The Fundamentals of Materials Science

Size: px
Start display at page:

Download "The Fundamentals of Materials Science"

Transcription

1 The Fundamentals of Materials Science An Introduction to Materials Science hapter 14: Polymer Structures Shengjuan Li

2 ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ chemically? ow is the crystalline state in polymers different from that in metals and ceramics? ermann Staudinger( ) 1953, Nobel prize. for his discoveries in the field of macromolecular chemistry 2

3 Most (poly)-(mer): polymeric materials (many)-(parts) are composed of very large molecular chains with Polysidegroups mer of various atoms (O, l, etc.) or organic groups many such repeat as unit methyl( 甲基 ), ethyl( 乙基 ), or phenyl( 苯基 ) groups. repeat unit Polyethylene (PE) 聚乙烯 l repeat unit l l Poly(vinyl chloride) (PV) 聚氯乙烯 Polypropylene (PP) 聚丙烯 3 repeat unit 3 3 Adapted from Fig. 14.2, allister & Rethwisch 8e. 3

4 Originally natural polymers were used - Wood Rubber - otton Wool - Leather Silk Oldest known uses Rubber balls used by Incas( 印加人 ) Noah( 诺亚 ) used pitch (rosin) (a natural polymer, waterproof) for the ark 4

5 Most polymers are hydrocarbons i.e., made up of and Saturated hydrocarbons Each carbon singly bonded to four other atoms Example: Ethane, 2 6 5

6 烷属化合物 6

7 Double & triple bonds somewhat unstable can form new bonds Double bond found in ethylene( 乙烯 ) or ethene Triple bond found in acetylene( 乙炔 ) or ethyne

8 Isomerism two compounds with same chemical formula can have quite different structures for example: 8 18 normal-octane( 正辛烷 ) A component of gasoline = ,4-dimethylhexane ( 二甲基己烷 ) 3 ( 2 ) Gas chromatographic analysis standard 8

9 Free radical polymerization R + R initiation free radical 自由基 monomer (ethylene) R + R propagation dimer 二聚体 Initiator: example - benzoyl peroxide ( 过氧化苯甲酰 ) O O 2 O = 2 R R and R ---represent organic groups such as 3, 2 5, and 6 5 (methyl 甲基, ethyl 乙基, and phenyl 苯基 ) 9

10 Adapted from Fig. 14.1, allister & Rethwisch 8e. Note: polyethylene is a long-chain hydrocarbon - paraffin wax for candles is short polyethylene 石蜡 10

11 聚乙烯 聚氯乙烯 聚四氟乙烯 聚丙烯 11

12 聚苯乙烯 聚甲基丙烯酸甲酯 酚醛树脂 12

13 Bulk or ommodity Polymers (cont) 聚对苯二甲酸乙二醇酯 聚碳酸酯 13

14 Molecular weight, M: Mass of a mole of chains. Molecular weights for high polymers may be in excess of a million. Low M high M Not all chains in a polymer are of the same length i.e., there is a distribution of molecular weights

15 M n totalwt. of polymer total#of molecules Mn x i M i Mw w i M i M i x i w i = mean (middle) molecular weight of size range i = number fraction of chains in size range i = weight fraction of chains in size range i 15

16 Example: average mass of a class(polymer) Student Weight (molecular) mass (lb,pound) What is the average weight of the students( molecules) in this class(polymer): a) Based on the number fraction of students in each mass range? b) Based on the weight fraction of students in each mass range? 16

17 Solution: The first step is to sort the students into weight ranges. Using 40 lb ranges gives the following table: weight number of mean number alculate weight the number and weight range students weight fraction fraction of fraction students in each weight N i W i x i range as follows: w i mass (lb) mass (lb) x i N i w i N iw i N i N i W i For example: 0.294for the lb range x x w total number N i N i W i total weight

18 weight mean number weight range weight fraction fraction Mn Mw x i M i mass (lb) mass (lb) (0.2 x x x x x 380) =188 lb w i M i (0.117 x x x x x 380) = 218 lb Mw w i M i 218 lb 18

19 DP = average number of repeat units per chain ( ) DP = 6 DP M n m where m average molecular weight of repeat unit. for copolymers this is calculated as follows : m f i m i hain fraction mol. wt of repeat unit i EXAMPLE PROBLEM

20 secondary bonding Linear Branched ross-linked Network Adapted from Fig. 14.7, allister & Rethwisch 8e. 20

