Reactions of Alkenes and Alkynes

Size: px
Start display at page:

Download "Reactions of Alkenes and Alkynes"

Transcription

1 Reactions of Alkenes and Alkynes APTER SUMMARY Addition is the characteristic reaction of alkenes and alkynes. Since the carbons of a double or triple bond do not have the maximum number of attached atoms, they can add additional groups or atoms. Double bonds undergo addition once and triple bonds can undergo addition twice. The reactivity of alkenes and alkynes is due to the presence of pi-bonds. Unlike sigma bonds, pi-bonds are directed away from the carbons; the electrons are loosely held, very accessible, and quite attractive electron-deficient species (electrophiles) seeking an electron source. 105

2 hapter 5 Reactions of Alkenes and Alkynes 5.1 Addition Reactions of Alkenes A. General Reaction Equation for Addition to Alkenes Alkenes add hydrogen halides, halogens (chlorine and bromine), water (sulfuric acid catalyst), and hydrogen (metal catalyst). ne part of the adding reagent adds to each carbon of the double bond; the double bond becomes a single bond during the process. B. Mechanism of Electrophilic Addition With the exception of hydrogenation, the addition reactions of alkenes presented in this text occur by an electrophilic addition mechanism. The electrophile ( or X ) attacks the electron-rich pi-bond of the double bond. The pi electrons are used to form a single bond between the carbon and attacking species; the other carbon becomes a carbocation. The carbocation is then neutralized by halide ion or water; the addition is complete. In bromination reactions, the bromine adds in a trans fashion.. rientation of Addition When an unsymmetrical reagent adds to an unsymmetrical alkene, two addition products are possible. When the electrophile bonds, it can bond to either carbon of the carbon-carbon double bond to form two different carbocations. The more stable carbocation is favored and the addition product resulting from the more stable carbocation intermediate is the predominant product. The order of carbocation stability: 3 o > 2 o > 1 o > methyl. A tertiary carbocation has three bonded alkyl groups. Secondary carbocations have two alkyl groups bonded directly to the carbocation carbon and in primary carbocations there is only one. Since alkyl groups are electron-releasing groups they stabilize the positive carbocation. Tertiary carbocations have the greatest number of alkyl groups and are the most stable. Reactions in which one product predominates are termed regioselective and those in which one is formed exclusively are regiospecific. The electrophilic addition reactions in this chapter are 106

3 Reactions of Alkenes and Alkynes hapter 5 usually regioselective and the rule for predicting the predominant product is known as Markovnikov's rule. 5.2 Addition Reactions of Alkynes A. General Reaction Equation for Addition to Alkynes Alkynes add hydrogen, hydrogen halides, and halogens (chlorine and bromine). They can add one mole of reagent to produce a double bond or two moles to form a single bond. B. Mechanism of atalytic ydrogenation of Alkenes and Alkynes ydrogenation of alkenes and alkynes is accomplished in the presence of a metal catalyst which attracts both the hydrogen and hydrocarbon to its surface. As a result of the reactants being adsorbed onto the same surface, the reaction occurs with cis addition.. Electrophilic Addition Mechanism for Alkynes The mechanism of electrophilic addition to alkynes is the same as with alkenes. rientation of addition of unsymmetrical reagents to unsymmetrical alkynes is determined by the stability of the intermediate carbocation. D. Addition of Water to Alkynes Alkynes add water to form aldehydes and ketones. 5.3 Addition Polymers A polymer is a giant molecule composed of a repeating structural unit called a monomer. Addition polymers result from the addition of alkene molecules to one another. The polymerization occurs by cationic, freeradical, and anionic reaction mechanisms. Examples of addition polymers include polyethylene, polystyrene, PV, and Teflon. 107

4 hapter 5 Reactions of Alkenes and Alkynes A. ationic Polymerization by Electrophilic Addition In cationic polymerization, an electrophile (such as ) adds to the carbon-carbon double bond of a monomer to form the more stable carbocation. The reaction conditions are such that there is relatively little electrophile and corresponding carbocation neutralizing species. As a result, the carbocation attacks the double bond of another monomer molecule producing another carbocation that carries on the process until the growing chain is eventually neutralized. B. Polymerization by a Free-Radical hain Reaction In this mechanism of polymerization, a small amount of free radicals is generated. These attack the carbon-carbon double bonds of monomer molecules, bond to one carbon, and produce the more stable free radical; this is the initiation step. Since few chains are initiated, the free radical attacks yet another monomer, adds to the double bond, and forms another free radical that, in turn, continues the process; this is propagation. Eventually two developing free radical chains may bond together and terminate the chain reaction. NNETINS 5.1 Serendipity in the Discovery of Polymers NNETINS 5.2 Recycling Plastics 5.4 Electrophilic Addition to onjugated Dienes onjugated dienes are compounds in which two carbon-carbon double bonds are separated by a single bond. Upon treatment with adding reagents, conjugated dienes undergo 1,2-addition, in which the reagent adds to one of the double bonds and 1,4-addition in which the reagent adds to the first and fourth carbons with the remaining double bond shifting between carbons 2 and 3. This is caused by the formation of an allylic intermediate such as an allylic carbocation. An allylic carbocation is one in which the carbocation carbon is attached directly to a carbon-carbon double bond. Such a carbocation engages in resonance allowing neutralization at the second and fourth carbons of the original conjugated diene. 108

