ht orc/ink on th thrml ondry lyr o th low ild. orv tht or ht gnrtion tmprtr ditrition dcr throghot th ondry lyr o th low ild ht orption nd incr with ht gnrtion. Figr : kin riction ditrition or vrio vl o Hrtmnn nmr Tl : Ect o Eckrt nmr on horizontl vlocity y Ec=. Ec=. Ec= E-5.7E-5 8 4E-5.6E-5.E-5 9.7E E-6 4.8E E-6.4E-6.9E-6

10 Okdoy t l. 9 Tl how th ct o Eckrt nmr on th tmprtr ditrition. It cold n tht incr in Eckrt nmr ring ot dcr th tmprtr ditrition throghot th ondry lyr. Th grph o th non-dimnionl kin-riction prmtr c gint vico-ltic prmtr or dirnt vl o th Hrtmnn nmr i hown in Figr. Th igr how tht th kin riction prmtr incr on th wll with th ppliction o mgntic ild. Thi i c o th mgntic orc ct rtrding orc nd c th incr o hr tr. Th comind ct o vicolticity nd imprmility o th wll i to incr th kin riction t th wll lrgly. Hr dditionl introdction o hr tr t th wll y mgntic ild non-nwtonin ntr o vicoltic low nd imprmility o th wll thry dcr th ondry lyr thickn ld to incr th kin riction o th low. Tl : Ect o low prmtr on wll r tr k N Ec Pr N Th ht trnr phnomn i lly nlyzd rom th nmricl rlt o phyicl prmtr nmly wll tmprtr grdint nd th m r docmntd in tl. Anlyzing th tl rvl tht th ct o incring th vl o Prndtl nmr Eckrt nmr nd ht ink i to incr th wll tmprtr grdint. hil vico-ltic prmtr Hrtmnn nmr nd ht orc rdc th Nlt nmr. Th rlt r in tn with wht hppn in rgion wy rom th ht. Conclion A mthmticl prolm h n ormltd or th ht nd m trnr in vico-ltic lid low ovr n ponntilly trtching imprml ht. In th oltion procdr th non-linr dirntil qtion i convrtd into n ordinry dirntil qtion y pplying imilrity trnormtion. qntil imilrity oltion o th trnormd momntm qtion r otind nlyticlly y olving th non-linr Riccti typ qtion. Eprion r lo otind or th dimnionl kin-riction coicint c nd wll r tr N. Th importnt inding o th grphicl nlyi o th rlt o th prnt prolm r ollow.. Incr in oth ht gnrtion nd Hrtmnn nmr incr th tmprtr throghot th ondry lyr.. Th ct o incring th vl o th vico-ltic prmtr ki to incr th tmprtr ditrition throghot th ondry lyr nd dcr th Nlt nmr.. Th ct o incring th vl o th vico-ltic prmtr ki to dcr th vlocity throgh ot th ondry lyr.

