POLYMER STRUCTURES ISSUES TO ADDRESS...

Size: px
Start display at page:

Download "POLYMER STRUCTURES ISSUES TO ADDRESS..."

Transcription

1 POLYMER STRUTURES ISSUES TO ADDRESS... What are the basic microstructural features? ow are polymer properties effected by molecular weight? ow do polymeric crystals accommodate the polymer chain? Melting temperature vs. glass transition Effects of temperature on deformation & flow hapter 14-1

2 What is a polymer? What is a polymer? Poly many mer repeat unit - May be 100 s or 1000 s of repeat units long - Strong bonds within a molecule, weak interactions between molecules repeat unit Polyethylene (PE) l repeat unit l l Polyvinyl chloride (PV) 3 Polypropylene (PP) Adapted from Fig. 14.2, allister 7e. 3 repeat unit 3 hapter 14-2

3 Polymer omposition Most polymers are hydrocarbons i.e. made up of and Saturated hydrocarbons Each carbon bonded to four other atoms an easily rotate around bonds n 2n+2 hapter 14-4

4 hapter 14-5

5 Unsaturated ydrocarbons Double & triple bonds relatively reactive can form new bonds Double bond ethylene or ethene - n 2n 4-bonds, but only 3 atoms bound to s Double bonds less flexible (can t rotate around bond) Tend to be planar Triple bond acetylene or ethyne - n 2n-2 hapter 14-6

6 Aromatic compounds Simplest form: 6 6 benzene ring Mixed single/double bonds Planar, bulky Phenyl groups: R = free radical reactive group (, O, 6 5,.) Example: biphenyl hapter 14-7

7 hemistry of Polymers Free radical polymerization R + free radical R monomer (ethylene) R + R Initiator: example - benzoyl peroxide dimer initiation propagation O O 2 O = 2 R hapter 14-8

8 hemistry of Polymers Adapted from Fig. 14.1, allister 7e. Note: polyethylene is just a long - paraffin is short polyethylene hapter 14-9

9 Bulk or ommodity Polymers Most common plastic Teflon hapter 14-10

10 Plexiglas hapter 14-11

11 hapter 14-12

12 MOLEULAR WEIGT Molecular weight, M i : Mass of a mole of chains. Lower M higher M M n total wt of polymer total # of molecules M M n w x M w M i i i i M w is more sensitive to higher molecular weights Adapted from Fig. 14.4, allister 7e. hapter 14-13

13 Degree of Polymerization, n n = number of repeat units per chain ( ) n i = 6 n n x i n i M n m n w w n i i M w m where m average molecularweight of repeat unit m f i m i hain fraction mol. wt of repeat unit i hapter 14-15

14 Polymers Molecular Shape onformation Molecular orientation can be changed by rotation around the bonds note: no bond breaking needed Depends on saturation of bonds, size of side chains Adapted from Fig. 14.5, allister 7e. Adapted from Fig. 14.6, allister 7e. hapter 14-17

15 Molecular Structures ovalent chain configurations and strength: secondary bonding Linear B ranched ross-linked Network Direction of increasing strength Adapted from Fig. 14.7, allister 7e. hapter 14-18

16 Isomerism Isomerism two compounds with same chemical formula can have quite different structures Ex: 8 18 n-octane = methyl-4-ethyl pentane (isooctane) 3 ( 2 ) hapter 14-19

17 Polymers Molecular Shape onfigurations to change must break bonds Stereoisomerism R R R or A A B D E E D B mirror plane hapter 14-20

18 hapter Tacticity Tacticity stereoregularity of chain R R R R R R R R R R R R isotactic all R groups on same side of chain syndiotactic R groups alternate sides atactic R groups random

19 cis/trans Isomerism cis cis-isoprene (natural rubber) bulky groups on same side of chain trans trans-isoprene (gutta percha) bulky groups on opposite sides of chain hapter 14-22