5 Reactions of Alkenes and Alkynes hapter 5 Resonance forms are classical structures used to describe a more complex system; they do not actually exist. The species is more accurately described by a resonance hybrid which can be imagined as an average of the resonance forms. Resonance always stabilizes a system. Each atom in a resonance stabilized system has a p-orbital. Allylic carbocations are stabilized by delocalization of the positive charge. 5.5 Resonance Stabilization of Reactive Intermediates Allylic carbocations, free radicals, and carbanions are resonance stabilized. In each case the stabilization is the result of delocalization of the positive or negative charge or the free radical. Resonance forms differ in the position of electrons and charge but not atoms. Every atom in an allylic carbocation, free radical, or carbanion possesses a p-orbital and the pielectrons and charges or unpaired electrons are delocalized throughout these orbitals. 5.6 Natural and Synthetic Rubber Natural rubber is produced from a milky-white colloidal latex found in the rubber tree. It is a polymeric terpene with isoprene being the recurring polymeric unit. Polyisoprene rubber can also be produced synthetically by the addition polymerization of isoprene by 1,4-addition. ther synthetic rubbers include SBR (styrene-butadiene rubber), polybutadiene, and neoprene. Rubber is strengthened, hardened, and made more elastic by a process called vulcanization in which sulfur bridges form links within the polymeric chains. These links become strained when the rubber is stretched and when released the rubber assumes its original conformation. NNETINS 5.3 Terpenes 5.7 xidation of Alkenes A. ydroxylation with Potassium Permanganate Treatment of alkenes with potassium permanganate produces 1,2- diols in a cis configuration. 109

6 hapter 5 Reactions of Alkenes and Alkynes B. zonolysis zonolysis cleaves the carbon-carbon double bond of an alkene to form aldehydes and ketones. 5.8 Acidity of Terminal Alkynes Terminal alkynes have weakly acidic hydrogens that can be abstracted by strong bases such as sodium amide. NNETINS 5.4 The Treatment of Atherosclerosis SLUTINS T PRBLEMS 5.1 Addition and Elimination Reactions 2 2 K 2 2 Elimination K Addition S Elimination S Addition 110

7 Reactions of Alkenes and Alkynes hapter Addition Reactions of Alkenes a) Pt b) c) d) S Addition Reactions or Electrophilic Addition Mechanism

8 hapter 5 Reactions of Alkenes and Alkynes 5.5 alogenation of Alkenes alogenation: Electrophilic Addition ydration of Alkenes S

9 Reactions of Alkenes and Alkynes hapter arbocations Arranged most to least stable: > > 3 2 and most stable 5.9 rientation of Addition more stable 3 carbocation predominant product less stable 1 carbocation more stable 3 carbocation 2-3 predominant product less stable 2 carbocation

10 hapter 5 Reactions of Alkenes and Alkynes 5.10 Addition Reactions of Alkynes (c) (d) Ni ydrogenation of Alkynes 1 2 Pt cis addition Pt ydrogenation of Alkenes 2 Pt 2 Pt

11 Reactions of Alkenes and Alkynes hapter Electrophilic Addition to Alkynes Reaction Mechanism adds to triple bond and then to the resulting double bond In each case the more stable carbocation is formed... ::.. _.. _ :: ydration of Alkynes S 4 gs enol ketone 5.15 ationic Polymerization of Propene A etc. etc A n 115

12 hapter 5 Reactions of Alkenes and Alkynes 5.16 Free Radical Polymerization of 1,1-Dichloroethene R.. 2 RR R. R. R R... etc. etc. R 2 n R ,2 and 1,4 Addition ,2 addition 2 2 1,4 addition 2 1,2 addition 1,4 addition 116

13 Reactions of Alkenes and Alkynes hapter Electrophilic Addition Mechanism: 1,2 and 1,4 Addition Reaction Mechanism STEP 1: Electrophile, is attracted to pi-cloud and uses two pi-electrons to bond. More stable allylic carbocation results STEP 2: The allylic carbocation is resonance stabilized. Resonance forms show the two places it can be neutralized by bromide ion. 2 2 Resonance Forms ,2 addition 1,4 addition Reaction Mechanism STEP 1: Electrophile, is attracted to pi-cloud and uses two pi-electrons to bond. More stable allylic carbocation results. STEP 2: The allylic carbocation is resonance stabilized. Resonance forms show the two places it can be neutralized by bromide ion. Resonance Forms - 1,2 addition 1,4 addition 117