21 Molecular Shape (or onformation) chain bending and twisting are possible by rotation of carbon atoms around their chain bonds note: not necessary to break chain bonds to alter molecular shape Adapted from Fig. 14.5, allister & Rethwisch 8e. 21

22 Bends, twists, and kinks. The end-to-end distance of the polymer chain r:this distance is much smaller than the total chain length. Some of the mechanical and thermal characteristics of polymers are a function of the ability of chain segments to experience rotation in response to applied stresses or thermal vibrations. Rotational flexibility is dependent on repeat unit structure and chemistry. 22

23 onfigurations to change must break bonds Stereoisomerism( 立体异构现象 ) R R R or Stereoisomers are mirror images can t superimpose without breaking a bond B A D E E D A B mirror plane 23

24 Tacticity stereoregularity or spatial arrangement of R units along chain 24 R R R R isotactic all R groups on same side of chain R R R R syndiotactic R groups alternate sides 全同立构间同立构

25 无规立构 atactic R groups randomly positioned R R R R 25

26 全同立构 间同立构 无规立构 Tacticities of vinyl polymers( 乙烯基聚合物 ) 26

27 cis cis-isoprene ( 异戊二烯 ) (natural rubber) atom and 3 group on same side of chain trans trans-isoprene (gutta percha 马来乳胶 ) atom and 3 group on opposite sides of chain 27

28 two or more monomers polymerized together random A and B randomly positioned along chain alternating A and B alternate in polymer chain block large blocks of A units alternate with large blocks of B units (homopolymer subunits) graft chains of B units grafted onto A backbone A B random alternating block graft 28

29 Ordered atomic arrangements involving molecular chains rystal structures in terms of unit cells Example shown Polyethylene( 聚乙烯 ) unit cell Adapted from Fig , allister & Rethwisch 8e. 29

30 rystalline regions thin platelets with chain folds at faces hain folded structure 10 nm 30

31 Polymers rarely 100% crystalline Difficult for all regions of all chains to become aligned Degree of crystallinity expressed as % crystallinity. -- Some physical properties depend on % crystallinity. -- eat treating causes crystalline regions to grow and % crystallinity to increase. crystalline region amorphous region Adapted from Fig , allister 6e. (Fig is from.w. ayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1965.) 31

32 Electron micrograph multilayered single crystals (chain-folded layers) of polyethylene Single crystals only for slow and carefully controlled growth rates Adapted from Fig , allister & Rethwisch 8e. 32

33 Spherulite surface 缚结分子 Some semicrystalline polymers form spherulite structures Alternating chain-folded crystallites and amorphous regions Spherulite structure for relatively rapid growth rates Adapted from Fig , allister & Rethwisch 8e. 33

34 聚乙烯 ross-polarized light ( 正交偏光 )microscope used -- a maltese cross appears in each spherulite 马尔他十字 Adapted from Fig , allister & Rethwisch 8e. 34

35 Transmission electron micrograph(tem) showing the spherulite structure in a natural rubber specimen. hain-folded lamellar crystallites approximately 10 nm thick extend in radial directions from the center; they appear as white lines in the micrograph. 30,000. Spherulite structure in a natural rubber 35

36 Thermoplastics polymers: soften when heated (and eventually liquefy) and harden when cooled processes that are totally reversible and may be repeated. Examples :polyethylene 聚乙烯 (PE), polystyrene 聚苯乙烯 (PS), poly(ethylene terephthalate) 聚对苯二甲酸二乙酯 (PET),poly(vinyl chloride) 聚氯乙烯 (PV), polycarbonate 聚碳酸酯 (P),and,polyurethane 聚氨酯 (PU). Thermal Plastic Rubber On a molecular level, as the temperature is raised, TPR secondary bonding forces are diminished (by increased molecular motion) so that the relative movement of PET PU adjacent chains is facilitated when a stress is applied P PE 36

37 Thermosetting polymers are network polymers. They become permanently hard during their formation, and do not soften upon heating. Most of the crosslinked and network polymers, which include vulcanized rubbers 硫化橡胶, epoxy 环氧树脂, and phenolics 酚醛塑料 and some polyester resins 聚酯树脂, are thermosetting. Network polymers have covalent crosslinks between adjacent molecular chains. During heat treatments, these bonds anchor the chains together to resist the vibrational and rotational chain motions at high temperatures. Thus, the materials do not soften when heated. polyester resins Epoxy coating phenolics 37