20 opolymers Adapted from Fig. 14.9, allister 7e. two or more monomers polymerized together random A and B randomly vary in chain alternating A and B alternate in polymer chain block large blocks of A alternate with large blocks of B graft chains of B grafted on to A backbone A B random alternating block graft hapter 14-23

21 Mechanical Properties i.e. stress-strain behavior of polymers brittle polymer FS of polymer ca. 10% that of metals elastic modulus less than metal plastic elastomer Strains deformations > 1000% possible (for metals, maximum strain ca. 10% or less) Adapted from Fig. 15.1, allister 7e. hapter 14-24

22 Tensile Response: Brittle & Plastic Near Failure Initial (MPa) x brittle failure onset of necking x unload/reload plastic failure e fibrillar structure near failure aligned, crosslinked case networked case semicrystalline case amorphous regions elongate crystalline regions align crystalline regions slide Stress-strain curves adapted from Fig. 15.1, allister 7e. Inset figures along plastic response curve adapted from Figs & 15.13, allister 7e. (Figs & are from J.M. Schultz, Polymer Materials Science, Prentice- all, Inc., 1974, pp ) hapter 14-25

23 Predeformation by Drawing Drawing (ex: monofilament fishline) -- stretches the polymer prior to use -- aligns chains in the stretching direction Results of drawing: -- increases the elastic modulus (E) in the stretching direction -- increases the tensile strength (TS) in the stretching direction -- decreases ductility (%EL) Annealing after drawing decreases alignment -- reverses effects of drawing. ompare to cold working in metals! Adapted from Fig , allister 7e. (Fig is from J.M. Schultz, Polymer Materials Science, Prentice-all, Inc., 1974, pp ) hapter 14-26

24 Tensile Response: Elastomer ase (MPa) x initial: amorphous chains are kinked, cross-linked. brittle failure plastic failure x elastomer Deformation is reversible! ompare to responses of other polymers: -- brittle response (aligned, crosslinked & networked polymer) -- plastic response (semi-crystalline polymers) e x final: chains are straight, still cross-linked Stress-strain curves adapted from Fig. 15.1, allister 7e. Inset figures along elastomer curve (green) adapted from Fig , allister 7e. (Fig is from Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd ed., John Wiley and Sons, 1987.) hapter 14-27

25 T and Strain Rate: Thermoplastics Decreasing T increases E -- increases TS -- decreases %EL Increasing strain rate same effects as decreasing T. (MPa) Data for the semicrystalline polymer: PMMA (Plexiglas) to 1.3 Adapted from Fig. 15.3, allister 7e. (Fig is from T.S. arswell and J.K. Nason, 'Effect of Environmental onditions on the Mechanical Properties of Organic Plastics", Symposium on Plastics, American Society for Testing and Materials, Philadelphia, PA, 1944.) e hapter 14-28

26 Ex: polyethylene unit cell Polymer rystallinity Adapted from Fig , allister 7e. rystals must contain the polymer chains in some way hain folded structure Adapted from Fig , allister 7e. 10 nm hapter 14-29

27 Polymer rystallinity Polymers rarely 100% crystalline Too difficult to get all those chains aligned % rystallinity: % of material that is crystalline. -- tensile strength and Young s modulus often increase with % crystallinity. -- Annealing causes crystalline regions to grow. % crystallinity increases. crystalline region amorphous region Adapted from Fig , allister 6e. (Fig is from.w. ayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1965.) hapter 14-30

28 Polymer rystal Forms Single crystals only if slow careful growth Adapted from Fig , allister 7e. hapter 14-31

29 Polymer rystal Forms Spherulites fast growth forms lamellar (layered) structures Spherulite surface Nucleation site Adapted from Fig , allister 7e. hapter 14-32

30 Spherulites crossed polarizers Maltese cross Adapted from Fig , allister 7e. hapter 14-33

31 Melting vs. Glass Transition Temp. What factors affect T m and T g? Both T m and T g increase with increasing chain stiffness hain stiffness increased by 1. Bulky sidegroups 2. Polar groups or sidegroups 3. Double bonds or aromatic chain groups Regularity affects T m only Adapted from Fig , allister 7e. hapter 14-34