14 hapter 5 Reactions of Alkenes and Alkynes 5.19 Resonance Forms, ybrids, and Bonding Pictures (c) (d) Terpenes monocyclic monoterpene (c) bicyclic sesquiterpene (e) tricyclic diterpene acyclic monoterpene (d) acyclic tetraterpene (f) monocyclic monoterpene (g) acyclic monoterpene 118

15 Reactions of Alkenes and Alkynes hapter Reaction of Alkenes with Potassium Permanganate 3 2 KMn KMn zonolysis Each double bond is cleaved; the carbons become carbon-oxygen double bonds = Zn == 2 = Zn c) 3 2 Zn zonolysis Whereever you see a carbon-oxygen double bond, there was originally a carbon-carbon double bond. Since there are only two carbon-oxygen double bonds, they must have been involved in the carbon-carbon double bond. 3 = Acidity of Terminal Alkynes Na NaN 2 N 3 119

16 hapter 5 Reactions of Alkenes and Alkynes 5.25 Addition Reactions of Alkenes: Section ( 2 ) (c) 3 3 (d) (e) (f) I (g) 2 2 (h) Addition Reactions of Alkynes: Section 5.2 a) 3 2 b) c) (d) (e) (f) Reaction Mechanisms - Electrophilic Addition to Alkenes: Section 5.1B The carbocation in this case is actually a bromonium ion

17 Reactions of Alkenes and Alkynes hapter 5 3 (c) (d) Reaction Mechanisms - Electrophilic Addition to Alkynes Section omination: Section 5.1B2 omination involves cis addition due to an intermediate bromonium ion ydrogenation: Section 5.2B Pd Pd

18 hapter 5 Reactions of Alkenes and Alkynes 5.31 Reaction of Alkenes with Potassium Permanganate KMn 4 / ydration of Alkynes: Section 5.2D S 4 gs S 4 gs Electrophilic Addition to onjugated Dienes: Section resonance forms ,2 addition 1,4 addition 122

19 Reactions of Alkenes and Alkynes hapter 5 The electrophile resonance forms attacks one of the double bonds to - form an allylic carbocation that is described by two resonance forms. Neutralization forms two products. 1,2 addition 1,4 addition 5.34 Resonance Forms and Resonance ybrids: Section 5.5 Resonance forms Resonance hybrid _.. : 2 :.. : _ 2.. _.. : 3 3 (c) 3 3 (d) 123

20 hapter 5 Reactions of Alkenes and Alkynes 5.35 Resonance Forms and Resonance ybrids: Section Addition Polymers: Section 5.3 a) 2 F 2 n b) 2 n 5.37 xidation of Alkenes: Section 5.7A 3 = 2 KMn KMn zonolysis: Section 5.7B Each place there is a carbon-carbon double bond it cleaves and each carbon becomes a carbon-oxygen double bond. 124

21 Reactions of Alkenes and Alkynes hapter 5 3 a) b) 3 3 c) zonolysis: Section 5.7B Since all of the examples are hydrocarbons, each place you see a carbonoxygen double bond, you are looking at a carbon that originally was involved in a carbon-carbon double bond (c) (d) Acidity of Terminal Alkynes: Section NaN 2 3 Na N NaN Na N 3 (c) 3 2 No Reaction 3 NaN 2 Not a terminal alkyne 5.41 Synthesis: Sections 4.5, 5.1, 5.2 a) A = or b) d) B = D = 3 2 X (X =,, I) e) E = c) = F = 125

22 hapter 5 Reactions of Alkenes and Alkynes f) G = 3 3 or X = X X =,, I 3 2 g) I = 3 3 J = K = ydration: Section 5.1 Pay attention to orientation of addition as explained in Section = Reaction Mechanism: Section :.. :.. - : : 5.44 ydrogenation: Section 5.2B is addition occurs. Pt Pt Reactions of Alkynes: Section

23 Reactions of Alkenes and Alkynes hapter (c) Units of Unsaturation: Sections 3.6, 5.1A.2, 5.2A 1-Buten-3-yne has one triple bond and one double bond. This represents three units of unsaturation. ne mole of the compound will add three moles of bromine, one mole to the double bond and two to the triple bond Units of Unsaturation: Sections 3.6, 5.1A.4, 5.2A-B Since the compound is non-cyclic all the units of unsaturation must be in the form of carbon-carbon double bonds or triple bonds. Four mole-equivalents of hydrogen are consumed so there must be four units of unsaturation: four double bonds, two triple bonds, or one triple and two double bonds. starting material hydrogenation product ,4 Addition: Section Allylic arbocations: Section The three resonance forms show where this resonance stabilized carbocation can be neutralized. 127

24 hapter 5 Reactions of Alkenes and Alkynes resonance forms products 3 =-= =-= =--= =--= =-= =-= 2 3 ATIVITIES WIT MLEULAR MDELS 1. Make molecular models of ethene and ethyne. Now convert these to the products formed when bromine ( 2 ) adds to the double bonds and triple bonds to form single bonds. ow many bromines are needed to convert a double bond to a single bond and a triple bond to a single bond? ow many bromines are in your products and to which carbons did they add?