38 38

39 全同立构 间同立构 不规则立构 39

40 Final exam: Monday, the week after next (April 24 th ), 9:55-11:55 First School Building, Room? Exam way: lose-book with no notes allowed. Blanks Glossary rystallographic orientations and planes Answer questions alculations Phase diagrams... 40

41 Adhere to every day, there will be progress! Try everything!!!!

Chapter 5: Structures of Polymers

Chapter 5: Structures of Polymers hapter 5: Structures of Polymers ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they

More information

Chapter 14: Polymer Structures

Chapter 14: Polymer Structures Chapter 14: Polymer Structures ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ

More information

POLYMER STRUCTURES ISSUES TO ADDRESS...

POLYMER STRUCTURES ISSUES TO ADDRESS... POLYMER STRUTURES ISSUES TO ADDRESS... What are the basic microstructural features? ow are polymer properties effected by molecular weight? ow do polymeric crystals accommodate the polymer chain? Melting

More information

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

PHYSICS OF SOLID POLYMERS

PHYSICS OF SOLID POLYMERS PYSIS OF SOLID POLYMERS Professor Goran Ungar WU E, Department of hemical and Biological Engineering Recommended texts: G. Strobl, The Physics of Polymers, Springer 996 (emphasis on physics) U. Gedde,

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2 Polymers Outline Introduction Molecular Structure and Configurations Polymer s synthesis Molecular weight of polymers Crystallinity You may think of polymers as being a relatively modern invention however

More information

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Polymer Classifications Mole. Wt. MSE 383, Unit 1-4 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Introduction Recall polymer (macromolecular) definition Covalent linkages

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

The functionality of a monomer is the number of binding sites that is/are present in that monomer. Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

Polymers and Composite Materials

Polymers and Composite Materials Polymers and omposite Materials Shibu G. Pillai hemical Engineering Department shibu.pillai@nirmauni.ac.in ontents lassification of Polymers Types of polymerization Elastomers/ Rubber Advanced Polymeric

More information

1 Chain Structure of Polymer

1 Chain Structure of Polymer Polymer Physics 高分子物理 1 hain Structure of Polymer 高分子的链结构 Structure and Property of Polymer 高分子结构与性能 1.1 高分子结构的 特点和分类 haracteristic and classification of polymer structure 1.1.1 高分子的结构特点 haracteristics

More information

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 On the basis of the structures presented in this chapter, sketch repeat unit

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Chemistry Class 12 th NCERT Solutions

Chemistry Class 12 th NCERT Solutions This e-book is prepared by the CBSE board exam experts of jagranjosh.com, an online educational portal of Dainik Jagran. The purpose of providing solutions for CBSE class 12 th Science and Mathematics

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Downloaded from Unit - 15 POLYMERS. Points to Remember

Downloaded from   Unit - 15 POLYMERS. Points to Remember Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

CHEMISTRY. 1 gallon equals 4 quarts, 12 inches equals 1 foot, Nomenclature 系统命名法. binary ionic compounds 二元离子化合物.

CHEMISTRY. 1 gallon equals 4 quarts, 12 inches equals 1 foot, Nomenclature 系统命名法. binary ionic compounds 二元离子化合物. CHEMISTRY Prefix Power Meaning Examples of measurements nano (n) 10 9 onebillionth nanometer (nm): wavelength of light micro (m) 10 6 onemillionth micrometer (mm): width of a hair milli (m) 10 3 onethousandth

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

Polymers. What is a polymer? C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC)

Polymers. What is a polymer? C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) Polymers What s a polymer? Poly many mer repeat unt repeat unt Polyethylene (PE) l repeat unt l l Polyvnyl chlorde (PV) 3 Polypropylene (PP) 3 repeat unt 3 Ancent Polymer story Orgnally many natural polymers

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Polymer ~ a large molecule built up by the constitutional repeating units(structural units)

Polymer ~ a large molecule built up by the constitutional repeating units(structural units) Polymer ~ a large molecule built up by the constitutional repeating units(structural units) Fundamental characteristics of polymers chemical structure and molecular mass distribution pattern ~ determine

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting Thermoplastic Homopolymer Condensation Polymer Natural POLYMERS Synthetic Addition Polymer Copolymer Thermosetting Polymers are very large covalent molecular substances containing tens of thousands of

