ASSESSMENT OF ALGORITHMS FOR LAND SURFACE ANALYSIS DOWN-WELLING LONG-WAVE RADIATION AT THE SURFACE

Size: px
Start display at page:

Download "ASSESSMENT OF ALGORITHMS FOR LAND SURFACE ANALYSIS DOWN-WELLING LONG-WAVE RADIATION AT THE SURFACE"

Transcription

1 ASSESSMENT OF ALGORITHMS FOR LAND SURFACE ANALYSIS DOWN-WELLING LONG-WAVE RADIATION AT THE SURFACE Isabel F. Trigo, Carla Barroso, Sandra C. Freitas, Pedro Viterbo Instituto de Meteorologia, Rua C- Aeroporto, Lisboa, Portugal Abstract The Satellite Application Facility on Land Surface Analysis (LSA SAF) has been generating Downwelling Surface Longwave Flux (DSLF) from the Meteosat Second Generation (MSG) satellite, on a pixel-by-pixel basis, since the beginning of 005. The retrieved DSLF corresponds to instantaneous values, estimated every 30-minutes, for the whole Meteosat disk. DSLF can only be indirectly inferred from remotely sensed data. The LSA SAF approach makes use of separate bulk parameterization schemes suitable for clear and cloudy conditions, respectively. DSLF retrievals benefit from the signature of clouds and different cloud types on IR (Infrared) and VIS (Visible) channels, complemented with information on atmosphere water content and near surface air temperature available from Numerical Weather Prediction (NWP) fields. The comparison against in situ measurements (mostly obtained from BSRN - Baseline Surface Radiation Network - stations) suggests the LSA SAF DSLF is generally underestimated. This is particularly apparent for clear cases, with biases of the order of 10 Wm - to 0 Wm -. Cloudy pixels also tend to exhibit negative biases (mostly within 10 Wm - to 30 Wm -, for European sites), but higher dispersion than in clear cases. As a step forward to eliminate the detected biases, this work presents an assessment of different DSLF algorithms, valid for clear and cloudy conditions together with a new proposed formulation, applicable to all conditions. The different schemes are compared with modelled data MODTRAN and with in situ (BSRN) measurements. The modelled fluxes are estimated for the TIGR-like database that samples temperature and humidity profiles within ECMWF (European Centre for Medium-Range Weather Forecasts) re-analyses (ERA-40). This database presents a comprehensive and balanced set of atmospheric profiles, suitable for calibration/validation of radiative models/schemes. The new proposed algorithm expresses the effects of cloud cover, atmospheric temperature and humidity through parameterization of the emisssivity and the effective temperature. The calibration of this new parameterization scheme makes use of the MODTRAN DSLF values. When the algorithm is evaluated against in situ data, it reveals an overall better performance than the remaining formulations, and proves to be the most stable under moist and dry conditions. INTRODUCTION The Downwelling Surface Radiative Flux (DSLF), defined as the irradiance reaching the surface in the thermal infrared part of the spectrum (4-100 µm), is one of the components involved in the surface radiation budget. Estimations of this parameter are potentially important for the validation/verification of numerical weather forecast models, climate monitoring and also to assess energy and agricultural needs. The DSLF can be obtained through radiative transfer model calculations, if the properties of the overlaying air column are well known. Such atmospheric properties can be obtained from radio soundings, which are usually infrequent and geographically sparse. Furthermore, there are insufficient

