This name hints at how polymers are made

Size: px
Start display at page:

Download "This name hints at how polymers are made"

Transcription

1 Chapter- I

2

3

4 Many + Parts This name hints at how polymers are made

5 POLYMERS (the whole train) are made out of MONOMERS (individual cars of the train) joined together.

6 repeat unit H H H H H H C C C C C C H H H H H H Polyethylene (PE) repeat unit H H H H H H C C C C C C H Cl H Cl H Cl Poly vinyl chloride (PVC) repeat unit H H H H H H C C C C C C H CH 3 H CH 3 H CH 3 Polypropylene (PP) Carbon chain backbone

7 Cellulose After collection, the latex is coagulated to obtain the solid rubber. Natural rubber is thermoplastic, with a glass transition temperature of 70 C.

8

9 Cotton fiber is mostly cellulose, and cellulose is made of chains of the sugar, glucose linked together a certain way.

10 Polymers are macro molecules formed by the repeated linking of large number of small molecules. These small molecules called monomers.

11 Polymerization: Polymerization is a process in which large number of small molecules combine to give a big molecules with or without elimination of small molecules like water. HOW: This happens when a carbon to carbon double bond in a monomer is broken and new single bonds are formed creating a polymer.

12 Polymerization of polypropylene (propane)

13 Polymers Polymerization: (of polyethylene)

14 Degree of Polymerization, (n) n= average number of repeat units per chain DP( n) M m where m repeat unit molecular weight n Ex. problem 4.1b, for PVC: m = 2(carbon) + 3(hydrogen) + 1(Clorine) (from front of book) = 2(12.011) + 3(1.008) + 1(35.45) = g/mol DP = 21,150 / =

15 The number of bonding sites or reactive sites or functional groups present in a monomer is known as its functionality Types Functionality Bifunctional Monomers: Functionality of monomer=2 Forms linear chains or straight chain polymer Trifunctional monomers: Functinality of monomer=3 Forms linear and branched chain polymer Polyfunctinal monomers: Functinality of monomer= more than 3 Forms three dimentional network polymer

16 Classifications - based on synthesis Inorganic Organic Natural Clays Sand tc. Synthetic Silicones Silanes Phosphazenes etc. Natural Synthetic Polysaccharides (Carbohydrates) Proteins DNA Natural Rubber Silk etc. Polyolefins Polyesters Polyurethanes Nylons etc.

17 Polymer Structure Polymers can exist with various skeletal structures - such as linear, branched or cross-linked or network polymers. Linear Branched Network

18 Molecular Structures for Polymers secondary bonding Linear Branched Cross-Linked Network The physical characteristics of a polymer depend also on differences in the structure of the molecular chains (other variables are shape and weight). Linear polymers have repeat units joined end to end in single chains. There may be extensive van der Waals and hydrogen bonding between the chains. Examples: polyethylene, PVC, nylon. 18

19 Where side-branch chains have connected to main chains, these are termed branched polymers. Linear structures may have side-branching. HDPE high density polyethylene is primarily a linear polymer with minor branching, while LDPE low density polyethylene contains numerous short chain branches. Greater chain linearity and chain length tend to increase the melting point and improve the physical and mechanical properties of the polymer due to greater crystallinity. 19

20 In cross-linked polymers, adjacent linear chains are joined to one another at various positions by covalent bonding of atoms. Examples are the rubber elastic materials. Small molecules that form 3 or more active covalent bonds create structures called network polymers. Examples are the epoxies and polyurethanes.cam 20

21 Copolymers two or more monomers polymerized together random A and B randomly positioned along chain alternating A and B alternate in polymer chain block large blocks of A units alternate with large blocks of B units graft chains of B units grafted onto A backbone random alternating block A B graft 21

22 Plastics Plastics are high molecular weight organic materials, that can be moulded into any desired shape by the application of heat and pressure in the presence of a catalyst Plastics Thermoplastics Crystalline Amorphous Ex: Polyethylene Polyvinyl chloride Polystyrene Thermosets Ex: Bakelite Polyester Epoxyresin

23 Thermoplastics Often referred to as just Plastics are linear or branched polymers which soften upon heating. They can be moulded (and remoulded) into virtually any shape injection moulding, extrusion and constitute the largest portions of the polymers used in industry Thermoplastics never achieve 100% crystallinity, but instead are semicrystalline with both crystalline and amorphous domains.

