Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur

Size: px
Start display at page:

Download "Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur"

Transcription

1 odule 5 Cable and Arche Veron CE IIT, Kharagpur

2 Leon 33 Two-nged Arch Veron CE IIT, Kharagpur

3 Intructonal Objectve: After readng th chapter the tudent wll be able to 1. Compute horzontal reacton n two-hnged arch b the method of leat work.. Wrte tran energ tored n two-hnged arch durng deformaton. 3. Anale two-hnged arch for external loadng. 4. Compute reacton developed n two hnged arch due to temperature loadng Introducton anl three tpe of arche are ued n practce: three-hnged, two-hnged and hngele arche. In the earl part of the nneteenth centur, three-hnged arche were commonl ued for the long pan tructure a the anal of uch arche could be done wth confdence. owever, wth the development n tructural anal, for long pan tructure tartng from late nneteenth centur engneer adopted two-hnged and hngele arche. Two-hnged arch the tatcall ndetermnate tructure to degree one. Uuall, the horzontal reacton treated a the redundant and evaluated b the method of leat work. In th leon, the anal of two-hnged arche dcued and few problem are olved to llutrate the procedure for calculatng the nternal force. 33. Anal of two-hnged arch A tpcal two-hnged arch hown n Fg. 33.1a. In the cae of two-hnged arch, we have four unknown reacton, but there are onl three equaton of equlbrum avalable. ence, the degree of tatcal ndetermnac one for twohnged arch. Veron CE IIT, Kharagpur

4 The fourth equaton wrtten conderng deformaton of the arch. The unknown redundant reacton b calculated b notng that the horzontal dplacement of hnge B zero. In general the horzontal reacton n the two hnged arch evaluated b traghtforward applcaton of the theorem of leat work (ee module 1, leon 4), whch tate that the partal dervatve of the tran energ of a tatcall ndetermnate tructure wth repect to tatcall ndetermnate acton hould vanh. ence to obtan, horzontal reacton, one mut develop an expreon for tran energ. Tpcall, an ecton of the arch (vde Fg 33.1b) ubjected to hear forcev, bendng moment and the axal compreon N. The tran energ due to bendng calculated from the followng expreon. U b U b = d (33.1) The above expreon mlar to the one ued n the cae of traght beam. owever, n th cae, the ntegraton need to be evaluated along the curved arch length. In the above equaton, the length of the centerlne of the arch, I the moment of nerta of the arch cro ecton, E the Young modulu of the arch materal. The tran energ due to hear mall a compared to the tran energ due to bendng and uuall neglected n the anal. In the cae of flat arche, the tran energ due to axal compreon can be apprecable and gven b, U a = N d AE (33.) Veron CE IIT, Kharagpur

5 The total tran energ of the arch gven b, U d = + N d AE (33.3) Now, accordng to the prncple of leat work U =, where choen a the redundant reacton. U = d + N AE N d = (33.4) Solvng equaton 33.4, the horzontal reacton evaluated Smmetrcal two hnged arch Conder a mmetrcal two-hnged arch a hown n Fg 33.a. Let C at crown be the orgn of co-ordnate axe. Now, replace hnge at B wth a roller upport. Then we get a mpl upported curved beam a hown n Fg 33.b. Snce the curved beam free to move horzontall, t wll do o a hown b dotted lne n Fg 33.b. Let and N be the bendng moment and axal force at an cro ecton of the mpl upported curved beam. Snce, n the orgnal arch tructure, there no horzontal dplacement, now appl a horzontal force a hown n Fg. 33.c. The horzontal force hould be of uch magntude, that the dplacement at B mut vanh. Veron CE IIT, Kharagpur

6 Veron CE IIT, Kharagpur

7 From Fg. 33.b and Fg 33.c, the bendng moment at an cro ecton of the arch ( D ), m be wrtten a = ( h ) (33.5) The axal compreve force at an cro ecton ( D ) m be wrtten a N = N + coθ (33.6) Where θ the angle made b the tangent at D wth horzontal (vde Fg 33.d). Subttutng the value of and N n the equaton (33.4), U = = ( h ) ( h ) d + N + coθ coθ d EA (33.7a) Veron CE IIT, Kharagpur