32 ontrolling T m, T g T T m, T g tend to be correlated: - omopolymers: T g ~ T m mobile liquid viscous liquid allister, rubber Fig tough plastic T m T g crystalline solid partially crystalline solid Molecular weight Adapted from Fig , allister 7e. (Fig is from F.W. Billmeyer, Jr., Textbook of Polymer Science, 3rd ed., John Wiley and Sons, Inc., 1984.) hapter 14-35

33 Time Dependent Deformation Stress relaxation test: -- strain to eo and hold. -- observe decrease in stress with time. e o tensile test Relaxation modulus: E r ( t) ( t) e o strain (t) time Data: Large drop in E r for T > T g E r (10s) in MPa rigid solid (small relax) Sample T g ( ) values: PE (low density) PE (high density) PV PS P transition region viscous liquid (large relax) T( ) T g (amorphous polystyrene) Adapted from Fig. 15.7, allister 7e. (Fig is from A.V. Tobolsky, Properties and Structures of Polymers, John Wiley and Sons, Inc., 1960.) Selected values from Table 15.2, allister 7e. hapter 14-36

34 Time dependent deformation (cont.) Amorphous polystyrene hapter 14-37

35 Properties depend on % crystallinity hapter 14-38

36 an control crystallinity through heat processing eat processing of polypropylene: hapter 14-39

37 ANNOUNEMENTS Reading: ore Problems: Self-help Problems: hapter 14-40

Chapter 5: Structures of Polymers

Chapter 5: Structures of Polymers hapter 5: Structures of Polymers ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they

More information

Chapter 14: Polymer Structures

Chapter 14: Polymer Structures Chapter 14: Polymer Structures ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ

More information

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

The Fundamentals of Materials Science

The Fundamentals of Materials Science The Fundamentals of Materials Science An Introduction to Materials Science hapter 14: Polymer Structures Shengjuan Li Email:usstshenli@usst.edu.cn ISSUES TO ADDRESS... What are the general structural and

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

PHYSICS OF SOLID POLYMERS

PHYSICS OF SOLID POLYMERS PYSIS OF SOLID POLYMERS Professor Goran Ungar WU E, Department of hemical and Biological Engineering Recommended texts: G. Strobl, The Physics of Polymers, Springer 996 (emphasis on physics) U. Gedde,

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Polymers and Composite Materials

Polymers and Composite Materials Polymers and omposite Materials Shibu G. Pillai hemical Engineering Department shibu.pillai@nirmauni.ac.in ontents lassification of Polymers Types of polymerization Elastomers/ Rubber Advanced Polymeric

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2 Polymers Outline Introduction Molecular Structure and Configurations Polymer s synthesis Molecular weight of polymers Crystallinity You may think of polymers as being a relatively modern invention however

More information

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics Fairfax Science Olympiad Tryouts 2018 Name: _ Score: /75 MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics In questions 1-6, draw a diagram of the named functional group. Use R to denote the

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

15NT303E Molecular spectroscopy and its Applications Fifth Semester, (Odd semester)

15NT303E Molecular spectroscopy and its Applications Fifth Semester, (Odd semester) . SRM University Faculty of Engineering and Technology Department of Physics and Nanotechnology 15NT303E Molecular spectroscopy and its Applications Fifth Semester, 2017-18 (Odd semester) tailed Session

More information

Polymer ~ a large molecule built up by the constitutional repeating units(structural units)

Polymer ~ a large molecule built up by the constitutional repeating units(structural units) Polymer ~ a large molecule built up by the constitutional repeating units(structural units) Fundamental characteristics of polymers chemical structure and molecular mass distribution pattern ~ determine

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Chapters 2 & 25: Covalent bonds & Organic Chemistry