24 Thermoplastics The crystalline phases of such polymers are characterized by their melting temperature (T m ). Many thermoplastics are completely amorphous and incapable of crystallization, these amorphous polymers (and amorphous phases of semicrystalline polymers) are characterized by their glass transition temperature (T g ). the temperature at which they transform abruptly from the glassy state (hard) to the rubbery state (soft).

25 Thermosets Thermosets - normally rigid materials - network polymers in which chain motion is greatly restricted by a high degree of crosslinking As with elastomers, they are intractable once formed and degrade rather than melt upon the application of heat.

26

27 Polymerization is classified based on (i) the mechanism of the process and (ii) practical aspects of the process. Based on the mechanism, polymerization is broadly classified into (1) Addition or Chain polymerization and (2) Condensation or Step polymerization. Based on practical considerations, polymerization is of types such as solution polymerization, emulsion polymerization, bulk polymerization etc.

28 Addition polymerization 1 The monomer must have atleast one multiple bond 2 Number of monomer units increases steadily throughout the reaction. Condensation polymerization The monomer must have atleast two identical or different functional groups Monomer disappears early in the reaction. 3 High polymer is formed at once. Polymer molecular weight (degree of polymerization) rises steadily throughout the reaction. 4 Longer reaction times have very little effect on molecular weight but gives higher yields. 5 The reaction mixture contains only monomers, high polymers and very small amount (10-8 ) of growing chains. 6 E.g. polymerization of ethylene, styrene, vinyl chloride, propylene etc. Longer reaction times are essential to obtain higher molecular weights i.e. reaction time influences molecular weight of the polymer. All types of molecular species are present at any stage. Polymerization to get nylon, PET, polycarbonate, polyurethane etc.

29 Chain-Growth Polymers Chain-growth polymers proceed by one of three mechanisms: radical polymerization cationic polymerization anionic polymerization All the above mechanisms occur in three major steps namely, 1. Initiation 2. Propagation and 3. Termination

30 Ethylene has two carbons; plus, instead of the two carbons sharing just one electron each, they share two electrons each. High temperature or UV light can cause two of these shared (paired) electrons to become unshared (unpaired). H C H H C H These HunpairedHelectrons are eager to pair up with another electron. If this ethylene C molecule C bumps another ethylene molecule, the unpaired electrons will cause the one it Hbumped into H to lend one of its inner electrons

31 Here s another way to see the chain reaction. These are the carbon atoms with their double-bond (2 shared electrons each). The hydrogen atoms are not shown. A collision breaks the first bond. Once the first double bond is broken, a chain reaction will occur. In about a second an entire chamber of compressed ethylene gas turns into the polymer, polyethylene.

32 1. Initiation Free Radical Polymerization It is considered to involve two reactions a) First reaction involves production of free radicals by homolytic dissociation of an initiator to yield a pair of free radicals (R*) b) Second reaction involves addition of this free radical to first monomer to produce chain initiating species

33

34 2. Propagation: It involves the growth of chain initiating species by successive addition of large number of monomers

35 3.Termination: Termination of the growing chain of polymer may occur either by coupling reaction or disproportionation.

36

37

38 Faster than Free radical polymerization Chain polymerization of olefinic monomers which can occur with charged radicals. For example styrene. Cationic polymerization when the radical is positively charge. CH 2 -C + H X - Anionic polymerization when the radical is negatively charge CH 2 -C -- H X +

39 Cationic Polymerization This type of polymerization takes place when electron donating groups like CH 3, C 6 H 5 are present in a monomer. These groups stabilize the carbonium ion formation. Ex: Styrene, Isobutylene, Isoprene The catalysts (initiators) used to initiate the reaction are Lewis acids like AlCl 3, BF 3 with a co-catalyst water

40 1.Initiation

41 2.Propagation It involves the growth of chain initiating species by successive addition of large number of monomers and the positive charge simultaneously shifts to the newly added monomer

42 3.Termination Termination of the growing chain involves removal of the catalyst by the addition of proton to the counter ion [AlCl 3 OH] -

43 Monomers that are best able to undergo cationic polymerization are those with electron-donating substituent

44 Anionic Polymerization This type of polymerization takes place when electron withdrawing groups like Cl -, CN - are present in a monomer. These groups stabilize the carbanion formation. Ex: Vinyl chloride, Styrene, Acrylonitrile The catalysts (initiators) used to initiate the reaction are Lewis bases like NaNH 2, KNH 2, LiNH 2 etc.,

45 1.Initiation

46 2.Propagation It involves the growth of chain initiating species by successive addition of large number of monomers and the negative charge simultaneously shifts to the newly added monomer

47 3.Termination Termination of the growing chain occurs by adding ammonia

48

49 Glass Transition Temperature (T g ) : A polymeric sample on heating may transform itself from a state of softness to a state of hardness or brittleness. Thus the temperature below which a polymer is hard and above this temperature, it becomes so soft that it transforms from glassy (brittle) state to a rubbery (elastic) or a viscoelastic state is termed as glass transition temperature (T g ).