25 Reactions of Alkenes and Alkynes hapter 5 2. Make molecular models of 1-butene and 2-butene (cis or trans). Make models of the one product formed from the addition of to 2-butene and the two products formed from 1-butene. Why is there a difference in the number of addition products. Which product predominates in the addition to 1-butene? major product 3. Make a model of 2-butyne and the product of cis addition of hydrogen. 2 Pt 129

26 hapter 5 Reactions of Alkenes and Alkynes 4. Make a model of cyclopentene and the product of trans addition of bromine

Electrophilic Addition

Electrophilic Addition . Reactivity of = Electrons in pi bond are loosely held. Electrophiles are attracted to the pi electrons. arbocation intermediate forms. Nucleophile adds to the carbocation. Net result is addition to the

More information

Topic 2 Alkenes and alkynes

Topic 2 Alkenes and alkynes Topic 2 Alkenes and alkynes lassification of rganic Reactions Four basic types of organic reaction Acid base reactions Substitution reactions Addition elimination reactions xidation reduction reactions

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Reactivity of C=C. Chapter 8 Reactions of Alkenes. Types of Additions. Electrophilic Addition. Addition of HX (1) Addition of HX (2)

Reactivity of C=C. Chapter 8 Reactions of Alkenes. Types of Additions. Electrophilic Addition. Addition of HX (1) Addition of HX (2) rganic hemistry, 5 th Edition L. G. Wade, Jr. hapter 8 Reactions of Alkenes Jo Blackburn Richland ollege, allas, TX allas ounty ommunity ollege istrict 2003, Prentice all Reactivity of = Electrons in pi

More information

Chapter 9 Alkynes. Introduction

Chapter 9 Alkynes. Introduction hapter 9 Alkynes Introduction Alkynes contain a triple bond. General formula is n 2n-2. Two elements of unsaturation for each triple bond. MST reactions are like alkenes: addition and oxidation. Some reactions

More information

ALDEHYDES AND KETONES

ALDEHYDES AND KETONES 11 R R R ALDEYDES AND KETNES APTER SUMMARY 111 Structure of Aldehydes and Ketones Aldehydes and ketones both have a carbonyl group (carbonoxygen double bond); aldehydes have at least one carbon bonded

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes hapter 8 Alkenes and Alkynes II: Addition eactions Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The carbocation

More information

Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy Conjugated Dienes and Ultraviolet Spectroscopy Key Words Conjugated Diene Resonance Structures Dienophiles Concerted Reaction Pericyclic Reaction Cycloaddition Reaction Bridged Bicyclic Compound Cyclic

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions "

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The π

More information

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16 Chapter 3 Alkenes and Alkynes Excluded sections 3.15&3.16 3.1 Definition and Classification Alkene: a hydrocarbon that contains one or more carboncarbon double bonds. ethylene is the simplest alkene. Alkyne:

More information

Chem 261 Nov 20, Conjugated = separated by a single bond from a double bond

Chem 261 Nov 20, Conjugated = separated by a single bond from a double bond 7 hem 6 Nov 0, 07 REVIEW: onjugated = separated by a single bond from a double bond Examples of onjugated Systems. Double bonds ( or more). Allylic ations. Allylic Anions. Allylic Radicals REVIEW: Molecules

More information

sp 2 geometry tetrahedral trigonal planar linear ΔH C-C ΔH C-H % s character pk a 464 KJ/mol 33% 44

sp 2 geometry tetrahedral trigonal planar linear ΔH C-C ΔH C-H % s character pk a 464 KJ/mol 33% 44 hapter 10: Alkynes 10.1 Introduction to Alkynes ~ 111 ~ 122 1.06 Å 180 1.1 Å ~ 116 1.08 Å 1.54 Å 1.34 Å 1.20 Å hybridization of sp 3 sp 2 sp geometry tetrahedral trigonal planar linear 368 KJ/mol 632 KJ/mol

More information

Chemistry 2000 Lecture 18: Reactions of organic compounds

Chemistry 2000 Lecture 18: Reactions of organic compounds hemistry 2000 Lecture 18: Reactions of organic compounds Marc R. Roussel March 6, 2018 Marc R. Roussel Reactions of organic compounds March 6, 2018 1 / 27 Reactions of organic compounds Organic chemists