2 direct measurements of this quantity, since the surface radiation observation network is particularly limited for the case of longwave observations (Niemelä et al., 001). Satellite measurements, which provide data with a wide coverage and temporal samplings of up to 15 minutes (in the case of the Meteosat Second Generation), are in the best position to allow retrieval of radiative fluxes over large areas. Clouds have a strong effect on the longwave radiation transfer because they modify the atmospheric emissivity at certain wavelengths; they are almost completely opaque to infrared radiation and prevent the escape of longwave radiation into space. DSLF is greater when clouds are present, especially in the case when low clouds are warmer than the surface. In the thermal window part of the spectrum the downward fluxes are dominated by the concentration and temperature of the atmospheric water vapour, but if clouds are present, most radiation is emitted at cloud bottom. Temperature and height of the optically thick thermal surface may be determined by NWP models or vertical sounders (TOVS), while cloud properties may be inferred from satellite data. Several methods have been developed aiming to estimate the DSLF from top of atmosphere satellite observations. The Satellite Application Facility on Land Surface Analysis (LSA SAF) makes use of a semi-empirical method to obtain DSLF every 30 minutes from Meteosat Second Generation TOA observations, on a pixel-by-pixel basis. The DSLF retrievals benefit from the signature of clouds and different cloud types on IR (Infrared) and VIS (Visible) channels, obtained from the Nowcasting SAF (NWC SAF; complemented with information on atmosphere water content and near surface air temperature available from NWP fields. The latter, obtained from ECMWF (European Centre for Medium-Range Weather Forecasts) 1 to 4 hours forecast, indirectly include information from atmospheric sounders and other available observations, and thus correspond to the best knowledge of atmospheric profiles for each time-slot. The LSA SAF approach to estimate DSLF considers separate bulk parameterization schemes suitable for clear (Prata, 1996) and cloudy conditions (Josey et al., 003), respectively. In this paper an evaluation of four different longwave (LW) radiation parameterization schemes is presented, which include the clear and cloudy algorithms currently used by the LSA SAF, a parameterization for clear pixels from Dilley and O Brien (1998), and a new proposed parameterization. The latter one corresponds to a modified version of the algorithm developed by Prata (1996), applicable to all situations. The parameterizations are compared with values simulated by MODTRAN and with in situ measurements from a set of Baseline Surface Radiation Network (BSRN) stations. PARAMETERIZATION SCHEMES There are several approaches to compute DSLF from bulk parameterization schemes that are based on the Stefan-Boltzmann law, considering that the atmospheric layer immediately above the surface emits IR radiation at a temperature T, and with an effective emissivity ε : 4 F = σε T (1) Table 1 summarizes the different assumptions/formulations adopted by the parameterizations assessed in this study. For clear conditions, the emissivity ε is typically defined as a function of the atmosphere humidity and the screen level air temperature (Niemelä et al., 001). In the formulation proposed by Prata (1996), applicable for clear, the effective emissivity depends explicitly on the water vapour content of the atmosphere ( w ), and the coefficients are empirical constants derived from observational data. Other formulation applicable under clear conditions developed by Dilley and O Brien (1998) considers the emissivity as a function of w and screen level air temperature. In this case, the parameters were determined by comparing model irradiances with irradiances computed from radiative transfer model computations. The LSA SAF has used this latter algorithm since the

3 beginning of its pre-operational activities (in 005) to retrieve DSLF for clear conditions. Nevertheless validation studies conducted by the LSA SAF (LSA SAF Validation Report_1.6, 007) have revealed that the formulation derived by Prata (1996) presented slightly better results, particularly for the European sites. Scheme ε T Applicable Conditions Prata (1996) 1 w w 1 + exp w = total column water vapour (mm) T T = two meters air temperature (K) Clear Sky Dilley and O Brien (1998) τ = 1 exp ( 1.66τ ) 1 T w T Clear Sky Josey et al. (003) 1 T n +.34n Td T 4.01 ( ) 0 + All Sky Conditions n=cloud fraction; T =dew point (K) Prata MODIFIED w w exp α + β α, β, m - new parameters cloud cover dependent m T + γ T T ) + δ ( d γ, δ - new parameters cloud cover dependent All Sky Conditions Table 1: Terms of eq. 1 in the parameterizations under analysis. The parameterization scheme proposed by Josey et al. (003) is expressed in terms of the surface temperature adjustment necessary to obtain the effective temperature of a blackbody, which emits a radiative flux equivalent to the atmospheric longwave. This effective temperature ( T ) is a function of the total cloud amount and of the dew point depression. For the case of DSLF retrieved by the LSA SAF the required information on clouds is obtained from NWC SAF software ( and the temperature and humidity of the atmosphere are obtained from ECMWF forecasts. This formulation, applicable under all conditions was calibrated with cruise measurements over the Atlantic Ocean (Josey et al., 003). The new formulation proposed in this study (Prata MODIFIED ) is based on the scheme first developed by Prata (1996), but with both the emisssivity and the effective temperature adjusted according to the cloud cover, temperature and atmospheric water vapour content. This new formulation is applicable to all situations, considering that DSLF is given by: PRATAMOD CLOUD ( n) DSLFPRATAMOD CLEAR DSLF = ndslf + 1 () where n is the fraction of cloud cover and DSLF ( PRATAMOD CLOUD DSLF ) is the new modified PRATAMOD CLEAR Prata formulation with coefficients calibrated for cloudy (clear) conditions.

