Polar oxide surfaces and ultra-thin films

Size: px
Start display at page:

Download "Polar oxide surfaces and ultra-thin films"

Transcription

1 Polar oxide surfaces and ultra-thin films Claudine Noguera Institut des Nanosciences de Paris, CNRS UMR 7588, Université Pierre et Marie Curie (Paris VI) Campus de Boucicaut, 140 rue Lourmel, Paris Outline: 1) Presentation of my research group 2) Polar surfaces of dielectric materials 3) Polarity at the nanoscale: ultra-thin oxide films

2 Reasearch group: Oxides in low dimensions Jacek Goniakowski Jacques Jupille Fabio Finocchi

3 Oxides in low dimensions Oxides surfaces and thin films, effects of polarity Growth and epitaxy of oxide-supported metal films Oxides in contact with water Towards more and more complex systems : increasing sizes surface reconstructions, complex interfaces; nanoscale objects contact with the environment : humid atmosphere, contact with aqueous solution, thermodynamic phase diagrams dynamical effects growth, dissolution, precipitation Ab initio DFT, DFPT GGA+U Quantum semi- empirical INDO O(N) Many-body empirical SMA + PES Kinetic Monte Carlo Rate equations Continuous model Rate equations Multitechnique apparatus for surface characterizatio Vibrational spectroscopy in UHV (HREELS) IR- Ellipsometry under gas pressure Nanoparticle Synthesis Synchrotron techniques: GIXS and GISAXS under pressure (ESRF)

4 My own research fields Polarity at surfaces and interfaces: electrostatic coupling structure-charge: Ab initio DFT, DFPT GGA+U Structure and growth of Oxide nano-objects Quantum semi- empirical HF- O(N) Nucleation and growth in aqueous solutions Applications to geochemistry: Water-rock interaction Clay formation Continuous model Rate equations MgO/Ag(100) Fine electronic, structural, and dielectric properties Average island size: 6±1 nm

5 Polar surfaces of dielectric materials Application of classical electrostatics laws to a modern problem 1993: modern theory of polarization; link between macroscopic electrostatics and quantum theory Polar materials: ferroelectric materials Polar surfaces in non-polar materials C. A. Coulomb ( ) F QQ' 2 4 R M. Faraday ( ) Concept of electrostatic field J.Goniakowski, F. Finocchi, C. Noguera, Rep. Prog. Phys. 71 (2008)

6 Classical electrostatics of dielectric materials: depolarization field and surface charge density Lead titanate= ferroelectric PbO 2O 2- Ti 4+ PbO 2O 2- Ti 4+ In absence of an external field even polar materials do not display a net dipole moment because the intrinsic dipole moment is neutralized by "free" electric charge that builds up on the surface. Not periodic!! Depolarizing field due to the polarization surface charge density: bulk surface bulk surface = 0 B + S =

7 Polar surfaces of non-polar materials: Classification of compound surfaces Rock-salt structure (eg. MgO) (100) (110) (111) Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 0, 0 Polar orientation = charged atomic layers + non-zero dipole moment in the repeat unit P.W. Tasker, J. Phys. C: Solid State Phys (1979)

8 Mechanisms of polarity compensation It is necessary to modify the charge density in the surface layers Compensating charge R 1 /(R 1 +R 2 ) R 1 =rumpling R 1 R 2 V 4NR 1 No linear component of the electrostatic potential (charge density= atom density x charge) V and P grow with N modification of the atom density Non-stoichiometry (reconstructions) & adsorption of charged species H+ H+ H+ H+ and/or modification of charges Modification of the electronic structure Surfaces may be stoichiometric or not M M M M

9 MgO(111) Modification of the electronic structure (charge modification) Plan (111) Plan O Plan Mg Compensating charges R 1 /(R 1 +R 2 )= / Atome Mg Atome O Surface metallization but 5 J/m 2 surface energy=> never observed! Change of oxidation state J. Goniakowski, C. Noguera, PRB 60, (1999)

10 Compensation by adsorption of foreign atoms Stabilization of (1x1)-MgO(111) by a metal/oxide interface Internal oxidation of a Cu Mg alloy Metal adhesion (case of Pd/MgO interface): (111): E adh ~ 5 J/m 2 (100): E adh ~ 1 J/m 2 D. Imhoff et al., Eur. Phys. J. AP 5 9 (1999). J. Goniakowski, C. Noguera, PRB 60, (1999); PRB 66, (2002).