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

Chapter 7: Alkene reactions conversion to new functional groups

Chapter 7: Alkene reactions conversion to new functional groups hapter 7: Alkene reactions conversion to new functional groups Preparation of alkenes: two common elimination reactions 1. Dehydration of alcohols Dehydration is a common biochemical reaction in carbohydrate

More information

ORGANIC CHEMISTRY- 1

ORGANIC CHEMISTRY- 1 ORGANIC CEMISTRY- 1 ALKENES Alkenes are also called Olefins (C n 2n ) unsaturated hydrocarbons. Alkenes occur abundantly in nature. Ethylene ( 2 C=C 2 ) is a plant hormone that induces ripening in fruit.

More information

5. Reactions of Alkenes (text )

5. Reactions of Alkenes (text ) 2009, Department of hemistry, The University of Western Ontario 5.1 5. Reactions of Alkenes (text 5.1 5.5) A. Addition Reactions In hapter 4, we saw that π bonds have electron density on two sides of the

More information

Chapter 3. Alkenes And Alkynes

Chapter 3. Alkenes And Alkynes Chapter 3 Alkenes And Alkynes Alkenes ydrocarbons containing double bonds C C double bond the functional group center of reactivity Molecular Formula of Alkene Acyclic alkene: C n 2n Cyclic alkene: C n

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons hem101 General hemistry Lecture 11 Unsaturated ydrocarbons Unsaturated ydrocarbons ontain one or more double or triple carbon-carbon bond. University of Wisconsin-Eau laire hem101 - Lecture 11 2 Unsaturated

More information

CHEMISTRY Topic #4: Electrophilic Addition Reactions of Alkenes and Alkynes Fall 2018 Dr. Susan Findlay

CHEMISTRY Topic #4: Electrophilic Addition Reactions of Alkenes and Alkynes Fall 2018 Dr. Susan Findlay EMISTRY 2600 Topic #4: Electrophilic Addition Reactions of Alkenes and Alkynes Fall 2018 Dr. Susan Findlay rganic Reactions (EM 2500 Review) Most reactions in organic chemistry fall into one (or more)

More information

Dr. Dina akhotmah-232 1

Dr. Dina akhotmah-232 1 Dr. Dina akhotmah-232 1 Chemistry of polyfunction 1. Types of carbon atom Dr. Dina akhotmah-232 2 Classification of multiple bonds of polyunsaturated compounds Dr. Dina akhotmah-232 3 Organic chemistry,

More information

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group: Next Up: Addition of, : The next two reactions are the Markovnikov and non-markovnikov additions of and to an alkyne But you will not see alcohols form in this reaction! When and add to the alkyne, an

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes Chapter 8 Alkenes and Alkynes II: Addition Reactions Generally the reaction is exothermic because one p and one s bond are converted to two s bonds Alkenes are electron rich The carbocation

More information

Chapter 12 Alkenes and Alkynes

Chapter 12 Alkenes and Alkynes BR M 102 lass Notes hapter 12 Page 1 of 8 hapter 12 Alkenes and Alkynes * alkenes = double bonds * alkynes triple bonds * aromatics or arenes alternating double and single bonds such as in benzene * saturated

More information

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups.

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups. Organic Chemistry - Problem Drill 10: Alkenes, Alkynes, and Dienes No. 1 of 10 1. What is the substitution pattern for alkene indicated below? (A) mono (B) di (C) tri (D) tetra (E) unsubstituted Mono is

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES CHEM 244 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMICAL ENGINEERING STUDENTS, COLLEGE OF ENGINEERING PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 2 (2+0) Dr. Mohamed El-Newehy Chemistry Department, College

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Chapter 8 Reactions of Alkenes

Chapter 8 Reactions of Alkenes Chapter 8 Reactions of Alkenes Electrophilic Additions o Regio vs stereoselectivity Regio where do the pieces add? Markovnikov s rule hydrogen will go to the side of the double bond with most hydrogens.

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Chapter 9 Alkynes. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 9 Alkynes. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 Alkynes Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1 Sources of Alkynes Acetylene Industrial preparation of acetylene is by dehydrogenation of

More information

CHEM 2312 practice final. Version - II

CHEM 2312 practice final. Version - II EM 2312 practice final Version - II The following standardized final examination covers the entire introductory year of organic chemistry (EM 2311 and 2312 at Georgia Tech). The exam consists of 70 multiple

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Introduction - Conjugated unsaturated systems

More information

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double (e.g.

More information

Alkynes. Alkynes-hydrocarbons with a carbon-carbon triple bond.