4 NEW DSLF FORMULATION - CALIBRATION The new parameterization presented here was calibrated with data obtained from radiative transfer model calculations. The MODerate spectral resolution atmospheric TRANSsmittance algorithm (MODTRAN4; Berk et al., 000) was used to compute synthetic DSLF (hereafter DSLFMODTRAN) for TIGR-like database (Chevallier et al., 001). The TIGR-like database consists of a sample of atmospheric profiles (temperature, moisture, etc) collected from ECMWF reanalysis (ERA-40), which are representative for radiative transfer modelling. The coefficients of the new parameterization scheme were estimated separately for clear and conditions, corresponding to profiles in the TIGRlike database with total cloud cover above 90% and below 10%, respectively. PARAMETERIZATIONS VERSUS MODTRAN The different parameterizations are compared with MODTRAN simulated fluxes. The comparison between the schemes under study and MODTRAN simulations shows a fairly good agreement for all algorithms. In the case of cloudy conditions, the scheme developed by Josey et al. (003), agrees well with MODTRAN simulations for fluxes below approximately 300 Wm - (Fig.1), which are typical of mid-tohigh latitudes corresponding to the regions where the algorithm was calibrated; higher DSLF values are strongly underestimated. The new parameterization shows a low bias of 3. Wm - with a root mean square error (RMSE) of 11.4 Wm - against the observed bias of 54.4 Wm - and a RMSE of 5.5 Wm - obtained with Josey et al. (003) formulation. Figure 1: Scatterplot of DSLF values estimated using a bulk parameterization scheme (see color code) versus MODTRAN simulations, for cloudy conditions. In the case of clear conditions, the algorithm by Josey et al. (003) reveals again a clear conditional bias, with underestimations of high DSLF values (Fig.). Table contains the mean differences and root mean square differences between each scheme and MODTRAN. The mean differences are considerably low for all the algorithms under analysis. The new formulation shows a good fit to the MODTRAN simulations with bias and RMSE, of -0.4 Wm - and 9.1 Wm -, respectively.

5 Figure : As in Fig. 1, but for clear conditions. Scheme Bias (Wm - ) RMSE (Wm - ) Prata (1996) Dilley&O Brien(1998) Josey et al. (003) Prata_modified Table : Mean differences (Bias) and mean square differences (RMSE) for the different parameterization schemes under study, observed in the comparison with MODTRAN simulated data, for the case of clear conditions. The analysis of model performance with atmospheric water content (for clear conditions) shows very clearly that Josey et al. (003) algorithm has increasing biases for higher total column water vapour (TCWV) values (Fig.3). It should be noted, however, that the number of points that falls into this higher classes is considerably smaller than those corresponding to TCWV<10 mm (35 points from a sample of 488 profiles). In any case it is clear that the modified Prata scheme seems to be the most stable under both dry and moist conditions; the worst mean difference is found to be approximately 10 Wm - for the most extreme TCWV atmospheric content (above 40 mm), in which only 1 cases fall into. Figure 3: Mean differences between parameterized DSLF (see colour code) and MODTRAN, estimated per classes of total column water vapour, for clear sly conditions.