50 Factors influencing Tg Chain length, cross linking and internal rotation Rate of heating or cooling Linear polymer network

51 Stereospecific polymer (or)tacticity: Polymers may be synthesized as stereo regular compounds. Stereo regularity is a phenomenon of regular or orderly, spatial arrangement of groups or radicals of the monomer on either side of the main polymeric chain is known as Tacticity

52 POLY(PROPENE) ISOTACTIC The functional groups on same side most desirable properties SYNDIOTACTIC The functional groups alternate sided ATACTIC The functional groups arranged in randomly most likely outcome

53 The molecular weight distribution in a polymer describes the relationship between the number of moles of each polymer species and the molar mass of that species. Molecular Weight Low MW high MW Polymers can have various lengths depending on the number of repeat units. During the polymerization process not all chains in a polymer grow to the same length, so there is a distribution of molecular weights. There are several ways of defining an average molecular weight.

54 Number-average Molecular Weight ( N ) based on methods of counting the number of molecules in a given weight of polymer the total weight of a polymer sample, w, is the sum of the weights of each molecular species present 1 1 i i i i i M N w w i i i i i i i n N M N N w M N = number of molecules M = molecular weight

55 Weight-average Molecular Weight ( W ) determination of molecular weight based on size rather than the number of molecules the greater the mass, the greater the contribution to the measurement M w i 1 i 1 w M i w i i i 1 i 1 N M i N M i 2 i i w = weight fraction M = molecular weight N = number of molecules

56 Molecular Weight Distribution M M n w x M w M i i i i M n = the number average molecular weight (mass) M i x i w i = mean (middle) molecular weight of size range i = number fraction of chains in size range i = weight fraction of chains in size range i 56

57 Number-average molecular weight ( n ) Example - a polymer sample consists of 9 molecules of mw 30,000 and 5 molecules of mw 50,000 M n i 1 (9 30,000) (5 50,000) (9 5) i i i 1 M N N i 37,000

58 Weight-average molecular weight ( w ) Consider the previous example - 9 molecules of molecular weight 30,000 and 5 molecules of molecular weight 50,000 M w 2 9(30,000) 9(30,000) 5(50,000) 5(50,000) 2 40,000

59 In measurements of colligative properties, each molecule contributes regardless of weight, whereas in light scattering, the larger molecules contribute more because they scatter light more effectively. For this reason, w are greater than n, except when all molecules are of the same weight and w = n

60 Poly Dispersity Index (PDI) Poly Dispersity Index (PDI) of a polymer is defined as the ratio of the weight average molecular weight to the number average molecular weight i.e. PDI = (M w ) / (M n ) Typical PDI values for the synthetic polymers are given below for reference: Free radical polymers: obtained by solution / suspension / emulsion methods: obtained by bulk polymerization method: 2 5 obtained by auto-acceleration methods: 8 10 Polymers by cationic / anionic mechanism: Using homogenous catalysts: < 1.5 (less than) Using heterogenous catalysts: > 10 (higher than) Polymers obtained by poly-condensation / poly-addition / ring opening mechanisms: 2 3 Branched chain polymers: > 20 (greater than 20)

61 Techniques for Polymerization There are four commonly used techniques for polymerization 1. Bulk polymerization 2. Solution polymerization 3. Suspension polymerization 4. Emulsion polymerization

62 The simplest technique Bulk Polymerization It gives the highest-purity polymer Ingredients : monomer, monomer-soluble initiator, perhaps a chain transfer agent Advantages High yield per reactor volume Easy polymer recovery Final product form Disadvantages Difficult of removing the lost traces of monomer Dissipating heat produced during the polimerization

63 Solution Polymerization Heat can be removed by conducting the polymerization in an organic solvent or water Initiator or monomer must be soluble in solvent Solvents have acceptable chain-transfer characteristics Solvents have suitable melting or boiling points for the conditions of polymerization Ingredients : monomer initiator solvent Advantages Temperature control is easy Easy removed Disadvantages Small yield per reactor volume Solvent recovery