Chapters 2 & 25: Covalent bonds & Organic Chemistry hapters 2 & 25: ovalent bonds & Organic hemistry Read: BLB 2.6, 2.9; 25.1-25.4 (only nomenclature in Table 25.1, NOT reactions) W: BLB 2:43, 45, 69, 76, 77 BLB 25:11, 12, 25, 40a, c-f Packet Organic:1

More information

Chapter 12 Alkenes and Alkynes

Chapter 12 Alkenes and Alkynes BR M 102 lass Notes hapter 12 Page 1 of 8 hapter 12 Alkenes and Alkynes * alkenes = double bonds * alkynes triple bonds * aromatics or arenes alternating double and single bonds such as in benzene * saturated

More information

Polymers. What is a polymer? C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC)

Polymers. What is a polymer? C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) Polymers What s a polymer? Poly many mer repeat unt repeat unt Polyethylene (PE) l repeat unt l l Polyvnyl chlorde (PV) 3 Polypropylene (PP) 3 repeat unt 3 Ancent Polymer story Orgnally many natural polymers

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Polymer Classifications Mole. Wt. MSE 383, Unit 1-4 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Introduction Recall polymer (macromolecular) definition Covalent linkages

More information

Stress Relaxation Behaviour of PALFnDPE Composites

Stress Relaxation Behaviour of PALFnDPE Composites Chapter 7 Stress Relaxation Behaviour of PALFnDPE Composites The results presented in this chapter have been communicated for publication to Journal of Reinforced Plastics and Composites. 7.1 Introduction

More information

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting Thermoplastic Homopolymer Condensation Polymer Natural POLYMERS Synthetic Addition Polymer Copolymer Thermosetting Polymers are very large covalent molecular substances containing tens of thousands of

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

HISTORY OF ORGANIC CHEMISTRY

HISTORY OF ORGANIC CHEMISTRY hemistry 52 hapter 12 ISTORY OF ORGANI EMISTRY In the early days of chemistry, scientists classified chemical substances into 2 groups: 1. Inorganic: those that were composed of minerals, such as rocks

More information

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks]

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] Using various chemistry, one can chemically crosslink polymer chains. With sufficient cross-linking, the polymer

More information

(c) Dr. Payal B. Joshi

(c) Dr. Payal B. Joshi Polymer (Greek: poly=many; mer=part) Made up of large molecules characterized by repeating units called monomers held together by covalent bonds Functionality To act as monomer, it must have at least two

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics David I. Bower Formerly at the University of Leeds (CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xii xv 1 Introduction 1 1.1 Polymers and the scope of the book

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

Chapter 22. Organic and Biological Molecules

Chapter 22. Organic and Biological Molecules hapter 22 Organic and Biological Molecules hapter 22 Preview Organic and Biological Molecules Alkanes: Saturated ydrocarbons Isomerism, Nomenclature, Reactions of alkanes, yclic alkanes Alkenes, Alkynes,

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Reactions of Alkenes and Alkynes

Reactions of Alkenes and Alkynes 5 2 2 2 2 2 2 2 Reactions of Alkenes and Alkynes APTER SUMMARY Addition is the characteristic reaction of alkenes and alkynes. Since the carbons of a double or triple bond do not have the maximum number

More information

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

The functionality of a monomer is the number of binding sites that is/are present in that monomer. Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

HISTORY OF ORGANIC CHEMISTRY

HISTORY OF ORGANIC CHEMISTRY ISTORY OF ORGANI EMISTRY In the early days of chemistry, scientists classified chemical substances into 2 groups: 1. Inorganic: those that were composed of minerals, such as rocks and nonliving matter.

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Presentation shared files at:

Presentation shared files at: Forrest Schultz, PhD Wisconsin State Science Olympiad Director Director, 2016 Science Olympiad National Tournament Chemistry National Rules Committee Professor, Department of Chemistry and Physics University

More information

Unit title: Polymer Chemistry

Unit title: Polymer Chemistry Unit title: Polymer Chemistry Unit code: L/601/0415 QCF level: 5 Credit value: 15 Aim This unit enables learners to gain an understanding of aspects of the structure, reaction mechanisms and polymer preparations.