6 PARAMETERIZATIONS VERSUS IN SITU OBSERVATIONS Since the new parameterization scheme was calibrated with MODTRAN simulations, it can only be properly validated against independent observational data. Estimations of DSLF obtained from the formulations presented above are compared with long-wave fluxes measured at the four BSRN stations indicated in Fig. 4. The observation period ranges from January-December 005 to July- November 005 (in the case of Tamanrasset). Figure 4: Location of stations with in situ measurements of IR downward fluxes at the surface, used in the current study. For clear situations, all the considered schemes, with the exception of Josey et al. (003) at Tamanrasset, show mean differences between estimated and observed DSLF of less than about 0 Wm - and mean root square differences < 30Wm - (Fig. 5). Clear Sky: Figure 5: Mean differences (left) and mean square differences (right) between DSLF estimated with the parameterization schemes under study (see colour code) and in situ observations, for clear conditions. For partially cloudy conditions Josey et al. (003) formulation is shown to perform worse for all of the stations, with mean differences between estimated and observed DSLF greater than about 30 Wm - and RMSE also > 30 Wm -. Under these conditions, RMSE is also higher for the Prata MODIFIED (of about 0 Wm - for most of the stations), but the bias tend to remain below 15 Wm - for most sites.

7 Partially cloudy: Figure 6: As in Fig. 5, but for partially cloudy conditions. The comparisons of parameterizations versus in situ observations for overcast situations is presented in Fig. 7; both Josey et al. (003) and Prata MODIFIED schemes show a very good agreement, with the exception of Tamanrasset, with biases less then 10 Wm - and mean square differences of less then 30 Wm -. Overcast: Figure 7: As in Fig. 5, but for overcast conditions. CONCLUSIONS This study presents an assessment of a set of bulk parameterizations of IR downwelling fluxes at the surface. Two of the considered formulations are applicable only to clear conditions, the one presented by Prata (1996) and the one by Dilley and O Brien (1998). The former is the algorithm currently being used by the LSA SAF for the estimation of clear DSLF; for cloudy conditions the methodology relies on the formulation proposed by Josey et al. (003). In an attempt to derive a formula applicable to both clear and cloudy conditions, the formulation first proposed by Prata (1996) was adapted to make a correction of both the emisssivity and the effective temperature taking into account the cloud cover, temperature and atmospheric water vapour content. This new parameterization was calibrated using data simulated by MODTRAN for TIGR-like database (Chevallier et al., 001).

8 The performance of the four considered formulations are evaluated by comparing the longwave flux estimated by the different schemes with data simulated by MODTRAN, and to a set of local measurements from BSRN stations located over Europe (namely Roissy, Carpentras and Payerne) and over Africa (Tamanrasset). The comparisons between DSLF obtained from the different schemes and data modelled with MODTRAN reveal good agreement for all the algorithms, except for Josey et al. (003) in cases of high atmospheric water vapour contents (greater than about 10 mm). Nevertheless the new proposed formulation shows the best results, with biases of 0.4 Wm - and 3. Wm - for the cases of clear and cloudy conditions, respectively and is also found to be very stable for both dry and moist conditions. When compared against in situ observations, the algorithms show fairly good performance over the European sites, and specially for the extreme situations of clear and overcast, with mean differences not greater than 0 Wm - in most of the cases. Over Africa the results are quite similar, except for Josey et al. (003), that strongly underestimates the observed flux for all situations. Overall the new proposed formulation, Prata MODIFIED, applicable for clear and cloudy cases, presents the most consistent statistics, when compared with MODTRAN simulated and observed IR fluxes. ACKNOWLEDGMENTS This work has been carried out within the scope of LSA SAF, co-funded by EUMETSAT. REFERENCES Berk, A., G.P. Anderson, P.K. Acharya, J.H. Chetwynd, L.S. Bernstein, E.P. Shettle, M.W. Matthew, and S.M. Alder-Golden, (000): MODTRAN4 Version User s Manual Air Force Res. Lab., Space Vehicles Directorate, Air Force Material Command, Hanscom AFB, MA, 000. Chevallier, F., (001): Sampled databases of 60-level atmospheric profiles from the ECMWF analyses. Numerical Weather Prediction Satellite Application Facility Research Report [NWP SAF Res. Rep.] no. 4, Jan 00. Dilley, A.C. and D.M. O Brien (1998): Estimating downward clear long-wave irradiance at the surface from screen temperature and precipitable water, Q. J. R. Meteorol. Soc., 14, Josey, S.A., Pascal, R.W., Taylor, P.K., Yelland, M.J., (003): A New Formula For Determining the Atmospheric Longwave Flux at Ocean Surface at Mid-High Latitudes. J Geophys. Res., doi:10.109/00jc LSA SAF (007): Validation Report, version Niemelä, S., P Räisänen, H Savijärvi (001): Comparison of surface radiative flux parametrizations. Part I: Longwave radiation. Atmosph. Res., 58, Prata, A.J. (1996): A new long-wave formula for estimating downward clear- radiation at the surface, Q. J. R. Meteorol. Soc., 1,