64 Suspension Polymerization Coalescense of sticky droplets is prevented by PVA Near the end of polymerization, the particles harder and they can be removed by filtration, then washing Ingredients : water-insoluble monomer, water-insoluble initiator, sometimes chain transfer agent suspention medium (water-usually) Advantages (according to bulk polymerization) Forming process not using Stirring is easy Disadvantages Polymer purity is low Reactor capital costs are higher than for solution polymerization Separation process is easy

65 Emulsion Polymerization Particles are formed monosize with emulsion polymerization Polymerization is initiated when the water-soluble radical enters a monomer-containing micelles. Ingredients : water-insoluble monomer, water-soluble initiator, chain transfer agent, dispersing medium (water), fatty acid, surfactant such as sodium salt of a long chain

66

67 Two ingredients are mixed and a solid begins to form at the junction between the two layers of liquid. We say certain polymers are man-made, but the truth is they make themselves. Humans only have to get the ingredients near each other. The chemicals will assemble themselves. Hot nylon spaghetti can be extracted.

68 Preparation, properties and uses of nylon 6,6: Nylon 6,6 is a polyamide prepared by the condensation polymerization between / poly-condensation of the monomers hexamethylene diamine and adipic acid. Here two water molecules are removed from each set of monomers.

69 Tetramethylene dicarboxylic acid (adipic acid) Hexamethylene diamine methylene x 6 (hexa) amine x 2 (di) Nylon is actually a copolymer because is it made from two monomers. When these two monomers are in the same beaker, they combine and give off a molecule of water. This is called a dehydration reaction because taking away (de) water (hydra). (regarding odor: amines smell like fish or worse. Adipic acid is odorless )

70

71 Epoxy resins These are basically poly-ethers. The common types of epoxy resins are prepared from the condensation polymerization between epichlorohydrin and bis-phenol A. The reaction is carried out with excess of epichlorohydrin.

72 Epichlorohydrin bis-phenol

73 Epoxy resins find enormous applications due to their remarkable chemical resistance and good adhesion properties. They are used as excellent structural adhesives. On proper curing, they yield tough materials as used in industrial floorings, as foaming materials, as pottering materials in electrical insulation etc. A principal constituent of most of the fibre reinforced plastic (FRP) materials is the epoxy resins. Also, the EPI coating in lorries carrying corrosive chemicals contains the epoxy resin formulations.

74 Conducting Polymers Introduction What is conductivity? What makes amaterial conductive? How can plastic become conductive? Doping process. Factors that affect the conductivity. Applications. Conclusion.

75 Introduction Polymers (or plastics as they are also called) are known to have good insulating properties. Polymers are one of the most used materials in the modern world. Their uses and application range from containers to clothing. They are used to coat metal wires to prevent electric shocks.

76 Yet Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa have changed this view with their discovery that a polymer, polyacetylene, can be made conductive almost like a metal.

77 What is conductivity? Conductivity can be defined simply by Ohms Law. V= IR Where R is the resistance, I the current and V the voltage present in the material. The conductivity depends on the number of charge carriers (number of electrons) in the material and their mobility.in a metal it is assumed that all the outer electrons are free to carry charge and the impedance to flow of charge is mainly due to the electrons "bumping" in to each other. Insulators however have tightly bound electrons so that nearly no electron flow occurs so they offer high resistance to charge flow. So for conductance free electrons are needed.

78 What makes the material conductive? Three simple carbon compounds are diamond, graphite and polyacetylene. They may be regarded as three- two- and onedimensional forms of carbon materials. Diamond, which contains only σ bonds, is an insulator and its high symmetry gives it isotropic properties. Graphite and acetylene both have mobile π electrons and are, when doped, highly anisotropic metallic conductors.

79 How can plastic become conductive? Plastics are polymers, molecules that form long chains, repeating themselves. In becoming electrically conductive, a polymer has to imitate a metal, that is, its electrons need to be free to move and not bound to the atoms. Polyacetylene is the simplest possible conjugated polymer. It is obtained by polymerisation of acetylene, shown in the figure.

80 Two conditions to become conductive: 1-The first condition for this is that the polymer consists of alternating single and double bonds, called conjugated double bonds. In conjugation, the bonds between the carbon atoms are alternately single and double. Every bond contains a localised sigma (σ) bond which forms a strong chemical bond. In addition, every double bond also contains a less strongly localised pi (π) bond which is weaker.

81 2-The second condition is that the plastic has to be disturbed - either by removing electrons from (oxidation), or inserting them into (reduction), the material. The process is known as Doping. There are two types of doping 1-oxidation with halogen (or p-doping). 2- Reduction with alkali metal (called n-doping).