8 Let, ~ = h ~ ~ N + coθ d + coθ d = EA (33.7b) Solvng for, eld ~ d + ~ d + N coθ d + EA co EA θ d = = ~ d ~ d + N coθ d EA co θ d EA (33.8) Ung the above equaton, the horzontal reacton for an two-hnged mmetrcal arch m be calculated. The above equaton vald for an general tpe of loadng. Uuall the above equaton further mplfed. The econd term n the numerator mall compared wth the frt term and neglected n the anal. Onl n cae of ver accurate anal econd term condered. Alo for flat arched, coθ 1a θ mall. The equaton (33.8) now wrtten a, ~ d ~ d d + EA = (33.9) A axal rgdt ver hgh, the econd term n the denomnator m alo be neglected. Fnall the horzontal reacton calculated b the equaton = ~ d ~ d (33.1) For an arch wth unform cro ecton contant and hence, Veron CE IIT, Kharagpur

9 = ~ ~ d d (33.11) In the above equaton, the bendng moment at an cro ecton of the arch when one of the hnge replaced b a roller upport. ~ the heght of the arch a hown n the fgure. If the moment of nerta of the arch rb not contant, then equaton (33.1) mut be ued to calculate the horzontal reacton Temperature effect Conder an unloaded two-hnged arch of pan L. When the arch undergoe a unform temperature change of T C, then t pan would ncreae b α LT f t were allowed to expand freel (vde Fg 33.3a). α the co-effcent of thermal expanon of the arch materal. Snce the arch retraned from the horzontal movement, a horzontal force nduced at the upport a the temperature ncreaed. Veron CE IIT, Kharagpur

10 Now applng the Catglano frt theorem, U ~ co θ = α LT = d + d (33.1) EA Solvng for, = α LT ~ co θ d d EA + (33.13) The econd term n the denomnator m be neglected, a the axal rgdt qute hgh. Neglectng the axal rgdt, the above equaton can be wrtten a α LT = ~ d (33.14) Veron CE IIT, Kharagpur

11 Example 33.1 A emcrcular two hnged arch of contant cro ecton ubjected to a concentrated load a hown n Fg 33.4a. Calculate reacton of the arch and draw bendng moment dagram. Soluton: Takng moment of all force about hnge B lead to, R 4 = = kn ( ) 3 F = R = 1.67 kn ( ) (1) b Veron CE IIT, Kharagpur

12 From Fg. 33.4b, ~ Rnθ = x = R( 1 coθ ) d = R dθ () tanθ c = θ c = 6.18 = π rad Now, the horzontal reacton m be calculated b the followng expreon, = ~ ~ d d (3) Now the bendng moment at an cro ecton of the arch when one of the hnge replaced b a roller upport gven b, Veron CE IIT, Kharagpur

13 = R x = R R(1 coθ ) θ θ c and, = R = R R(1 coθ ) 4( x 8) R(1 coθ ) 4{ R(1 coθ ) 8} Integratng the numerator n equaton (3), θ θ π c (4) ~ d = θ = R = R c R R R 3 3 R (1 coθ )nθ dθ + π / π θ [ R c R(1 coθ ) 4{ R(1 coθ ) 8}] Rnθ Rdθ π ( 1 coθ )nθ dθ + R [ R R(1 coθ )nθ 4{ R(1 coθ )nθ 8nθ}] dθ π /.895 π /.895 π π π [ coθ ] + R [ R R( coθ ) ] [ 4 R( coθ ) ] + [ 4 8( coθ ) ] π /.895 π /.895 π /.895 [ R R] [ 4 (1.4667)] + [ 4 8(1.4667) ] 3 =.533R R + R R = ( ) = (5) The value of denomnator n equaton (3), after ntegraton, ~ d = π = R ( Rnθ ) π 3 Rdθ 1 coθ 3 π dθ = R = (6) ence, the horzontal thrut at the upport, Bendng moment dagram = = 19.9 kn (7) Bendng moment at an cro ecton of the arch gven b, Veron CE IIT, Kharagpur

14 = = R ~ R(1 coθ ) R nθ θ θ c (8) = (1 coθ ) 98.5nθ (1 coθ ) 98.5nθ 4(15(1 coθ ) 8) θ θ π (9) = c Ung equaton (8) and (9), bendng moment at an angle θ can be computed. The bendng moment dagram hown n Fg. 33.4c. Veron CE IIT, Kharagpur