11 Compensation by non-stoichiometry in the surface layers Atom desorption allowing to preserve insulating character and surface charges close to bulk ones Vacancy ordering (reconstruction) leading to low energy facets: SrTiO 3 (110) (2x6) reconstruction model Bottin et al SS (2004) H. Bando et al., JVST B 13 (1995) 1150

12 Compensation by non-stoichiometry in the surface layers Atom desorption allowing to preserve insulting character and surface charges close to bulk ones Charge compensation without ordering (magic triangles on ZnO(0001) Diebold et al : ZnO(0001)-Zn Sequence : Zn / O / Zn / O.. R 1 /(R 1 + R 2 ) ~ ¼ Triangular islands height = Zn-O double layer With oxygen edges 28 oxygens 21 zincs ( -7 Zn = - 28 / 4)

13 Modification of the surface charge by adsorption of charged species MgO smokes After 7 days in water Stabilization of MgO(111) by dissociative water adsorption OH - OH - OH - OH - Mg ++ Mg ++ Mg ++ Mg ++ O -- O -- O -- O -- Mg ++ Mg ++ Mg ++ Mg ++ O -- O -- O -- O -- H + H + H + H + Q = -1 Q = +2 Q = -2 Q = +2 Q = -2 Q = K R. Hacquart and J. Jupille, Chem. Phys. Lett. 439 (2007) K F. Finocchi and J. Goniakowski, Surf. Sci. 601 (2007) K

14 Summary I: All polar surfaces have to be compensated. The electrostatic condition cannot be by-passed (N ) And polarity compensation cannot be obtained by processes other than modification of charge density Polarity compensation may be achieved: by modification of the number of surface ions (non-stoichiometry), by adsorption of charged species by adsorption of species which get charged without an important energy cost by modification of the number of electrons in the surface layers: metallization or change of oxidation state This compensation is accompanied by structural and/or electronic characteristics, which are very different from what exists at non-polar surfaces. Consequences on adsorption and reactivity properties

15 Part Two: Polarity at the nano-scale The condition for polarity compensation has been established in the limit of infinite size At the nanoscale: N does not go to infinity there exists no «bulk» Can we still talk of polarity? What is the electrostatic behavior??? 1 ML MgO(111) J. Goniakowski, C. Noguera, L. Giordano, PRL 93, (2004); PRL 98, (2007). J. Phys. Condensed Matter 20 (2008) Rumpling (Å) Bulk-like R 1 /(R 1 +R 2 ) produces huge V and D

16 Nanometric MgO(111) layers of polar orientation structural stability First principles study of (1x1) unsupported films Local hexagonal symmetry in surface layers NaCl Structure ZnS Structure h-bn Structure The structural ground state is size dependent At low thickness, the most stable structure is not rocksalt

17 Structural phase diagram of bulk MgO Rocksalt (B1) ZnS (B3) h-bn (Bk) Wurtzite (B4) Non-polar 3.00 A 3.49 A CsCl (B2)

18 Structural stability of MgO(111) films h-bn (0001) structure Structure NaCl Structure ZnS neutral layers No dipole moment NON-POLAR Confirmed by simulations of deposited MgO/Ag(111) Structure h-bn Competition between : bulk cohesion energy which stabilizes rocksalt structure: E B =E NaCl -E hbn <0 surface energy which favors non-polar surfaces E s the electrostatic cost, associated to polarity, although finite, is high

19 Ag-supported MgO(111) ultra-thin films

20 Structural stability of MgO(111) films Same result for ZnO(0001) et NaCl(111) Surface X ray diffraction and STM

21 Structural stability of MgO(111) films Three generic behaviors for unsupported (1x1)-MgO(111) films rock-salt POLAR Compensated by metallization zinc blende POLAR Uncompensated but strong rumpling reduction h-bn NOT POLAR Whole structural transformation J. Goniakowski, C. Noguera, L. Giordano, PRL 93, (2004) PRL 98, (2007).