Alkynes. Alkynes-hydrocarbons with a carbon-carbon triple bond. Alkynes Alkynes-hydrocarbons with a carbon-carbon triple bond. The carbon-carbon triple bond results from the interaction of two sp hybridized carbon atoms. 180 degree angle. Linear. The carbon-carbon

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Conjugated Unsaturated Systems 13.1 Introduction Allyl radical C 2 C C 2 C C C Allyl cation C 2 C C 2 C C C 1,3-Butadiene C 2 C C C 2 C C C C Molecules with delocalized π bonds are called conjugated unsaturated

More information

3 - CONJUGATION. More than one double bond can be in a given compound: n=0

3 - CONJUGATION. More than one double bond can be in a given compound: n=0 3 - NJUGATIN 1. Terminology and Nomenclature (SF 13.1 13.6; SFS 13.1 13.6) A compound containing a double bond is called an alkene, olefin or maybe simply "ene". There are often other names associated

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

212 LSW ALKYNES S04. Alkynes

212 LSW ALKYNES S04. Alkynes Alkynes Doubly unsaturated functional group Terminal alkynes, R-- 1) 2) 3) 4) Nomenclature: Functional group suffix = Disubstituted alkynes, R--R' Monosubstituted alkynes, R-- Stability: Substituted alkynes

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Lecture 20 Organic Chemistry 1

Lecture 20 Organic Chemistry 1 CEM 232 rganic Chemistry I at Chicago Lecture 20 rganic Chemistry 1 Professor Duncan Wardrop March 18, 2010 1 Self-Test Question Capnellene (4) is a marine natural product that was isolated from coral

More information

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser hemistry 210 rganic hemistry I Winter Semester 2002 Dr. Rainer Glaser Examination #6 Reactions of Alkenes & Alkyne hemistry. Friday, March 26, 2002, 9 9:50 am Name: Answer Key Question 1. alogenation Reactions.

More information

Chapter 7: Alkenes: Reactions and Synthesis

Chapter 7: Alkenes: Reactions and Synthesis hapter 7: Alkenes: Reactions and Synthesis alcohol alkane halohydrin 1,2-diol 1,2-dihalide carbonyl halide halide Addition Y Y Elimination Electrophilic Addition Dehydrohalogenation: loss of from an alkyl

More information

Alkenes CnH2n Ethene Propene But-2-ene But-1-ene exposed high electron density one sigma (σ) bond and one pi (π) bond.

Alkenes CnH2n Ethene Propene But-2-ene But-1-ene exposed high electron density one sigma (σ) bond and one pi (π) bond. Alkenes Alkenes are unsaturated hydrocarbons General formula is n2n Alkenes contain a carboncarbon double bond somewhere in their structure Ethene Propene Numbers need to be added to the name when positional

More information

Learning Guide for Chapter 13 - Alkynes

Learning Guide for Chapter 13 - Alkynes Learning Guide for Chapter 13 - Alkynes I. Introduction to Alkynes - p 1 II. Natural ccurrence and Uses of Alkynes - p 5 III. Physical Properties of Alkynes - p 7 IV. Spectroscopy of Alkynes - p 7 V. Nomenclature

More information

Chapter 8 Addition Reactions to Alkenes

Chapter 8 Addition Reactions to Alkenes . 8 hapter 8 Addition eactions to Alkenes In this chapter will we study the addition reactions of alkenes. We will see that the π electrons of the double bond are loosely held and that their maximum electron

More information

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles Alkenes - Structure, Stability, Nomenclature Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) unsaturated - contain fewer than maximum H's possible per C Can

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87 HYDROCARBONS 1. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reactions? Explain. 2. Alkynes on reduction with sodium in liquid ammonia

More information

What is the major product of the following reaction?

What is the major product of the following reaction? What is the major product of the following reaction? Predict the major product of the following reaction: 2-methylbutane + Br 2 /light energy? A) 1-bromo-2-methylbutane B) 2-bromo-2-methylbutane C) 2-bromo-3-methylbutane

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

CHEMISTRY - TRO 4E CH.21 - ORGANIC CHEMISTRY.

CHEMISTRY - TRO 4E CH.21 - ORGANIC CHEMISTRY. !! www.clutchprep.com TOPI: ORGANI EMISTRY Organic hemistry is the study of carbon and the other common nonmetals it is connected to:,, &. Some organic molecules are made of just carbons and hydrogens

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser hemistry 210 rganic hemistry I Winter Semester 2001 Dr. Rainer Glaser Examination #3 Alkenes and Alkynes. Structure, Synthesis and Reactions. Friday, April 20, 2001, 9:00-9:50 Name: Answer Key Question

More information

Dienes & Polyenes: An overview and two key reactions (Ch )

Dienes & Polyenes: An overview and two key reactions (Ch ) Dienes & Polyenes: An overview and two key reactions (h. 14.1-14.5) Polyenes contain more than one double bond and are very common in natural products (ex: carotene). Diene chemistry applies to trienes,

More information

Unsaturated hydrocarbons. Chapter 13

Unsaturated hydrocarbons. Chapter 13 Unsaturated hydrocarbons Chapter 13 Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple bond is a site for chemical reactions in these molecules.