82 Doping process The halogen doping transforms polyacetylene to a good conductor. Oxidation with iodine causes the electrons to be jerked out of the polymer, leaving "holes" in the form of positive charges that can move along the chain.

83 The iodine molecule attracts an electron from the polyacetylene chain and becomes I3. The polyacetylene molecule, now positively charged, is termed a radical cation, or polaron. The lonely electron of the double bond, from which an electron was removed, can move easily. As a consequence, the double bond successively moves along the molecule. The positive charge, on the other hand, is fixed by electrostatic attraction to the iodide ion, which does not move so readily.

84 DOPING - FOR BETTER MOLECULE PERFORMANCE Doped polyacetylene is, e.g., comparable to good conductors such as copper and silver, whereas in its original form it is a semiconductor. Conductivity of conductive polymers compared to those of other materials, from quartz (insulator) to copper (conductor). Polymers may also have conductivities corresponding to those of semiconductors.

85 Factors that affect the conductivity 1-Denesity of charge carriers. 2- Thier mobility. 3-The direction. 4-presence of doping materials (additives that facilitate the polymer conductivity) 5-Temperature.

86 The conductivity of conductive polymers decreases with falling temperature in contrast to the conductivities of typical metals, e.g. silver, which increase with falling 7/31/2015 temperature.

87 Applications Conducting polymers have many uses. The most documented are as follows: anti-static substances for photographic film Corrosion Inhibitors Compact Capacitors Anti Static Coating Electromagnetic shielding for computers "Smart Windows" A second generation of conducting polymers have been developed these have industrial uses like: Transistors Light Emitting Diodes (LEDs) Lasers used in flat televisions Solar cells Displays in mobile telephones and mini-format television screens

88 Shield for computer screen against electromagnetic "smart" windows radiation smart" windows Photographic Film Solar cell Light-emitting diodes 7/31/2015

89 Conclusion For conductance free electrons are needed. Conjugated polymers are semiconductor materials while doped polymers are conductors. The conductivity of conductive polymers decreases with falling temperature in contrast to the conductivities of typical metals, e.g. silver, which increase with falling temperature. Today conductive plastics are being developed for many uses.

90 We've mentioned high density polyethylene (HDPE) and low density polyethylene (LDPE). It is made by causing the long chains of ethylene to branch. That way they cannot lie next each other, which reduces the density and strength of the polyethylene. This makes the plastic lighter and more flexible.

91 Low density polyethylene is used to make plastic bags, plastic wrap, and squeeze bottles, plus many other things.

92 Another polymer, which is almost the same as polyethylene, is PolyVinyl Chloride or PVC. The difference is that every other hydrogen is replaced with a chlorine atom (green sphere).

93 The favorite properties of plastics are that they are inert and won't react with what is stored in them. They also are durable and won't easily decay, dissolve, or break apart. These are great qualities for things you keep, but when you throw them away, they won't decompose.

94 Since they don t decompose, the answer is to recycle the plastics so they can be remade into something else. Here we see a bunch of CDs getting recycled.

95 The mile long boardwalk at Yellowstone National Park was made from recycled plastic.

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

(c) Dr. Payal B. Joshi

(c) Dr. Payal B. Joshi Polymer (Greek: poly=many; mer=part) Made up of large molecules characterized by repeating units called monomers held together by covalent bonds Functionality To act as monomer, it must have at least two

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

Sandra Plaza García. Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV)

Sandra Plaza García. Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV) DOPING AND CONDUCTING POLYMERS Sandra Plaza García Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV) Donostia International Physics Center (DIPC) OUTLINE

More information

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting Thermoplastic Homopolymer Condensation Polymer Natural POLYMERS Synthetic Addition Polymer Copolymer Thermosetting Polymers are very large covalent molecular substances containing tens of thousands of

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Polymers and Composite Materials

Polymers and Composite Materials Polymers and omposite Materials Shibu G. Pillai hemical Engineering Department shibu.pillai@nirmauni.ac.in ontents lassification of Polymers Types of polymerization Elastomers/ Rubber Advanced Polymeric

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Covalent Compounds 1 of 30 Boardworks Ltd 2016

Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 2 of 30 Boardworks Ltd 2016 What are covalent bonds? 3 of 30 Boardworks Ltd 2016 When atoms share pairs of electrons, they form covalent