More information

III. Molecular Structure Chapter Molecular Size Size & Shape

III. Molecular Structure Chapter Molecular Size Size & Shape III. Molecular Structure Chapter 3. 3. Molecular Size Size & Shape Molecular Structure (1)Molecular Size & Shape Size : molecular weight molecular weight distribution Shape : branching (2) Molecular Flexibility

More information

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity: solid-state NMR of polymers Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity Structure Dynamics conformation, tacticity,

More information

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons hem101 General hemistry Lecture 11 Unsaturated ydrocarbons Unsaturated ydrocarbons ontain one or more double or triple carbon-carbon bond. University of Wisconsin-Eau laire hem101 - Lecture 11 2 Unsaturated

More information

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Supplemental Information Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Endian Wang and Fernando A. Escobedo Table S1 Lennard-Jones

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

More information

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization CHAPTER 4 Additional Ziegler-Natta polymerization is a method of vinyl polymerization. It's important because it allows one to make polymers of specific tacticity. Ziegler-Natta is especially useful, because

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Materials Engineering with Polymers

Materials Engineering with Polymers Unit 73: Unit code Materials Engineering with Polymers K/616/2556 Unit level 4 Credit value 15 Introduction This unit will provide students with the necessary background knowledge and understanding of

More information

HYDROCARBON COMPOUNDS

HYDROCARBON COMPOUNDS YDROARBON OMPOUNDS hapter Quiz lassify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. ydrocarbons are unsaturated. 22.2 2. The IUPA name for 3(2)33 is butane. 22.1

More information

POLYSTYRENE (General purpose)(gpps)

POLYSTYRENE (General purpose)(gpps) Eco-profiles of the European Plastics Industry POLYSTYRENE (General purpose)(gpps) A report by I Boustead for PlasticsEurope Data last calculated March 2005 gpps 1 IMPORTANT NOTE Before using the data

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers r NMR Spectroscopy of Polymers Edited by ROGER N. IBBETT Courtaulds Research and Technology Coventry BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow New York Tokyo Melbourne

More information

Polystyrene. Erica Wilkes

Polystyrene. Erica Wilkes Polystyrene Erica Wilkes Polystyrene is a polymer made from the synthetic aromatic monomer styrene. Styrene in turn comes from the catalytic dehydrogenation of ethylbenzene. Although ethylbenzene is found

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 On the basis of the structures presented in this chapter, sketch repeat unit

More information

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries 3.014 Materials Laboratory December 9-14, 005 Lab Week 4 Module α 1 Polymer chains as entropy springs: Rubber stretching experiment and XRD study Instructor: Gretchen DeVries Objectives Review thermodynamic

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Types of Covalent Bond

Types of Covalent Bond Types of ovalent Bond Sigma-bonds (s-bonds) are covalent bonds that form between two atoms with the bonding electron concentrated directly between the two atomic nuclei. They may form, for example, between

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

Explain how the structure and bonding of carbon lead to the diversity and number of organic compounds.

Explain how the structure and bonding of carbon lead to the diversity and number of organic compounds. Section 1 Organic ompounds Objectives Explain how the structure and bonding of carbon lead to the diversity and number of organic compounds. ompare the use of molecular and structural formulas to represent

More information

Name Date Class FUNCTIONAL GROUPS. SECTION 23.1 INTRODUCTION TO FUNCTIONAL GROUPS (pages )

Name Date Class FUNCTIONAL GROUPS. SECTION 23.1 INTRODUCTION TO FUNCTIONAL GROUPS (pages ) Name Date lass 23 FUNTINAL GRUPS SETIN 23.1 INTRDUTIN T FUNTINAL GRUPS (pages 725 729 This section defines a functional group and gives several examples. It also describes halocarbons and the substitution