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin. Vision Cis-trans isomerism is key to vision. 3 C 11 12 3 C C 3 3 C O C 3 11-cis-retinal Protein opsin 3 C 11 12 3 C C 3 3 C N Opsin C 3 Rhodopsin Light photons 3 C N Opsin 3 C 11 12 3 C C 3 C 3 ow rods

More information

1. Root of name depends on longest chain of C containing the double bond; ends in "ene"

1. Root of name depends on longest chain of C containing the double bond; ends in ene Alkenes (β-carotene, an antioxidant pigment) n 2n (acyclic) n 2n-2 (cyclic) R R R R Key features sp 2 -hybridized carbons, 120 o bond angles σ + π bonding between = planar geometry around = "unsaturated"

More information

Organic Halogen Compounds

Organic Halogen Compounds 8 Organic alogen ompounds APTER SUMMARY 8.1 Introduction Although organic halogen compounds are rarely found in nature, they do have a variety of commercial applications including use as insecticides,

More information

ELECTROPHILIC ADDITIONS OF ALKENES AS THE COUNTERPART OF ELIMINATIONS

ELECTROPHILIC ADDITIONS OF ALKENES AS THE COUNTERPART OF ELIMINATIONS ELECTRPHILIC ADDITINS F ALKENES AS THE CUNTERPART F ELIMINATINS INTRDUCTIN - Chapter 8 is mostly about alkene reactions. That is, how one can transform alkenes into other functional groups. Most of these

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FATFILE: GE EMISTRY 2.4 ALKENES Alkenes Students should be able to: 2.4.1 define the term unsaturated hydrocarbon and explain why alkenes are described as unsaturated hydrocarbons; 2.4.2 recall the qualitative

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

Chapter 5. Reactions of Alkenes and Alkynes

Chapter 5. Reactions of Alkenes and Alkynes Chapter 5. Reactions of Alkenes and Alkynes Learning objectives: 1. Identify the followings from a reaction coordinate diagram when applicable: endothermic or exothermic reactions, activation energy, heat

More information

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them) 1 Chapter 15: Conjugation and Reactions of Dienes I. Introduction to Conjugation There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more

More information

Chem 145 Unsaturated hydrocarbons Alkynes

Chem 145 Unsaturated hydrocarbons Alkynes Dr. Seham ALTERARY Chem 145 Unsaturated hydrocarbons Alkynes Chapter 4 1434-1435 2013-2014 2 st semester By the end of this chapter you should be familiar with: Definition for Alkynes. Nomenclature of

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I)

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I) UNIT I 1. The hybridization involved in the formation of acetylene is a) sp b) sp 2 c) sp 3 d) sp 3 d 2. The IUPAC name of is 1. 3-hexene b) 4-hexene c) 3-hexyne d) 4-hexyne 3. -------- is the type of

More information

4.1.3 Alkenes. N Goalby chemrevise.org. Formation of π bond p orbitals C C C C. Alkenes contain a carboncarbon. General formula is CnH2n

4.1.3 Alkenes. N Goalby chemrevise.org. Formation of π bond p orbitals C C C C. Alkenes contain a carboncarbon. General formula is CnH2n 4.1.3 Alkenes Alkenes are unsaturated hydrocarbons General formula is n2n Alkenes contain a carboncarbon double bond somewhere in their structure Ethene Propene Numbers need to be added to the name when

More information

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES CHAPTER 8

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES CHAPTER 8 EM 3013 GANI EMISTY I LETUE NTES 1 1. The Alkyne Functional Group APTE 8 Alkynes are compounds with carbon-carbon triple bonds. ecall that alkanes use sp 3 hybrid orbitals and that alkenes use sp 2 hybrid

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications OR AS hemistry A 032 for first assessment in 206 omplete Tutor Notes www.boomerchemistry.com Section: 4..3 Alkenes E/Z Isomerism Alkenes Addition polymers 205 Boomer Publications page 43 page 45 page 5

More information

Double and Triple Bonds. The addition of an electrophile and a

Double and Triple Bonds. The addition of an electrophile and a Chapter 11 Additions to Carbon-Carbon Double and Triple Bonds The addition of an electrophile and a nucleophile to a C-C C double or triple bonds 11.1 The General Mechanism Pi electrons of the double bond

More information

Bond length (pm) Bond strength (KJ/mol)