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

The functionality of a monomer is the number of binding sites that is/are present in that monomer. Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2 Polymers Outline Introduction Molecular Structure and Configurations Polymer s synthesis Molecular weight of polymers Crystallinity You may think of polymers as being a relatively modern invention however

More information

Electronic materials and components-polymer types

Electronic materials and components-polymer types Introduction Electronic materials and components-polymer types Polymer science is a broad field that includes many types of materials which incorporate long chain structures with many repeated units. One

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

Downloaded from Unit - 15 POLYMERS. Points to Remember

Downloaded from   Unit - 15 POLYMERS. Points to Remember Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

Top concepts Chapter : Polymers 1. Polymers are high molecular mass substance consisting of large number of repeating structural units. As polymers are single, giant molecules i.e. big size molecules,

More information

Chemistry Notes. Daniel P

Chemistry Notes. Daniel P Chemistry Notes Daniel P Contents 1 Introduction 3 2 Production of Materials 4 2.1 Ethylene and its Uses...................................... 4 1. Chemical Equations...................................

More information

1.3) Plastics Advantages and disadvantages Thermoplastics and thermosetting plastics.

1.3) Plastics Advantages and disadvantages Thermoplastics and thermosetting plastics. CY6151 ENGINEERING CHEMISTRY I UNIT 1 POLYMER SCIENCE LECTURE PLAN 1.1-A) Polymerization Introduction. 1.1-B) Functionality Definition Significance 1.1-C) Tacticity Isotactic, Syndiotactic and atactic.

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

Chemistry Class 12 th NCERT Solutions

Chemistry Class 12 th NCERT Solutions This e-book is prepared by the CBSE board exam experts of jagranjosh.com, an online educational portal of Dainik Jagran. The purpose of providing solutions for CBSE class 12 th Science and Mathematics

More information

Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer.

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. 1.8 Polymers The General Structure of Polymers A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. Many biological molecules,

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances.

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances. Objective 14 Apply Reactivity Principles to Radical Reactions: Identify radical reaction conditions Describe mechanism Use curved arrows for common radical steps to predict product Radical Reactions Radical

More information

Combustion and thermal degradation of polymers

Combustion and thermal degradation of polymers Polymers and biomaterials - laboratory Combustion and thermal degradation of polymers Theoretical background dr Hanna Wilczura-Wachnik University of Warsaw Faculty of Chemistry Chemical Technology Division

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Polymer Classifications Mole. Wt. MSE 383, Unit 1-4 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Introduction Recall polymer (macromolecular) definition Covalent linkages

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into.

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. 5.7: Polymers Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. Polymers are large molecules that are made by linking together

More information

Chap 10 Part 3a.notebook December 12, 2017

Chap 10 Part 3a.notebook December 12, 2017 Metallic Bonding and Semiconductors Chapter 10 Sect 4 Metallic Bonding positive metal ions surrounded by a "sea of electrons" Bonding is strong and nondirectional Iron, Silver, alloys, Brass, Bronze Forces

More information

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns Lecture 4 Chapter 13 - Polymers Functional Groups Condensation Rxns Free Radical Rxns Chemistry the whole year on one page Last semester Basic atomic theory Stoichiometry, balancing reactions Thermodynamics

More information

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York Paul Rempp and Edward W. Merrill Polymer Synthesis 2nd, revised Edition Hüthig & Wepf Verlag Basel Heidelberg New York Table of Contents Part I: Polymerization Reactions Chapter 1: General Considerations

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

STANDARD GRADE CHEMISTRY : GENERAL LEVEL

STANDARD GRADE CHEMISTRY : GENERAL LEVEL STANDARD GRADE CHEMISTRY : GENERAL LEVEL NEED TO KNOW SHEETS (BASED ON 1998 2006 EXAMS) TOPIC NO 1 -ide means two elements only ate/-ite means two elements + oxygen a solution contains a solid (solute)

More information

Lecture 25 POLYMERS. April 19, Chemistry 328N

Lecture 25 POLYMERS. April 19, Chemistry 328N Lecture 25 POLYMERS Wallace Carothers April 19, 2016 Paul Flory Wallace Hume Carothers 1896-1937 Carothers at Dupont 1.Commercializion of Nylon https://www.chemheritage.org/ Nylon was first used for fishing

More information

Preliminary Chemistry

Preliminary Chemistry Name: Preliminary Chemistry Lesson 6 Water In Theory. This booklet is your best friend. Success is Contagious. Synergy Chemistry. 0466 342 939 garyzhanghsc@gmaiil.com www.hscsynergyeducation.weebly.com