11 Ht trnr in ondry lyr vicoltic lid low 4. Th ct o incring th vl o th vico-ltic prmtr ki to dcr th kin-riction prmtr c nd th ct o incring vl o th hrtmnn nmr i to incr th kin riction coicint c nd dcr th Nlt nmr. Acknowldgmnt Th thor wih to thnk th thority o Covnnt Univrity or nling nvironmnt providd wll nintrrptd intrnt rvic. Th morl pport o mmr o clty i lo pprcitd. lo wih to cknowldg th ort o th ditor nd rviwr or thir thorogh work nd vll ggtion which ld to improvmnt o thi work. Rrnc: Armowitz. nd tgn I. (964): Hndook o thmticl Fnction. Nw York: Dovr. AndronH. I (99): HD low vicoltic lid pt trtching rc. Act.ch95 7 Brd D.. nd ltr K. (964): Eltico-vico ondry lyr low.. Two dimnionl low nr tgntion point. Proc. Com. Phil. oc. vol.6 pp.667. Chkrrti A nd Gpt.A. (979): Hydromgntic low nd ht trnr ovr trtching ht. Q. Appl. th.77 ChinD. T. (975): trnr to contino moving ht lctrod J. Elctrochm. oc Colmn B.D. nd Noll. (96): An pproimtion thorm or nctionl with ppliction in continmmchnic. Arch. Rt. ch. Anl. vol.6 pp.55. Elhhy E..A. (): Ht trnr ovr n ponntilly trtching contino rc with ction. Arch. ch. vol.5 No.6 pp ErickonL. E. FnL. T. nd Fo V. G. (966): Ht nd trnr on moving Contino lt plt with ction or injction Indt.Engg. Chm. Fnd. Vol5No Fodick R.L nd Rjgopl K.R. (979): Anomlo tr in th modl o cond ordr lid. Arch. Rtion. ch. Anl. vol.7 pp.45. GithR.. (964): Vlocity tmprtr nd concntrtion ditrition dring ir pinning. J. Ind. Eng. Chm.Fndmntl Gorl R..R (978): Untdy trnr in th ondry lyr on contino moving ht lctrod J. Elctrochm. oc Kmri. ndnthg.() HD low o Non-Nwtonin lid ovr continoly moving rc with prlll r trm. Act. ch Lwrnc P.. nd Ro B.N. (99): Ht trnr in th low o vico-ltic lid ovr trtching ht. Act. ch. vol.9 pp.5-6. idy C. (): Diion o chmiclly rctiv pci in Vicoltic low ovr hrinking ht in th prnc o mgntic ild.int. J. o Appl. th.nd ch. 8(8): Rjgopl K. R N T. Y Gpt A.. (984): Flow o Vicoltic Flid ovr trtching ht.rhologicl Act pp. -5. iddhhwrp. G. ndhlhwru..(5)ect o rdition nd ht orc on HD low o vico-ltic liqid nd ht trnr ovr trtching ht. Int. J. Non-linr ch h A nd iddpp.b (986): Vico-ltic ondry low pt trtching plt with ction nd ht trnr RholAct5 79 h A Vn P.HRjgopl K. ndprvin V.K Non-Nwtonin gnto hydrodynmic low ovr trtching rc with ht nd m trnr Int.J.Non-Linr.ch. 9(4) h A. Johi A ndonth R. () Ht trnr in HD Vico-ltic lid ovr trtching rcchnicvol8 No jit K. K. (6): Bondry lyr vico-ltic lid low ovr n ponntilly trtching ht: Int. J. O pplid mchnic nd nginring vol. No. pp.-5

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Exp-function method to solve the nonlinear dispersive K(m,n) equations

Exp-function method to solve the nonlinear dispersive K(m,n) equations From th SlctdWork of Ji-Hn H 8 Exp-fnction mthod to olv th nonlinr dipriv K(mn qtion Xin-Wi Zho Yi-Xin Wn Ji-Hn H Dongh Univrity Avilbl t: http://work.bpr.com/ji_hn_h/9/ Frnd Pblihing Ho Ltd. Intrntionl

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Continuous Random Variables: Basics

Continuous Random Variables: Basics Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Nir-toks Introdction Mrch, 00 Introdction to oltion of Nir- toks qtion Lrr Crtto Mchnicl nginring 69 Compttionl Flid Dnmics Mrch, 00 Homork for Mrch Donlod th cl orkbook from th cors b sit for th smpl

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4.

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4. Empl 6: Lt rprsnt th mss, in ponds, of rdioctiv lmnt whos hlf-lif is 4000 rs. If thr r 00 ponds of th lmnt in n inctiv min, how mch will still rmin in 000 rs? Eprss or nswr to or mor dciml plc ccrc. 4

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Asymptotic Behaviour of the Solutions. of the Falkner-Skan Equations. Governing the Swirling Flow

Asymptotic Behaviour of the Solutions. of the Falkner-Skan Equations. Governing the Swirling Flow Adv. Thor. Appl. Mch., Vol. 3,, no. 4, 5-58 Aymptotic Bhaviour o th Solution o th Falknr-Skan Equation Govrning th Sirling Flo J. Singh Dpartmnt o Civil Enginring, ntitut o Tchnology, Banara Hindu Univrity,

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium .65, MHD Thory of usion Systms Prof. ridrg Lctur 8: Effct of Vrticl ild on Tokmk Equilirium Toroidl orc lnc y Mns of Vrticl ild. Lt us riw why th rticl fild is imortnt. 3. or ry short tims, th cuum chmr

More information

Adaptive control and synchronization of the Newton-Leipnik systems

Adaptive control and synchronization of the Newton-Leipnik systems ISSN 76-7659 Englnd UK Jornl o Inormtion nd Compting Scinc Vol. No. 8 pp. 8-89 Adptiv control nd snchronition o th Nwton-Lipni sstms Xdi Wng Cho G Nonlinr Scintiic Rsrch Cntr Fclt o Scinc Jings Univrsit

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

MCQ For Geometry. Similarity

MCQ For Geometry. Similarity MQ For Gomtry Similrity. E F EA FB AE A EB B t G ) ) ) In right ngl tringl, if BD A thn BD AD D n Th ro of r of two imilr tringl i l to r of th ro of thir orrpg i. A ( ) B A A ( ) Q P l Propr of imilr