Bond length (pm) Bond strength (KJ/mol) hapter 10: Alkyl alides = F, l,, I Alkyl halide Aryl halide Vinyl halide 10.1 Naming alkyl halides- ead 10.2 Structure of alkyl halides Table 10.1 alomethane 3 -F 3 -l 3-3 -I Bond length (pm) 139 178 193

More information

General formula is CnH2n. Propene. But-1-ene. C-C pi bond. Formation of π bond in alkenes p orbitals Rotation can occur around a sigma bond

General formula is CnH2n. Propene. But-1-ene. C-C pi bond. Formation of π bond in alkenes p orbitals Rotation can occur around a sigma bond 4.1.3 Alkenes Alkenes are unsaturated hydrocarbons General formula is n2n Alkenes contain a carboncarbon double bond somewhere in their structure Ethene Propene Numbers need to be added to the name when

More information

Chapter 8. Alkenes and Alkynes II: Addition Reactions. Ch. 8-1

Chapter 8. Alkenes and Alkynes II: Addition Reactions. Ch. 8-1 hapter 8 Alkenes and Alkynes II: Addition Reactions h. 8-1 1. Addition Reactions of Alkenes E + E Nu Nu h. 8-2 1A. ow To Understand Additions to Alkenes This is an addition reaction: E Nu added across

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

N.b. A catalyst is a species which speeds up a chemical reaction but which remains chemically unchanged. Reverse process of dehydration of an alcohol

N.b. A catalyst is a species which speeds up a chemical reaction but which remains chemically unchanged. Reverse process of dehydration of an alcohol An Introduction to Organic hemistry N.b. A catalyst is a species which speeds up a chemical reaction but which remains chemically unchanged. ydration (Addition) Reverse process of dehydration of an alcohol

More information

1. Which of the following reactions would have the smallest energy of activation?.

1. Which of the following reactions would have the smallest energy of activation?. Name: Date: 1. Which of the following reactions would have the smallest energy of activation?. A) +. +. B) + +. C) +.. + D) +.. + E) +.. + 2. Which of the following reactions would have the smallest energy

More information

Lecture 11 Organic Chemistry 1

Lecture 11 Organic Chemistry 1 EM 232 rganic hemistry I at hicago Lecture 11 rganic hemistry 1 Professor Duncan Wardrop February 16, 2010 1 Self Test Question What is the product(s) of the following reaction? 3 K( 3 ) 3 A 3 ( 3 ) 3

More information

HONORS ORGANIC CHEM. HAHS MRS. RICHARDS

HONORS ORGANIC CHEM. HAHS MRS. RICHARDS NRS RGANIC CEM. AS MRS. RICARDS RGANIC CEMISTRY: FINAL EXAM REVIEW List of Topics: While the exam will specifically focus on material from Quarter 2, an understanding of several important concepts from

More information

Chapter 19: Alkenes and Alkynes

Chapter 19: Alkenes and Alkynes Chapter 19: Alkenes and Alkynes The vast majority of chemical compounds that we know anything about and that we synthesize in the lab or the industrial plant are organic compounds. The simplest organic

More information

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #3 - November 11, 2002 ANSWERS

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #3 - November 11, 2002 ANSWERS Name INSTRUTINS Department of hemistry SUNY/neonta hem 221 - rganic hemistry I Examination #3 - November 11, 2002 ANSWERS This examination has two parts. The first part is in multiple choice format; the

More information

Alkynes Nomenclature of Alkynes

Alkynes Nomenclature of Alkynes Chapter 7 Alkynes Alkynes - hydrocarbons containing a carbon-carbon triple bond (2 bonds) Acyclic alkanes = C n H 2n+2 Alkenes and cyclic alkanes = C n H 2n Alkynes (and cyclic alkenes) = C n H 2n-2 The

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser hemistry 210 Organic hemistry I Winter Semester 2002 Dr. Rainer Glaser Examination #6 Reactions of Alkenes & Alkyne hemistry. Friday, March 26, 2002, 9 9:50 am Name: Question 1. alogenation Reactions.

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

15.1: Hydrocarbon Reactions

15.1: Hydrocarbon Reactions 15.1: Hydrocarbon Reactions Halogenation An alkane will react with a halogen to produce a halalkane and the corresponding hydrogen halide. The catalyst is ultraviolet radiation. Reaction 1 methane chlorine

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

CHAPTER 9. ALKYNES: AN INTRODUCTION TO ORGANIC SYNTHESIS

CHAPTER 9. ALKYNES: AN INTRODUCTION TO ORGANIC SYNTHESIS CAPTER 9. ALKYNES: AN INTRDUCTIN T RGANIC SYNTESIS Alkyne Nomenclature. Like alkenes, number so the alkyne gets the lowest number. Name the following two molecules: 3 C C CC 2 C 2 C(C 3 ) 2 Cl If, however,

More information