15 Example 33. A two hnged parabolc arch of contant cro ecton ha a pan of 6m and a re of 1m. It ubjected to loadng a hown n Fg.33.5a. Calculate reacton of the arch f the temperature of the arch raed b 4 C. Aume co-effcent 6 of thermal expanon a α = 1 1 / C. Takng A a the orgn, the equaton of two hnged parabolc arch m be wrtten a, = x x (1) The gven problem olved n two tep. In the frt tep calculate the horzontal reacton due to 4 kn load appled at C. In the next tep calculate the horzontal reacton due to re n temperature. Addng both, one get the horzontal reacton at the hnge due to combned external loadng and temperature change. The horzontal reacton due to 4 kn load m be calculated b the followng equaton, Veron CE IIT, Kharagpur

16 1 = ~ d d (a) For temperature loadng, horzontal reacton gven b, α LT = d (b) Where L the pan of the arch. For 4 kn load, 1 6 d = R x dx + [ R x 4 ( x 1) ] dx (3) 1 Pleae note that n the above equaton, the ntegraton are carred out along the x-ax ntead of the curved arch ax. The error ntroduced b th change n the varable n the cae of flat arche neglgble. Ung equaton (1), the above equaton (3) can be eal evaluated. The vertcal reacton A calculated b takng moment of all force about B. ence, 1 R = [ 4 5 ] = kn 6 R = 6.67 kn. Now conder the equaton (3), l 1 1 dx = (33.33) x( x x ) dx b [(33.33) x 4( x 1) ]( x x ) dx 1 = = (4) Veron CE IIT, Kharagpur

17 l 6 1 dx = x 3 3 = 3 x dx (5) ence, the horzontal reacton due to appled mechancal load alone gven b, 1 l dx = = = 3.71 kn l 3 dx (6) The horzontal reacton due to re n temperature calculated b equaton (b), = = Takng E = kn/mm and I =.333m 4 = kn. (7) ence the total horzontal thrut = 1+ = kn. When the arch hape more complcated, the ntegraton d and d are accomplhed numercall. For th purpoe, dvde the arch pan n to n equal dvon. Length of each dvon repreented b (Δ ) (vde Fg.33.5b). At the mdpont of each dvon calculate the ordnate b ung the 1 equaton = x x. The above ntegral are approxmated a, 3 3 n 1 d = ( ) ( Δ) = 1 (8) n 1 d = = 1 ( ) ( Δ) The complete computaton for the above problem for the cae of external loadng hown n the followng table. (9) Veron CE IIT, Kharagpur

18 Table 1. Numercal ntegraton of equaton (8) and (9) Segme orzontal Correpond oment at ( ) ( Δ) ( ) ( Δ) nt dtance x ng that No eaured (m) Pont ( ) from A (m) (knm) ( ) ( Δ) = = = 3.73 kn ( ) ( Δ) (1) Th compare well wth the horzontal reacton computed from the exact ntegraton. Summar Two-hnged arch the tatcall ndetermnate tructure to degree one. Uuall, the horzontal reacton treated a the redundant and evaluated b the Veron CE IIT, Kharagpur

19 method of leat work. Toward th end, the tran energ tored n the twohnged arch durng deformaton gven. The reacton developed due to thermal loadng are dcued. Fnall, a few numercal example are olved to llutrate the procedure. Veron CE IIT, Kharagpur

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

V i Δ 1. Influence diagrams for beams can be constructed by applying a unit deformation at the beam location of Δ

V i Δ 1. Influence diagrams for beams can be constructed by applying a unit deformation at the beam location of Δ CE 33, Sprng 0 nfluence Lnes for eams and Frames / 7 An nfluence dagram for a truss represents the aal force of a partcular member due to a load at locaton. nfluence dagrams can be constructed for beams

More information

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur Module 11 Desgn o Jonts or Specal Loadng Verson ME, IIT Kharagpur Lesson 1 Desgn o Eccentrcally Loaded Bolted/Rveted Jonts Verson ME, IIT Kharagpur Instructonal Objectves: At the end o ths lesson, the