22 MgO(111)/Me(111) and FeO(111)/Me(111): charge transfer and rumpling on monolayers: ultimate size reduction E _ + An interfacial charge transfer takes place function of the metal electro-negativity e - Me MgO E _ film Me MgO E e - Me MgO A rumpling occurs in response to the interfacial charge transfer (opposite dipoles) + _ interface+ _ CT dipole e - + _ + film Rumpling dipole Identical result on MgO(100)/Me(100)!!! polarity is not relevant at this scale (both unsupported (100) and (111) layers are flat) similar electrostatic mechanism of competition between charge transfer and rumpling dipoles

23 FeO(111)/Pt111): charge transfer and rumpling Modulation of the film structure Fe O top fcc hcp Modulation of the surface potential observed experimentally is driven principally by the local atomic structure of the FeO layer: its rumpling and its adsorption height. Calculated map of averaged electrostatic potential above the surface. top Large interf. distance hcp/fcc Small interf. distance top fcc hcp Small charge transfer Small positive rumpling Larger charge transfer Large positive rumpling STM topographic image 4500 mv, 0.1 na L. Giordano, G. Pacchioni, J. Goniakowski, N. Nilius, E. D. L. Rienks, H.-J. Freund, Phys. Rev. B 76, (2007)

24 Conclusion Electrostatic effects strongly drive polar surface and thin film properties at all sized: At semi-infinite surfaces: it is the dominant interaction and polarity HAS to be compensated (N ) various ways of surface compensation: non-stoichiometry, change of oxydation state, charged species adsorption this yieds a wide range of structural and electronic configurations it allows to obtain templates for nano-object growth specific surface electronic states available for reactivity Ultra-thin «polar» films: electrostatic energy competes with other energy terms: elastic energy: efficient to decrease rumpling (uncompensated polarity) cohesion energy allows change of cristallographic structure to avoid polarity electronic excitation energy: case of non-stoichiometric layers «Polar» monolayers: no specific signature of polarity but competition between rumpling and charge transfer dipoles the interfacial dipole induces a rumpling this exists independently of the layer orientation

Institut des NanoSciences de Paris

Institut des NanoSciences de Paris CNRS / Photothèque Cyril Frésillon Institut des NanoSciences de Paris Polarity in low dimensions: MgO nano-ribbons on Au(111) J. Goniakowski, C. Noguera Institut des Nanosciences de Paris, CNRS & Université

More information

Metal Oxides Surfaces

Metal Oxides Surfaces Chapter 2 Metal xides Surfaces 2.1 Cobalt xides 1. Co Co (cobalt monoxide) with rocksalt structure (NaCl structure) consists of two interpenetrating fcc sublattices of Co 2+ and 2. These two sublattices

More information

NANOSTRUCTURED OXIDES: NEW MATERIALS FOR ENERGY AND ENVIRONMENT

NANOSTRUCTURED OXIDES: NEW MATERIALS FOR ENERGY AND ENVIRONMENT NANOSTRUCTURED OXIDES: NEW MATERIALS FOR ENERGY AND ENVIRONMENT Quantum Chemistry Laboratory Dipartimento di Scienza dei Materiali Università Milano-Bicocca http://www.mater.unimib.it/utenti/pacchioni

More information

Elementary mechanisms of homoepitaxial growth in MgO(001) : from the isolated adsorbates to the complete monolayer

Elementary mechanisms of homoepitaxial growth in MgO(001) : from the isolated adsorbates to the complete monolayer Elementary mechanisms of homoepitaxial growth in (001) : from the isolated adsorbates to the complete monolayer Second ABINIT WRKSHP, 10-12 May 2004 Grégory Geneste 1, Joseph Morillo 2, Fabio Finocchi