More information

Chapter 14: Polymer Structures

Chapter 14: Polymer Structures Chapter 14: Polymer Structures ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ

More information

Lab Activity 9: Introduction to Organic Chemical Reactivity, Lab 5 Prelab, Reflux

Lab Activity 9: Introduction to Organic Chemical Reactivity, Lab 5 Prelab, Reflux Lab Activity 9: Introduction to Organic Chemical Reactivity, Lab 5 Prelab, Reflux Objectives 1. Identify structural features (pi bonds, bond polarity, lone pairs) of a compound 2. Determine whether a structural

More information

Option C: Chemistry in industry and technology

Option C: Chemistry in industry and technology Option C: Chemistry in industry and technology As one of the most important roles of chemistry is to make forms of matter that have never existed before, it plays a central role in any material revolution.

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Chemistry (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Chemistry (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Electrophoresis (Chapter 27): Chemistry (A-level) Electrophoresis: the separation of charged particles by their different rates of movement in

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 26, 2016 Midterm Exam III Where: WEL 1.316!! When: Wed., May 4 th, 7:00 9:00 PM What: Covers lectures through 4/28 Review Session: Mon & Tues. 5-6 PM Monday PAI

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

SUBJECT: Polymer Chemistry. STAFF NAME: DrA.Vijayabalan and S.Immanuel. UNIT-I (Part-A)

SUBJECT: Polymer Chemistry. STAFF NAME: DrA.Vijayabalan and S.Immanuel. UNIT-I (Part-A) SUBJECT: Polymer Chemistry SUB.CODE: ECH618 STAFF NAME: DrA.Vijayabalan and S.Immanuel UNIT-I (Part-A) 1. Polymers are obtained by which of the following polymerization reaction. (a) Addition (c) Both

More information

Chapter 12. Modern Materials. Chapter 12 Problems 7/3/2012. Problems 1, 4, 7, 9, 11, 13, 23, 29, 3143, 53, 55

Chapter 12. Modern Materials. Chapter 12 Problems 7/3/2012. Problems 1, 4, 7, 9, 11, 13, 23, 29, 3143, 53, 55 hemistry, The entral Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten hapter 12 John D. Bookstaver St. harles ommunity ollege ottleville, MO hapter 12 Problems Problems

More information

Can you imagine a world without plastics? Plastic soft drink containers,

Can you imagine a world without plastics? Plastic soft drink containers, 21 Polymer Parts R EA D I N G Can you imagine a world without plastics? Plastic soft drink containers, bags, pens, DVDs, and computer and television parts are just a few things made of plastics that would

More information

Chemical Reaction: another name for a chemical change; a change in which 1 or more substances are converted into new substances

Chemical Reaction: another name for a chemical change; a change in which 1 or more substances are converted into new substances Chemical Reaction: another name for a chemical change; a change in which 1 or more substances are converted into new substances A + B à AB AB à A + B Absorb or release Energy CHEMICAL REACTION No change

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

Chapter 3 Matter and Energy

Chapter 3 Matter and Energy Introductory Chemistry, 3 rd Edition Nivaldo Tro Matter and Energy The chapter opening (page 52) showing a room and highlighting the structure of water and the carbon atoms in a graphite tennis racket

More information

Name Date Class. aryl halides substitution reaction

Name Date Class. aryl halides substitution reaction 23.1 INTRODUCTION TO FUNCTIONAL GROUPS Section Review Objectives Explain how organic compounds are classified Identify the IUPAC rules for naming halocarbons Describe how halocarbons can be prepared Vocabulary

More information

Section 1 Compounds and Molecules

Section 1 Compounds and Molecules CHAPTER OUTLINE Section 1 Compounds and Molecules Key Idea questions > What holds a compound together? > How can the structure of chemical compounds be shown? > What determines the properties of a compound?

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

Note: Brief explanation should be no more than 2 sentences.