More information

The vibrational spectroscopy of polymers

The vibrational spectroscopy of polymers D. I. BOWER Reader in Polymer Spectroscopy Interdisciplinary Research Centre in Polymer Science & Technology Department of Physics, University of Leeds W.F. MADDAMS Senior Visiting Fellow Department of

More information

(c) Dr. Payal B. Joshi

(c) Dr. Payal B. Joshi Polymer (Greek: poly=many; mer=part) Made up of large molecules characterized by repeating units called monomers held together by covalent bonds Functionality To act as monomer, it must have at least two

More information

Chapter 12 Alkenes and Alkynes

Chapter 12 Alkenes and Alkynes BR M 102 lass Notes hapter 12 Page 1 of 8 hapter 12 Alkenes and Alkynes * alkenes = double bonds * alkynes triple bonds * aromatics or arenes alternating double and single bonds such as in benzene * saturated

More information

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer.

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. 1.8 Polymers The General Structure of Polymers A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. Many biological molecules,

More information

Note: Brief explanation should be no more than 2 sentences.

Note: Brief explanation should be no more than 2 sentences. Her \Hmher UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2017 DURATION: 2 and /2 hrs MSE245 - HiS - Second Year - MSE Organic Material Chemistry & Processing

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 0.732. This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization CHAPTER 4 Additional Ziegler-Natta polymerization is a method of vinyl polymerization. It's important because it allows one to make polymers of specific tacticity. Ziegler-Natta is especially useful, because

More information

Lecture 25 POLYMERS. April 19, Chemistry 328N

Lecture 25 POLYMERS. April 19, Chemistry 328N Lecture 25 POLYMERS Wallace Carothers April 19, 2016 Paul Flory Wallace Hume Carothers 1896-1937 Carothers at Dupont 1.Commercializion of Nylon https://www.chemheritage.org/ Nylon was first used for fishing

More information

15NT303E Molecular spectroscopy and its Applications Fifth Semester, (Odd semester)

15NT303E Molecular spectroscopy and its Applications Fifth Semester, (Odd semester) . SRM University Faculty of Engineering and Technology Department of Physics and Nanotechnology 15NT303E Molecular spectroscopy and its Applications Fifth Semester, 2017-18 (Odd semester) tailed Session

More information

Top concepts Chapter : Polymers 1. Polymers are high molecular mass substance consisting of large number of repeating structural units. As polymers are single, giant molecules i.e. big size molecules,

More information

Organic Chemistry. for Students of Medicine and Biology 大学化学 III 和大学化学 III(2)

Organic Chemistry. for Students of Medicine and Biology 大学化学 III 和大学化学 III(2) Organic Chemistry for Students of Medicine and Biology 大学化学 III 和大学化学 III(2) March 4, 2015 Refining of petroleum, a major natural source of alkanes Chapter 4 Alkanes and Cycloalkanes ( 烷烃和环烷烃 ) March 3,

More information

Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

Can you imagine a world without plastics? Plastic soft drink containers,

Can you imagine a world without plastics? Plastic soft drink containers, 21 Polymer Parts R EA D I N G Can you imagine a world without plastics? Plastic soft drink containers, bags, pens, DVDs, and computer and television parts are just a few things made of plastics that would

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

STRUCTURE, ISOMERISM AND NOMENCLATURE OF ORGANIC COMPOUNDS

STRUCTURE, ISOMERISM AND NOMENCLATURE OF ORGANIC COMPOUNDS II STRUCTURE, ISOMERISM AND NOMENCLATURE OF ORGANIC COMPOUNDS I. OBJECTIVES AND BACKGROUND This exercise will give you an opportunity to experience the three-dimensional nature of molecules and to visualize

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

This name hints at how polymers are made

This name hints at how polymers are made Chapter- I Many + Parts This name hints at how polymers are made POLYMERS (the whole train) are made out of MONOMERS (individual cars of the train) joined together. repeat unit H H H H H H C C C C C

More information

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. INDEX Downloaded via 148.251.232.83 on June 15, 2018 at 06:15:49 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. A Absorption spectra of cellulose

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

Reactions of Alkenes and Alkynes

Reactions of Alkenes and Alkynes 5 2 2 2 2 2 2 2 Reactions of Alkenes and Alkynes APTER SUMMARY Addition is the characteristic reaction of alkenes and alkynes. Since the carbons of a double or triple bond do not have the maximum number