More information

The unusual properties supported gold: size, charging, support effects

The unusual properties supported gold: size, charging, support effects The unusual properties supported gold: size, charging, support effects Gianfranco Pacchioni Dipartimento di Scienza dei Materiali Università Milano-Bicocca, Milan (Italy) Part I Catalysis by supported

More information

Water clustering on nanostructured iron oxide films

Water clustering on nanostructured iron oxide films ARTICLE Received 12 May 2013 Accepted 22 May 2014 Published 30 Jun 2014 Water clustering on nanostructured iron oxide films Lindsay R. Merte1,2, Ralf Bechstein1, W. Guowen Peng3, Felix Rieboldt1, Carrie

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Bonding and structure of ceramic materials as compared with metals Chapter 12-1 Atomic Bonding in Ceramics Bonding: -- Can be ionic

More information

Atomic Arrangement. Primer in Materials Spring

Atomic Arrangement. Primer in Materials Spring Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PY2N20 Material Properties and Phase Diagrams Lecture 10 P. Stamenov, PhD School of Physics, TCD PY2N20-10 Modern CMOS pair structure Photolithographic Process CMOS Processing Steps Cu Damascene Process

More information

Ionic Bonding. Chem

Ionic Bonding. Chem Whereas the term covalent implies sharing of electrons between atoms, the term ionic indicates that electrons are taken from one atom by another. The nature of ionic bonding is very different than that

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Lecture 04 Structure of Ceramics 1 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000.

Lecture 04 Structure of Ceramics 1 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000. MME 467 Ceramics for Advanced Applications Lecture 04 Structure of Ceramics 1 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000. Prof. A. K. M. Bazlur Rashid Department of MME, BUET, Dhaka

More information

Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials

Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials Junguang Tao and Matthias Batzill Abstract In this chapter we present recent advances in the study of metal oxide surfaces and put

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Layer-by-layer epitaxial growth of polar FeO(111) thin films on MgO(111)

Layer-by-layer epitaxial growth of polar FeO(111) thin films on MgO(111) Layer-by-layer epitaxial growth of polar FeO(111) thin films on MgO(111) Jacek Gurgul 1, *, Ewa Młyńczak 1, Nika Spiridis 1, Józef Korecki 1,2 1 Jerzy Haber Institute of Catalysis and Surface Chemistry,

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Non-reactive metal-oxide interfaces: from model calculations towards realistic simulations

Non-reactive metal-oxide interfaces: from model calculations towards realistic simulations 7 SCIENTIFIC HIGHLIGHT OF THE MONTH Non-reactive metal-oxide interfaces: from model calculations towards realistic simulations Jacek Goniakowski a,b, Christine Mottet a, and Claudine Noguera b a Centre

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

Atomic Arrangement. Primer Materials For Science Teaching Spring

Atomic Arrangement. Primer Materials For Science Teaching Spring Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling

More information

Metallic and Ionic Structures and Bonding

Metallic and Ionic Structures and Bonding Metallic and Ionic Structures and Bonding Ionic compounds are formed between elements having an electronegativity difference of about 2.0 or greater. Simple ionic compounds are characterized by high melting

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected.

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. After completing this reading assignment and reviewing the intro video you

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film

CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film Surface Science 586 (2005) 174 182 www.elsevier.com/locate/susc CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film R. Meyer, D. Lahav, T. Schalow, M. Laurin, B. Brandt, S. Schauermann,

More information

First principles simulations of materials and processes in photocatalysis

First principles simulations of materials and processes in photocatalysis First principles simulations of materials and processes in photocatalysis Work with: Annabella Selloni Department of Chemistry, Princeton University Ulrich Aschauer, Jia Chen, Hongzhi Cheng, Cristiana

More information

Appendix 2A Indices of Planes and Directions in Hexagonal Crystals

Appendix 2A Indices of Planes and Directions in Hexagonal Crystals Appendix 2 Appendix 2A Indices of Planes and Directions in Hexagonal Crystals Figure 2A.1a shows a hexagonal unit cell defined by two equal unit cell lattice parameters a 1 and a 2 in the basal plane,

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Surface Defects on Natural MoS 2

Surface Defects on Natural MoS 2 Supporting Information: Surface Defects on Natural MoS 2 Rafik Addou 1*, Luigi Colombo 2, and Robert M. Wallace 1* 1 Department of Materials Science and Engineering, The University of Texas at Dallas,

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Structures of ceramic materials: How do they differ from those of metals? Point defects: How are they different from those in metals?