More information

Week 7: Ch. 11 Semiconductor diodes

Week 7: Ch. 11 Semiconductor diodes Wk 7: Ch. 11 Smiconductor diods Principls o Scintilltion Countrs Smiconductor Diods bsics o smiconductors pur lmnts & dopnts 53 Mtrils ion collction, lkg currnt diod structur, pn, np junctions dpltion

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

STEADY STATE ERRORS IN UNITY FEEDBACK CONTROL SYSTEMS

STEADY STATE ERRORS IN UNITY FEEDBACK CONTROL SYSTEMS VU -lrning Courwr Control Enginring (ME55) SEADY SAE ERRORS I UIY FEEDBAC COROL SYSEMS Error in control yt y ttriutd to ny fctor. Chng in th rfrnc inut will cu unoidl rror during trnint riod, nd lo cu

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Compact Guide Cylinder with One-way Lock Series MLGP ø40, ø50, ø63. Prevents dropping when air supply pressure falls or residual pressure is exhausted

Compact Guide Cylinder with One-way Lock Series MLGP ø40, ø50, ø63. Prevents dropping when air supply pressure falls or residual pressure is exhausted Compct uid Cylindr with On-wy ock ris MP ø, ø, ø Prvnts dropping whn ir supply prssur flls or rsidul prssur is xhustd Cn lockd t ny position h locking position cn chngd to ccommodt n xtrnl stoppr position

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1 Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

More information

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class rhtr irt Cl.S. POSTAG PAD Cllnd, Ohi Prmit. 799 Cn't ttnd? P thi n t frind. \ ; n l *di: >.8 >,5 G *' >(n n c. if9$9$.jj V G. r.t 0 H: u ) ' r x * H > x > i M

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

More information

RF circuits design Grzegorz Beziuk. Introduction. Basic definitions and parameters. References

RF circuits design Grzegorz Beziuk. Introduction. Basic definitions and parameters. References RF cicuit dign Gzgoz Bziuk ntoduction. Bic dinition nd pmt Rnc [] Titz., Schnk C., Ectonic cicuit : hndook o dign nd ppiction, Sping 8 [] Goio M., RF nd micowv piv nd ctiv tchnoogi in: RF nd Micowv hndook,

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Key Ideas So Far. University of California, Berkeley

Key Ideas So Far. University of California, Berkeley EE 105 F 2016 Ky I So Fr Pro. A. M. iknj 1 Univrity o Ciorni, Brky EE 105 F 2016 Sov or tion Lngth Pro. A. M. iknj W hv two qution n two unknown. W r iny in oition to ov or th tion th q 2 n n0 2 q 2 2

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

Performance Analysis of Parabolic Trough Collector

Performance Analysis of Parabolic Trough Collector ISSN (Onlin) : 0975-02 Y. K. Nyk t l. / Intrntionl Jornl of Enginring nd Thnology (IJET) Prformn Anlyi of Prboli Trogh Colltor Y. K. Nyk #1, U. K. Sinh #2, P. Kmr *3, N.Kmr # # Eltril nd Eltroni Enginring

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules.

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules. Lctur 6 Titl: Fundmntls of th Quntum Thory of molcul formtion Pg- In th lst modul, w hv discussd out th tomic structur nd tomic physics to undrstnd th spctrum of toms. Howvr, mny toms cn comin to form

More information

Steady-state tracking & sys. types

Steady-state tracking & sys. types Sty-tt trcking & y. ty Unity fck control: um CL tl lnt r C y - r - o.l. y y r ol ol o.l. m m n n n N N N N N, N,, ut N N, m, ol.. clo-loo: y r ol.. trcking rror: r y r ty-tt trcking: t r ol.. ol.. For

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

EE 119 Homework 6 Solution

EE 119 Homework 6 Solution EE 9 Hmwrk 6 Slutin Prr: J Bkr TA: Xi Lu Slutin: (a) Th angular magniicatin a tlcp i m / th cal lngth th bjctiv ln i m 4 45 80cm (b) Th clar aprtur th xit pupil i 35 mm Th ditanc btwn th bjctiv ln and

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

COMSACO INC. NORFOLK, VA 23502

COMSACO INC. NORFOLK, VA 23502 YMOL 9. / 9. / 9. / 9. YMOL 9. / 9. OT:. THI RIG VLOP ROM MIL--/ MIL-TL-H, TYP II, L ITH VITIO OLLO:. UPO RULT O HOK TTIG, HOK MOUT (ITM, HT ) HV IR ROM 0.0 THIK TO 0.090 THIK LLO Y MIL-TL-H, PRGRPH...

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information