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

4 Organic and Biochemical Compounds

4 Organic and Biochemical Compounds APTER 6 4 Organic and Biochemical ompounds SETION The Structure of Matter KEY IDEAS As you read this section, keep these questions in mind: What is an organic compound? What is a polymer? What organic

More information

III. Molecular Structure Chapter Molecular Size Size & Shape

III. Molecular Structure Chapter Molecular Size Size & Shape III. Molecular Structure Chapter 3. 3. Molecular Size Size & Shape Molecular Structure (1)Molecular Size & Shape Size : molecular weight molecular weight distribution Shape : branching (2) Molecular Flexibility

More information

CHAPTER 5: STRUCTURE OF POLYMERS

CHAPTER 5: STRUCTURE OF POLYMERS APTER 5: STRUTURE PLYMERS "The time has come," the Walrus said, "To talk of many things: f shoes--and ships--and sealing-wax-- f cabbages--and kings--" Lewis arroll, Through the Looking Glass (1872) shoes,

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

Engineering Materials

Engineering Materials Engineering Materials A polymer is a large molecule composed of repeating structural units. poly- The word polymer is derived from the Greek words meaning "many"; and - meros meaning "part". Plastic and

More information

Combustion and thermal degradation of polymers

Combustion and thermal degradation of polymers Polymers and biomaterials - laboratory Combustion and thermal degradation of polymers Theoretical background dr Hanna Wilczura-Wachnik University of Warsaw Faculty of Chemistry Chemical Technology Division

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) MEQ, MQ, DEQuim, DQuim 2 nd semester 2017/2018, IST-UL Science and Technology of Polymers (2 nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 1 Block 1 Fundamentals of Macromolecular

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

Olle Inganäs: Polymers structure and dynamics. Polymer physics

Olle Inganäs: Polymers structure and dynamics. Polymer physics Polymer physics Polymers are macromolecules formed by many identical monomers, connected through covalent bonds, to make a linear chain of mers a polymer. The length of the chain specifies the weight of

More information

Lord Todd,1980. Ethylene Polyethylene -CH 2. -] n. = C H 2 Magic? CH 2

Lord Todd,1980. Ethylene Polyethylene -CH 2. -] n. = C H 2 Magic? CH 2 Polymer Science and Engineering "I am inclined to think that the development of polymerization is perhaps the biggest thing that chemistry has done, where it has had the biggest effect on everyday life

More information

Name Date Class FUNCTIONAL GROUPS. SECTION 23.1 INTRODUCTION TO FUNCTIONAL GROUPS (pages )

Name Date Class FUNCTIONAL GROUPS. SECTION 23.1 INTRODUCTION TO FUNCTIONAL GROUPS (pages ) Name Date lass 23 FUNTINAL GRUPS SETIN 23.1 INTRDUTIN T FUNTINAL GRUPS (pages 725 729 This section defines a functional group and gives several examples. It also describes halocarbons and the substitution

More information

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics Fairfax Science Olympiad Tryouts 2018 Name: _ Score: /75 MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics In questions 1-6, draw a diagram of the named functional group. Use R to denote the

More information

Electronic materials and components-polymer types

Electronic materials and components-polymer types Introduction Electronic materials and components-polymer types Polymer science is a broad field that includes many types of materials which incorporate long chain structures with many repeated units. One

More information

Module-2. Atomic Structures, Interatomic Bonding and Structure of Crystalline Solids

Module-2. Atomic Structures, Interatomic Bonding and Structure of Crystalline Solids Module-2 Atomic Structures, Interatomic Bonding and Structure of Crystalline Solids Contents 1) Atomic Structure and Atomic bonding in solids 2) Crystal structures, Crystalline and Noncrystalline materials

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions AS 91165 Demonstrate understanding of the properties of selected organic compounds Collated Polymer questions (2017) (a) Polyvinyl chloride (polychloroethene) is often used to make artificial leather.

More information

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into.