More information

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O Chap. AQUEOUS RXNS.1 WATER AS A SOLVENT Describe solution composition in terms of molarity Describe strong and weak electrolyte solutions, including acids and bases Use ionic equations to describe neutralization

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Electrostatic charging and redox effects in oxide heterostructures

Electrostatic charging and redox effects in oxide heterostructures Electrostatic charging and redox effects in oxide heterostructures Peter Littlewood 1,2,3 Nick Bristowe 3 & Emilio Artacho 3,6 Miguel Pruneda 4 and Massimiliano Stengel 5 1 Argonne National Laboratory

More information

Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor)

Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor) Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor) 7/2013 N.Laorodphan 1 Text books : 1. D.F. Sheiver, P.W. Atkins & C.H. Langford

More information

Chapter 5. Chemical reactions

Chapter 5. Chemical reactions Chapter 5 Chemical reactions Chemical equations CaO(s) + CO 2 (g) CaCO 3 (s) + CO(g) Chemical equation - representation of a chemical reaction; uses the symbols of the elements and formulae of the compounds

More information

List of publications. 56. X. Lin, N. Nilius*, J. Phys. Chem. C 112 (2008) Self assembly of MgPc molecules on FeO thin films

List of publications. 56. X. Lin, N. Nilius*, J. Phys. Chem. C 112 (2008) Self assembly of MgPc molecules on FeO thin films List of publications 2008 47. N. Nilius*, V. Ganduglia-Pirovano, V. Brazdova, M. Kulawik, J. Sauer, H-J. Freund, Phys. Rev. Lett. 100 (2008) 096802. Counting electrons transferred through a thin alumina

More information

Molecular Dynamics on the Angstrom Scale

Molecular Dynamics on the Angstrom Scale Probing Interface Reactions by STM: Molecular Dynamics on the Angstrom Scale Zhisheng Li Prof. Richard Osgood Laboratory for Light-Surface Interactions, Columbia University Outline Motivation: Why do we

More information

Excitations and Interactions

Excitations and Interactions Excitations and Interactions Magnon gases A7 A8 Spin physics A3 A5 A9 A10 A12 Quantum magnets A3 A8 B1 B2 B3 B4 B5 Synthesis B4 B6 B10 E Spectroscopy B11 Excitations and Interactions Charge-transfer induced

More information

Ultrathin films of transition-metal oxides (TMO) supported

Ultrathin films of transition-metal oxides (TMO) supported Interfaces Deutsche Ausgabe: DOI: 10.1002/ange.201710934 Internationale Ausgabe: DOI: 10.1002/anie.201710934 Carbon Monoxide Oxidation on Metal-Supported Monolayer Oxide Films: Establishing Which Interface

More information

Catalysis by supported metal clusters and model systems

Catalysis by supported metal clusters and model systems Catalysis by supported metal clusters and model systems Gianfranco Pacchioni Dipartimento di Scienza dei Materiali Università Milano-Bicocca Part I Catalysis by supported metal clusters and model systems

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Surface Characte i r i zat on LEED Photoemission Phot Linear optics Surface Characterization i LEED Photoemission Linear optics Surface characterization with electrons MPS M.P. Seah, WA W.A. Dench, Surf. Interf. Anal. 1 (1979) 2 LEED low energy electron diffraction De