More information

plane in a cubic unit cell. Clearly label the axes. (b) Draw two directions in the ( 112)

plane in a cubic unit cell. Clearly label the axes. (b) Draw two directions in the ( 112) Midterm Examination - Thursday, February 5, 8:00 9:5 AM Place all answers in a 8.5" x " Bluebook Allowed:, double-sided 8.5" x " page of notes must return with exam. Required: Picture ID when returning

More information

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 0.732. This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

How materials work. Compression Tension Bending Torsion

How materials work. Compression Tension Bending Torsion Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

More information

4 Organic and Biochemical Compounds

4 Organic and Biochemical Compounds APTER 6 4 Organic and Biochemical ompounds SETION The Structure of Matter KEY IDEAS As you read this section, keep these questions in mind: What is an organic compound? What is a polymer? What organic

More information

Unsaturated Hydrocarbons

Unsaturated Hydrocarbons Interchapter G Unsaturated ydrocarbons The flame from an acetylene torch. Acetylene, which is used extensively in welding, is an example of an unsaturated hydrocarbon. University Science Books, 2011. All

More information

Chapter 13 Alkenes and Alkynes & Aromatic Compounds

Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter Outline 13.1 Alkenes and Alkynes 13.2 Nomenclature of Alkenes and Alkynes 13.3 Cis Trans Isomers 13.4 Alkenes in Food and Medicine 13.6 Reactions

More information

NE 125 L. Title Page

NE 125 L. Title Page NE 125 L Title Page Name: Rajesh Swaminathan ID Number: 20194189 Partners Names: Clayton Szata 20193839 Sarvesh Varma 20203153 Experiment Number: 1 Experiment: Date Experiment was Started: Date Experiment

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions AS 91165 Demonstrate understanding of the properties of selected organic compounds Collated Polymer questions (2017) (a) Polyvinyl chloride (polychloroethene) is often used to make artificial leather.

More information

Chapter 24 From Petroleum to Pharmaceuticals

Chapter 24 From Petroleum to Pharmaceuticals hapter 24 From Petroleum to Pharmaceuticals 24.1 Petroleum Refining and the ydrocarbons 24.2 Functional Groups and Organic Synthesis 24.3 Pesticides and Pharmaceuticals IR Tutor and Infrared Spectroscopy

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications OR AS hemistry A 032 for first assessment in 206 omplete Tutor Notes www.boomerchemistry.com Section: 4..3 Alkenes E/Z Isomerism Alkenes Addition polymers 205 Boomer Publications page 43 page 45 page 5

More information

EL 3004 Material Biomedika Bab 22-23

EL 3004 Material Biomedika Bab 22-23 BAB 22 EL 3004 Material Biomedika Bab 22-23 POLYMERS [Adopsi dari: Zbigniew D Jastrzebski, The Nature And Properties of Engineering Materials, John Wiley & Sons, ISBN 0-471-63693-2, 1987, CHAPTER 10.]

More information

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Hard coal, which is high in carbon content any straight-chain or branched-chain

More information

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. INDEX Downloaded via 148.251.232.83 on June 15, 2018 at 06:15:49 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. A Absorption spectra of cellulose

More information

Organic Chemistry is the chemistry of compounds containing.

Organic Chemistry is the chemistry of compounds containing. Chapter 21 Lecture Notes Organic Chemistry Intro Organic Chemistry is the chemistry of compounds containing. The Bonding of Carbon Because carbon has four valence electrons, it can form covalent bonds.

More information

Can you imagine a world without plastics? Plastic soft drink containers,

Can you imagine a world without plastics? Plastic soft drink containers, 21 Polymer Parts R EA D I N G Can you imagine a world without plastics? Plastic soft drink containers, bags, pens, DVDs, and computer and television parts are just a few things made of plastics that would

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

Electronic materials and components-polymer types

Electronic materials and components-polymer types Introduction Electronic materials and components-polymer types Polymer science is a broad field that includes many types of materials which incorporate long chain structures with many repeated units. One

More information