More information

INDETERMINATE STRUCTURES METHOD OF CONSISTENT DEFORMATIONS (FORCE METHOD)

INDETERMINATE STRUCTURES METHOD OF CONSISTENT DEFORMATIONS (FORCE METHOD) INETNTE STUTUES ETHO OF ONSISTENT EFOTIONS (FOE ETHO) If all the support reactons and nternal forces (, Q, and N) can not be determned by usng equlbrum equatons only, the structure wll be referred as STTIY

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems Internatonal Workhop on MehFree Method 003 1 Method Of Fundamental Soluton For Modelng lectromagnetc Wave Scatterng Problem Der-Lang Young (1) and Jhh-We Ruan (1) Abtract: In th paper we attempt to contruct

More information

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE The dfferent part of the dc machne manetc crcut / pole are yoke, pole, ar ap, armature teeth and armature core. Therefore, the ampere-turn /pole to etablh the

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2013 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Influence diagrams for beams can be constructed by applying a unit deformation at the beam location of. P x. Note: slopes of segments are equal

Influence diagrams for beams can be constructed by applying a unit deformation at the beam location of. P x. Note: slopes of segments are equal rdge esgn Revew of nfluence Lnes / 7 Sprng 0 nfluence dagrams can be constructed for beams for three types of forces : a) a partcular reacton b) the shear at a partcular locaton n the beam c) the bendng

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

Application to Plane (rigid) frame structure

Application to Plane (rigid) frame structure Advanced Computatonal echancs 18 Chapter 4 Applcaton to Plane rgd frame structure 1. Dscusson on degrees of freedom In case of truss structures, t was enough that the element force equaton provdes onl

More information

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law PHYS 00 Worked Eaple Week 05: ewton nd Law Poor Man Acceleroeter A drver hang an ar frehener fro ther rearvew rror wth a trng. When acceleratng onto the hghwa, the drver notce that the ar frehener ake

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fourth Edton CHTER MECHNICS OF MTERIS Ferdnand. Beer E. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech Unversty Stress and Stran xal oadng Contents Stress & Stran: xal oadng

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

Kinematics in 2-Dimensions. Projectile Motion

Kinematics in 2-Dimensions. Projectile Motion Knematcs n -Dmensons Projectle Moton A medeval trebuchet b Kolderer, c1507 http://members.net.net.au/~rmne/ht/ht0.html#5 Readng Assgnment: Chapter 4, Sectons -6 Introducton: In medeval das, people had

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

AP Statistics Ch 3 Examining Relationships

AP Statistics Ch 3 Examining Relationships Introducton To tud relatonhp between varable, we mut meaure the varable on the ame group of ndvdual. If we thnk a varable ma eplan or even caue change n another varable, then the eplanator varable and

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7 Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS OCD0 UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 07/08 FINITE ELEMENT AND DIFFERENCE SOLUTIONS MODULE NO. AME6006 Date: Wednesda 0 Ma 08 Tme: 0:00

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

8 Waves in Uniform Magnetized Media

8 Waves in Uniform Magnetized Media 8 Wave n Unform Magnetzed Meda 81 Suceptblte The frt order current can be wrtten j = j = q d 3 p v f 1 ( r, p, t) = ɛ 0 χ E For Maxwellan dtrbuton Y n (λ) = f 0 (v, v ) = 1 πvth exp (v V ) v th 1 πv th

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Chapter 7 Four-Wave Mixing phenomena

Chapter 7 Four-Wave Mixing phenomena Chapter 7 Four-Wave Mx phenomena We wll dcu n th chapter the general nonlnear optcal procee wth four nteract electromagnetc wave n a NLO medum. Frt note that FWM procee are allowed n all meda (nveron or

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

Geometrical Optics Mirrors and Prisms

Geometrical Optics Mirrors and Prisms Phy 322 Lecture 4 Chapter 5 Geometrcal Optc Mrror and Prm Optcal bench http://webphyc.davdon.edu/applet/optc4/default.html Mrror Ancent bronze mrror Hubble telecope mrror Lqud mercury mrror Planar mrror

More information

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,

More information

LAB 4: Modulus of elasticity

LAB 4: Modulus of elasticity LAB 4: Modulus of elastcty 1. Preparaton: modulus of elastcty (chapter15, p.79) Hook s law graphcal determnaton of modulus of elastcty (p.8) determnaton of modulus of elastcty n tenson and flexural stress