More information

Madelung Constants of Nanoparticles and Nanosurfaces

Madelung Constants of Nanoparticles and Nanosurfaces J. Phys. Chem. C 2009, 113, 14793 14797 14793 Madelung Constants of Nanoparticles and Nanosurfaces A. D. Baker and M. D. Baker*, Department of Chemistry and Biochemistry, Queens College, City UniVersity

More information

Experimental and Quantum Investigation on Ice Surface Structure and Reactivity

Experimental and Quantum Investigation on Ice Surface Structure and Reactivity Experimental and Quantum Investigation on Ice Surface Structure and Reactivity A.Allouche J.P.Aycard F.Borget T.Chiavassa I.Couturier C.Manca F.Marinelli C.Martin S.Raunier P.Roubin Physique des Interactions

More information

4. Interpenetrating simple cubic

4. Interpenetrating simple cubic 2 1. The correct structure t of CsClCl crystal is 1. Simple cubic 2. Body centered cubic 3. Face centered cubic 4. Interpenetrating simple cubic If corner as well as the particle at the center are same

More information

Ceramic Materials. Chapter 2: Crystal Chemistry

Ceramic Materials. Chapter 2: Crystal Chemistry Ceramic Materials Chapter 2: Crystal Chemistry F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials frank.filser@mat.ethz.ch HS 2007 http://www.mineralienatlas.de/ http://webmineral.com http://www.uniterra.de

More information

Free energy sampling for electrochemical systems

Free energy sampling for electrochemical systems Free energy sampling for electrochemical systems Mira Todorova, Anoop Kishore Vatti, Suhyun Yoo and Jörg Neugebauer Department of Computational Materials Design Düsseldorf, Germany m.todorova@mpie.de IPAM,

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry ORGANIZING THEME/TOPIC UNIT 1: ATOMIC STRUCTURE Atomic Theory Electron configuration Periodic Trends Big Idea 1: The chemical

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Scanning Tunneling Microscopy: theory and examples

Scanning Tunneling Microscopy: theory and examples Scanning Tunneling Microscopy: theory and examples Jan Knudsen The MAX IV laboratory & Division of synchrotron radiation research K5-53 (Sljus) jan.knudsen@sljus.lu.se April 17, 018 http://www.sljus.lu.se/staff/rainer/spm.htm

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

Oxygen-Induced Transformations of an FeO(111) Film on Pt(111): A Combined DFT and STM Study

Oxygen-Induced Transformations of an FeO(111) Film on Pt(111): A Combined DFT and STM Study 21504 J. Phys. Chem. C 2010, 114, 21504 21509 Oxygen-Induced Transformations of an FeO(111) Film on Pt(111): A Combined DFT and STM Study L. Giordano,*, M. Lewandowski, I. M. N. Groot, Y.-N. Sun, J. Goniakowski,,

More information

Condensed Matter A Week 2: Crystal structure (II)

Condensed Matter A Week 2: Crystal structure (II) QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY Condensed Matter A Week : Crystal structure (II) References for crystal structure: Dove chapters 3; Sidebottom chapter. Last week we learnt

More information

Chem 241. Lecture 20. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 20. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 20 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Ellingham Diagram Inorganic Solids Unit Cell Fractional Coordinates Packing... 2 Inorganic

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Available online at Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

Available online at   Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Available online at www.sciencedirect.com Physics Procedia 15 (2011) 64 70 Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Michail Michailov Rostislaw Kaischew Institute of Physical

More information

Chemical Reactions REDOX

Chemical Reactions REDOX Chemical Reactions REDOX There are two types of Chemical Changes: 1. Reactions in which ions are being rearranged with no change in their oxidation states. METATHESIS. Reactions in which electrons are

More information

CHAPTER Describing Chemical Reactions Reactants Products. New substances produced The arrow means yields TYPES OF EQUATIONS.