Note: Brief explanation should be no more than 2 sentences. Her \Hmher UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2017 DURATION: 2 and /2 hrs MSE245 - HiS - Second Year - MSE Organic Material Chemistry & Processing

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

Quartz, salt, and sugar are all compounds that are solids. Their similarities and differences partly come from the way their atoms or ions are

Quartz, salt, and sugar are all compounds that are solids. Their similarities and differences partly come from the way their atoms or ions are Quartz, salt, and sugar are all compounds that are solids. Their similarities and differences partly come from the way their atoms or ions are joined. A compound is made of two or more elements that are

More information

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes 1. Combustion Alkanes are very important fossil fuels. The combustion of alkanes is very exothermic and carbon dioxide and water are produced. General

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic

More information

General Chemistry A

General Chemistry A General Chemistry 1140 - A May 6, 2004 (6 Pages, 43 Parts) Name Each of the 40 multiple choice questions counts 2 point. Give the letter of the correct answer. 1. 2. Crystalline solids differ from amorphous

More information

5.1 How Atoms Form Compounds. compound chemical formula molecule chemical bond ionic bond valence covalent bond

5.1 How Atoms Form Compounds. compound chemical formula molecule chemical bond ionic bond valence covalent bond 5.1 How Atoms Form Compounds compound chemical formula molecule chemical bond ionic bond valence covalent bond What is a compound? 5.1 How Atoms Form Compounds A compound is a pure substance that contains

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

Liquids are collections of particles that are held together but they can flow (intermolecular forces)

Liquids are collections of particles that are held together but they can flow (intermolecular forces) HW R&MN 4.5 P 1-5,10 Q 1,4,7 Ch. 4.6 P 1,2,4,6,7 Q 3,9 Chapter 4.6: Solids Bonding and Properties A solid is a collection of molecules, ions or atoms that are unable to flow (move around). Due to electromagnetic

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Module Topic 9.2 Production of Materials 9.2.A Synthetic Polymers Name Date Ethene 1. Match the statement on the left with the most appropriate answer

More information

A Technical Whitepaper Polymer Technology in the Coating Industry. By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA

A Technical Whitepaper Polymer Technology in the Coating Industry. By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA A Technical Whitepaper Polymer Technology in the Coating Industry By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA INTRODUCTION Polymer Technology in the Coating Industry To properly understand

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

for sodium ion (Na + )

for sodium ion (Na + ) 3.4 Unit 2 Chemistry 2 Throughout this unit candidates will be expected to write word equations for reactions specified. Higher tier candidates will also be expected to write and balance symbol equations

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Chapter 6 Chemistry in Biology

Chapter 6 Chemistry in Biology Section 1: Atoms, Elements, and Compounds Section 2: Chemical Reactions Section 3: Water and Solutions Section 4: The Building Blocks of Life Click on a lesson name to select. 6.1 Atoms, Elements, and

More information

Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents

Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents A guide to understanding their uses, benefits, functions, selection, and developments Louis W. Martin, Addcomp North America Inc. Fundamentals

More information

General Chemistry A

General Chemistry A General Chemistry 1140 - A May 5, 2005 (6 Pages, 48 Questions) ame 1. Which of the following properties is a general characteristic of solids? (A) Solids have a rigid shape and fixed volume (B) Solids

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur QUESTION (2017:1) (iii) Sodium chloride, NaCl, is another compound that is excreted from the body in sweat. Use your knowledge of structure and bonding to explain the dissolving process of sodium chloride,

More information

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds Section 1 Atoms, Elements, and Compounds Atoms! Chemistry is the study of matter.! Atoms are the building blocks of matter.! Neutrons and protons are located at the center of the atom.! Protons are positively

More information

15.1: Hydrocarbon Reactions

15.1: Hydrocarbon Reactions 15.1: Hydrocarbon Reactions Halogenation An alkane will react with a halogen to produce a halalkane and the corresponding hydrogen halide. The catalyst is ultraviolet radiation. Reaction 1 methane chlorine

More information

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained?

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained? UNIT 1 CHEMISTRY How Can the Diversity of Materials Be Explained? AoS 1: How Can the Knowledge of Elements Explain the Properties of Matter? AoS 2: How Can the Versatility of Non-Metals be Explained? AoS

More information

Salt vs. Sugar. 1. Ionic Compounds. 2. Molecular Compounds (Cont.) 12/18/2014. What is this Compound You Speak Of? Sodium Chloride Dissolving in Water

Salt vs. Sugar. 1. Ionic Compounds. 2. Molecular Compounds (Cont.) 12/18/2014. What is this Compound You Speak Of? Sodium Chloride Dissolving in Water Salt vs. Sugar Unit 7: Chemical Compounds & Formulas Lesson#7.1: Types of Compounds What is this Compound You Speak Of? Compound: Any substance that is formed by the chemical bonding of atoms. We classify

More information

Matter Properties and Changes

Matter Properties and Changes Matter Properties and Changes What is matter? anything that takes up space (volume) and has mass everything around you is made up of matter matter has 3 main states: solid, liquid, and gas Physical Property

More information