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Two-Layered Model of Blood Flow through Composite Stenosed Artery

Two-Layered Model of Blood Flow through Composite Stenosed Artery Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 4, Iue (December 9), pp. 343 354 (Prevouly, Vol. 4, No.) Applcaton Appled Mathematc: An Internatonal Journal (AAM) Two-ayered Model

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

HO 40 Solutions ( ) ˆ. j, and B v. F m x 10-3 kg = i + ( 4.19 x 10 4 m/s)ˆ. (( )ˆ i + ( 4.19 x 10 4 m/s )ˆ j ) ( 1.40 T )ˆ k.

HO 40 Solutions ( ) ˆ. j, and B v. F m x 10-3 kg = i + ( 4.19 x 10 4 m/s)ˆ. (( )ˆ i + ( 4.19 x 10 4 m/s )ˆ j ) ( 1.40 T )ˆ k. .) m.8 x -3 g, q. x -8 C, ( 3. x 5 m/)ˆ, and (.85 T)ˆ The magnetc force : F q (. x -8 C) ( 3. x 5 m/)ˆ (.85 T)ˆ F.98 x -3 N F ma ( ˆ ˆ ) (.98 x -3 N) ˆ o a HO 4 Soluton F m (.98 x -3 N)ˆ.8 x -3 g.65 m.98

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

FREE VIBRATION ANALYSIS OF CLAMPED-FREE COMPOSITE CYLINDRICAL SHELLS WITH AN INTERIOR RECTANGULAR PLATE

FREE VIBRATION ANALYSIS OF CLAMPED-FREE COMPOSITE CYLINDRICAL SHELLS WITH AN INTERIOR RECTANGULAR PLATE FREE VIBRATION ANALYSIS OF CLAPED-FREE COPOSITE CYLINDRICAL SHELLS WITH AN INTERIOR RECTANGULAR PLATE Young-Shn Lee and young-hwan Cho Department of echancal Degn Engneerng, Chungnam Natonal Unverty, 0

More information

2.3 Least-Square regressions

2.3 Least-Square regressions .3 Leat-Square regreon Eample.10 How do chldren grow? The pattern of growth vare from chld to chld, o we can bet undertandng the general pattern b followng the average heght of a number of chldren. Here

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling Internatonal Journal of Engneerng Reearch ISSN:39-689)(onlne),347-53(prnt) Volume No4, Iue No, pp : 557-56 Oct 5 On the SO Problem n Thermal Power Plant Two-tep chemcal aborpton modelng hr Boyadjev, P

More information

Physics 120. Exam #1. April 15, 2011

Physics 120. Exam #1. April 15, 2011 Phyc 120 Exam #1 Aprl 15, 2011 Name Multple Choce /16 Problem #1 /28 Problem #2 /28 Problem #3 /28 Total /100 PartI:Multple Choce:Crclethebetanwertoeachqueton.Anyothermark wllnotbegvencredt.eachmultple

More information

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam APPENDIX F A DISPACEMENT-BASED BEAM EEMENT WITH SHEAR DEFORMATIONS Never use a Cubc Functon Approxmaton for a Non-Prsmatc Beam F. INTRODUCTION { XE "Shearng Deformatons" }In ths appendx a unque development

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

Increase Decrease Remain the Same (Circle one) (2 pts)

Increase Decrease Remain the Same (Circle one) (2 pts) ME 270 Sample Fnal Eam PROBLEM 1 (25 ponts) Prob. 1 questons are all or nothng. PROBLEM 1A. (5 ponts) FIND: A 2000 N crate (D) s suspended usng ropes AB and AC and s n statc equlbrum. If θ = 53.13, determne

More information

Plan: Fuselages can. multideck

Plan: Fuselages can. multideck Lecture 22(18). TRENGTH ANALY OF FUELAGE Plan: 1. tructurally - power fuselage schemes. 2. trength analyss of fuselages cross-sectons. 3. emmonocoque fuselage cross-secton calculaton. Calculaton from external

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

BOUNDARY ELEMENT METHODS FOR VIBRATION PROBLEMS. Ashok D. Belegundu Professor of Mechanical Engineering Penn State University