CHAPTER Describing Chemical Reactions Reactants Products. New substances produced The arrow means yields TYPES OF EQUATIONS. CHAPTER 11 Chemical Reactions 11.1 Describing Chemical Reactions Reactants Products New substances produced The arrow means yields Where do Chemical Reactions occur? Everywhere!!! In living organisms In

More information

Computational Materials Science. Krishnendu Biswas CY03D0031

Computational Materials Science. Krishnendu Biswas CY03D0031 Computational Materials Science Krishnendu Biswas CY03D0031 Outline Introduction Fundamentals How to start Application examples Softwares Sophisticated methods Summary References 2 Introduction Uses computers

More information

Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110)

Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110) Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110) B E A T R I C E B O N A N N I D i p a r t i m e n t o d i F i s i c a, U n i v e r s i t a di R o m a T o r V e r g a t a

More information

Chapter 12: Structures of Ceramics

Chapter 12: Structures of Ceramics Chapter 12: Structures of Ceramics Outline Introduction Crystal structures Ceramic structure AX-type crystal structures A m X p -type A m B n X p - type Silicate ceramics Carbon Chapter 12 - Ceramics Two

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Electric displacement as the fundamental variable in electronic-structure calculations

Electric displacement as the fundamental variable in electronic-structure calculations Electric displacement as the fundamental variable in electronic-structure calculations CECAM - Centre Européen de Calcul Atomique et Moléculaire EPF Lausanne, Switzerland Conference UC Davis, 6/23/2009

More information

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Week 1 Course Outline Topic Introduction: Reactivity types, corrosion definition, atmospheric corrosion, classification, effects, costs,

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Report Form for Experiment 6: Solid State Structures

Report Form for Experiment 6: Solid State Structures Report Form for Experiment 6: Solid State Structures Note: Many of these questions will not make sense if you are not reading the accompanying lab handout. Station 1. Simple Cubic Lattice 1. How many unit

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Supporting Information for PbTiO 3

Supporting Information for PbTiO 3 Supporting Information for PbTiO 3 (001) Capped with ZnO(11 20): An Ab-Initio Study of Effect of Substrate Polarization on Interface Composition and CO 2 Dissociation Babatunde O. Alawode and Alexie M.

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

Why thermodynamics for materials?

Why thermodynamics for materials? Why thermodynamics for materials? Example p 2mkT T For = 300 K, = 1 atm ~ 10 8 site -1 s -1 p p Requires 10-12 atm to keep a clean surface clean; surface can also lose atoms Example Thermodynamic potentials

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces

Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces 6 February 2002 Chemical Physics Letters 352 (2002) 318 322 www.elsevier.com/locate/cplett Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces Y.D. Kim a, R.M. Lynden-Bell b, *, A. Alavi

More information

ffl Mineral surfaces are not static nor inert, they are dynamic and highly interactive with their environment. ffl Foundation of surface interactions

ffl Mineral surfaces are not static nor inert, they are dynamic and highly interactive with their environment. ffl Foundation of surface interactions Mineral-Fluid Interactions ffl All Global-scale phenomena begin with atomic scale dissolution reactions! ffl Mineral-fluid reactions control the dissolved load ffl which also control: quality of fresh

More information

Chapter 12: Chemistry of Solutions

Chapter 12: Chemistry of Solutions General Chemistry II (Chem 1412/LSC - Tomball) Chapter 12: Chemistry of Solutions I. Stoichiometry of Chemical Equations A. Mole Interpretation of an Equation B. Stoichiometry of a Chemical Reaction C.

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

8 Summary and outlook

8 Summary and outlook 91 8 Summary and outlook The main task of present work was to investigate the growth, the atomic and the electronic structures of Co oxide as well as Mn oxide films on Ag(001) by means of STM/STS at LT

More information

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT Spontaneous Oxidation of Ni Nanoclusters on MgO Monolayers Induced by Segregation of Interfacial Oxygen. M. Smerieri 1, J. Pal 1,2, L. Savio 1*, L. Vattuone 1,2, R. Ferrando 1,3, S. Tosoni 4, L. Giordano

More information

I. CONCEPT OF CHEMICAL KINETICS A. DESCRIBING RATES OF REACTION B. FACTORS AFFECTING RATES OF REACTION C. MEASUREMENT OF REACTION RATES