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. 5.7: Polymers Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. Polymers are large molecules that are made by linking together

More information

Lecture 13 Metabolic Diversity 微生物代谢的多样性

Lecture 13 Metabolic Diversity 微生物代谢的多样性 Lecture 13 Metabolic Diversity 微生物代谢的多样性 Chapter 17 in BROCK BIOLOGY OF MICROORGANISMS School of Life Science and Biotechnology Shanghai Jiao Tong University http://micro.sjtu.edu.cn I. The Phototrophic

More information

Section 1 Compounds and Molecules

Section 1 Compounds and Molecules CHAPTER OUTLINE Section 1 Compounds and Molecules Key Idea questions > What holds a compound together? > How can the structure of chemical compounds be shown? > What determines the properties of a compound?

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics David I. Bower Formerly at the University of Leeds (CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xii xv 1 Introduction 1 1.1 Polymers and the scope of the book

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Advanced Polymer Chemistry

Advanced Polymer Chemistry Advanced Polymer Chemistry 1) George Odian, Principles of Polymerization, 4 th Edition, Wiley- Interscience, 2004. 2) 投影片講義 http://www.che.ncku.edu.tw/facultyweb/cheny/index.php?dir=/adv anced Polymer

More information

POLYMER CHEMISTRY Lecture/Lession Plan -4

POLYMER CHEMISTRY Lecture/Lession Plan -4 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -4 POLYMER CHEMISTRY 6.1 Rubber Rubber is a natural elastomeric polymer whose monomer unit is cis-2-methyle-1,3-butadiene. Raw rubber material is extracted

More information

Advanced Polymer Physics 高等高分子物理

Advanced Polymer Physics 高等高分子物理 1. Graduate-level course 2. Contents are copyrighted ( 有版權 ). Do not use outside class room purposes without permission. Advanced Polymer Physics 高等高分子物理 Chapter 1 An Introduction to Polymer Science Lecture

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Alkanes and Cycloalkanes Families of Organic Compounds Organic compounds can be grouped into families by their common structural features We shall survey the nature of the compounds in a tour of the families

More information

Macromolecular chemistry S112003

Macromolecular chemistry S112003 Supporting material for students registered to subject: Macromolecular chemistry S112003 Teacher: Jan Merna, Department of Polymers, Institute of Chemical Technology,Prague Lecture authored by Jan Merna

More information

Chapter 22. Organic and Biological Molecules

Chapter 22. Organic and Biological Molecules hapter 22 Organic and Biological Molecules hapter 22 Preview Organic and Biological Molecules Alkanes: Saturated ydrocarbons Isomerism, Nomenclature, Reactions of alkanes, yclic alkanes Alkenes, Alkynes,

More information

Presentation shared files at:

Presentation shared files at: Forrest Schultz, PhD Wisconsin State Science Olympiad Director Director, 2016 Science Olympiad National Tournament Chemistry National Rules Committee Professor, Department of Chemistry and Physics University

More information

Chapter 27: Structure and Bonding

Chapter 27: Structure and Bonding Chapter 27: Structure and Bonding 1 Atomic Orbitals: Wave functions that represent the probability of finding electrons in a specific region of space s, p, d, f orbitals In organic chemistry, need to concentrate

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

CHEMISTRY. Organic Polymer [Macromoleculers] weight and are made up of a great many simpler units identical to each other

CHEMISTRY. Organic Polymer [Macromoleculers] weight and are made up of a great many simpler units identical to each other 1 EMISTRY rganic Polymer [Macromoleculers] By Dr. B.. Dixit. Definitions : (a) Monomer : The individual small molecules from which the polymer is formed are known as monomers. (b) Polymer : Polymers are

More information

Covalent Compounds 1 of 30 Boardworks Ltd 2016

Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 2 of 30 Boardworks Ltd 2016 What are covalent bonds? 3 of 30 Boardworks Ltd 2016 When atoms share pairs of electrons, they form covalent

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Welcome to CH367L and CH392N Macromolecular Chemistry Introduction Syllabus Chemistry 367L / 392N Graduate Presentations Questions Some History Advice given to Dustin Hoffman's

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 26, 2016 Midterm Exam III Where: WEL 1.316!! When: Wed., May 4 th, 7:00 9:00 PM What: Covers lectures through 4/28 Review Session: Mon & Tues. 5-6 PM Monday PAI

More information

HIGHER 1 Polymers. Polymers are giant molecules made by linking together smaller molecules called monomers.

HIGHER 1 Polymers. Polymers are giant molecules made by linking together smaller molecules called monomers. IGER 1 Polymers PLYMERS Polymers are giant molecules made by linking together smaller molecules called monomers. The reaction is called polymerisation. The linking can be done in two ways: by addition

More information