BOUNDARY ELEMENT METHODS FOR VIBRATION PROBLEMS. Ashok D. Belegundu Professor of Mechanical Engineering Penn State University BOUNDARY ELEMENT METHODS FOR VIBRATION PROBLEMS by Aho D. Belegundu Profeor of Mechancal Engneerng Penn State Unverty ahobelegundu@yahoo.com ASEE Fello, Summer 3 Colleague at NASA Goddard: Danel S. Kaufman

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Virtual Work 3rd Year Structural Engineering

Virtual Work 3rd Year Structural Engineering Vrtual Work 3rd Year Structural Engneerng 2/ Dr. Coln Capran Contents. Introducton... 4. General... 4.2 Background... 5 2. The Prncple of Vrtual Work... 4 2. Defnton... 4 2.2 Vrtual Dsplacements... 7 2.3

More information

This appendix presents the derivations and proofs omitted from the main text.

This appendix presents the derivations and proofs omitted from the main text. Onlne Appendx A Appendx: Omtted Dervaton and Proof Th appendx preent the dervaton and proof omtted from the man text A Omtted dervaton n Secton Mot of the analy provded n the man text Here, we formally

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1) . (a) (cos θ + sn θ) = cos θ + cos θ( sn θ) + cos θ(sn θ) + (sn θ) = cos θ cos θ sn θ + ( cos θ sn θ sn θ) (b) from De Movre s theorem (cos θ + sn θ) = cos θ + sn θ cos θ + sn θ = (cos θ cos θ sn θ) +

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

KEY POINTS FOR NUMERICAL SIMULATION OF INCLINATION OF BUILDINGS ON LIQUEFIABLE SOIL LAYERS

KEY POINTS FOR NUMERICAL SIMULATION OF INCLINATION OF BUILDINGS ON LIQUEFIABLE SOIL LAYERS KY POINTS FOR NUMRICAL SIMULATION OF INCLINATION OF BUILDINGS ON LIQUFIABL SOIL LAYRS Jn Xu 1, Xaomng Yuan, Jany Zhang 3,Fanchao Meng 1 1 Student, Dept. of Geotechncal ngneerng, Inttute of ngneerng Mechanc,

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

More information

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD Journal o Appled Mathematc and Computatonal Mechanc 7, 6(4), 57-65 www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.4.6 e-issn 353-588 MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

A Mechanics-Based Approach for Determining Deflections of Stacked Multi-Storey Wood-Based Shear Walls

A Mechanics-Based Approach for Determining Deflections of Stacked Multi-Storey Wood-Based Shear Walls A Mechancs-Based Approach for Determnng Deflectons of Stacked Mult-Storey Wood-Based Shear Walls FPINNOVATIONS Acknowledgements Ths publcaton was developed by FPInnovatons and the Canadan Wood Councl based

More information

Principle of virtual work

Principle of virtual work Ths prncple s the most general prncple n mechancs 2.9.217 Prncple of vrtual work There s Equvalence between the Prncple of Vrtual Work and the Equlbrum Equaton You must know ths from statc course and dynamcs

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations

Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations Plate heores for Classcal and Lamnated plates Weak Formulaton and Element Calculatons PM Mohte Department of Aerospace Engneerng Indan Insttute of echnolog Kanpur EQIP School on Computatonal Methods n

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2.

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2. Projectle Moton Phc Inentor Parabolc Moton cured oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object, where the horzontal coponent

More information

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible?

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible? Chapter 5-6 (where we are gong) Ideal gae and lqud (today) Dente Partal preure Non-deal gae (next tme) Eqn. of tate Reduced preure and temperature Compreblty chart (z) Vapor-lqud ytem (Ch. 6) Vapor preure

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible?

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible? Survey Reult Chapter 5-6 (where we are gong) % of Student 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Hour Spent on ChE 273 1-2 3-4 5-6 7-8 9-10 11+ Hour/Week 2008 2009 2010 2011 2012 2013 2014 2015 2017 F17

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN0: Structural nalyss Exam I Wednesday, March 2, 2005 Dvson of Engneerng rown Unversty NME: General Instructons No collaboraton of any nd s permtted on ths examnaton. You may consult your own wrtten lecture

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information