I. CONCEPT OF CHEMICAL KINETICS A. DESCRIBING RATES OF REACTION B. FACTORS AFFECTING RATES OF REACTION C. MEASUREMENT OF REACTION RATES GENERAL CHEMISTRY II CHAPTER 13: CHEMICAL KINETICS I. CONCEPT OF CHEMICAL KINETICS A. DESCRIBING RATES OF REACTION B. FACTORS AFFECTING RATES OF REACTION C. MEASUREMENT OF REACTION RATES II. RATE LAWS

More information

Surface Reactivity Enhancement by O 2 Dissociation on a. Single-layer MgO Film Deposited on Metal Substrate

Surface Reactivity Enhancement by O 2 Dissociation on a. Single-layer MgO Film Deposited on Metal Substrate Surface Reactivity Enhancement by O 2 Dissociation on a Single-layer MgO Film Deposited on Metal Substrate Cequn Li, Jing Fan, Bin Xu, and Hu Xu *, Department of Physics, South University of Science and

More information

Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material

Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material What is 25 mph in mm s 1? Unit conversions What is 1025 K in o F? Which is larger 1 ft 3 or 0.1 m 3? What is

More information

Chem 101 Review. Fall 2012

Chem 101 Review. Fall 2012 Chem 101 Review Fall 2012 Elements, Atoms, Ions Elements in nature symbols Constant composition chemical formula Dalton s atomic theory Atomic structure what makes up the atom ions isotopes Periodic table

More information

Chapter 12: Chemistry of Solutions

Chapter 12: Chemistry of Solutions CHEM 1412 LECTURE OUTLINE - Smr II 2017 - Ch 12-20 General Chemistry II (Chem 1412/LSC - Tomball) Chapter 12: Chemistry of Solutions I. Types of Solutions A. Definition of Solutions B. Components of A

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction Danielle A. Hansgen, Dionisios G. Vlachos, Jingguang G. Chen SUPPLEMENTARY INFORMATION.

More information

Manipulation of interface-induced Skyrmions studied with STM

Manipulation of interface-induced Skyrmions studied with STM Manipulation of interface-induced Skyrmions studied with STM Kirsten von Bergmann S. Heinze, M. Bode, P. Ferriani, E.Y. Vedmedenko, A. Kubetzka, O. Pietzsch and R. Wiesendanger Institute of Applied Physics,,

More information

Enhanced CO Oxidation on Oxide/Metal Interface: From Ultra-High Vacuum to Near-Atmospheric Pressures.

Enhanced CO Oxidation on Oxide/Metal Interface: From Ultra-High Vacuum to Near-Atmospheric Pressures. Enhanced CO Oxidation on Oxide/Metal Interface: From Ultra-High Vacuum to Near-Atmospheric Pressures. Qiushi Pan, 1 Xuefei Weng, 1,2 Mingshu Chen, 2 Livia Giordano, 3 Gianfranco Pacchioni, 3 Claudine Noguera,

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Self-organisation on noble metal surfaces Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Collaborations Alexandre Dmitriev, Nian Lin, Johannes Barth, Klaus Kern,... Thomas Greber, Jürg

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

A reaction in which a solid forms is called a precipitation reaction. Solid = precipitate

A reaction in which a solid forms is called a precipitation reaction. Solid = precipitate Chapter 7 Reactions in Aqueous Solutions 1 Section 7.1 Predicting Whether a Reaction Will Occur Four Driving Forces Favor Chemical Change 1. Formation of a solid 2. Formation of water 3. Transfer of electrons

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Journal of Theoretical Physics

Journal of Theoretical Physics 1 Journal of Theoretical Physics Founded and Edited by M. Apostol 79 (2002) ISSN 1453-4428 Metallic Clusters Deposited on Surfaces. Puszczykowo talk, 2002 M. Apostol Department of Theoretical Physics,

More information

Designing Graphene for Hydrogen Storage

Designing Graphene for Hydrogen Storage Designing Graphene for Hydrogen Storage Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Introduction to Hydrogen Storage Epitaxial Graphene Hydrogen Storage

More information