Isabel Trigo, Sandra Freitas, Carla Barroso, Isabel Monteiro, Pedro Viterbo

Isabel Trigo, Sandra Freitas, Carla Barroso, Isabel Monteiro, Pedro Viterbo Land Surface Temperature, Emissivity and Long-Wave Downwlling Fluxes from MSG Observations: current status and way forward Isabel Trigo, Sandra Freitas, Carla Barroso, Isabel Monteiro, Pedro Viterbo 1

More information

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS Cristina Madeira, Prasanjit Dash, Folke Olesen, and Isabel Trigo, Instituto de Meteorologia, Rua C- Aeroporto, 700-09 Lisboa,

More information

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS Bernhard Geiger, Dulce Lajas, Laurent Franchistéguy, Dominique Carrer, Jean-Louis Roujean, Siham Lanjeri, and Catherine Meurey

More information

A satellite-based long-term Land Surface Temperature Climate Data Record

A satellite-based long-term Land Surface Temperature Climate Data Record Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss A satellite-based long-term Land Surface Temperature Climate Data Record, Virgílio A. Bento, Frank M. Göttsche,

More information

Satellite Application Facility on Land Surface Analysis (LSA-SAF/Land SAF): Products and applications

Satellite Application Facility on Land Surface Analysis (LSA-SAF/Land SAF): Products and applications Satellite Application Facility on Land Surface Analysis (LSA-SAF/Land SAF): Products and applications by: Alirio Arboleda Acknowledgments: Carla Barroso Isabel Trigo LSA SAF consortium Layout What is the

More information

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI Marianne König, Dieter Klaes EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany Abstract EUMETSAT operationally generates the Global Instability

More information

OSI SAF SST Products and Services

OSI SAF SST Products and Services OSI SAF SST Products and Services Pierre Le Borgne Météo-France/DP/CMS (With G. Legendre, A. Marsouin, S. Péré, S. Philippe, H. Roquet) 2 Outline Satellite IR radiometric measurements From Brightness Temperatures

More information

VALIDATION OF THE OSI SAF RADIATIVE FLUXES

VALIDATION OF THE OSI SAF RADIATIVE FLUXES VALIDATION OF THE OSI SAF RADIATIVE FLUXES Pierre Le Borgne, Gérard Legendre, Anne Marsouin Météo-France/DP/Centre de Météorologie Spatiale BP 50747, 22307 Lannion, France Abstract The Ocean and Sea Ice

More information

Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives. Isabel Trigo

Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives. Isabel Trigo Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives Isabel Trigo Outline EUMETSAT Land-SAF: Land Surface Temperature Geostationary Service SEVIRI Polar-Orbiter AVHRR/Metop

More information

LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION)

LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION) LAND SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FROM MSG GEOSTATIONARY SATELLITE (METHOD FOR RETRIEVAL, VALIDATION, AND APPLICATION) Dominique Carrer, Jean-Louis Roujean, Olivier Hautecoeur, Jean-Christophe

More information

EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES

EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES Arboleda, N. Ghilain, F. Gellens-Meulenberghs Royal Meteorological Institute, Avenue Circulaire, 3, B-1180 Bruxelles, BELGIUM Corresponding

More information

SAFNWC/MSG SEVIRI CLOUD PRODUCTS

SAFNWC/MSG SEVIRI CLOUD PRODUCTS SAFNWC/MSG SEVIRI CLOUD PRODUCTS M. Derrien and H. Le Gléau Météo-France / DP / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT Within the SAF in support to Nowcasting and Very Short

More information

Saharan Dust Longwave Radiative Forcing using GERB and SEVIRI

Saharan Dust Longwave Radiative Forcing using GERB and SEVIRI Imperial College London Saharan Dust Longwave Radiative Forcing using GERB and SEVIRI Vincent Gimbert 1, H.E. Brindley 1, Nicolas Clerbaux 2, J.E. Harries 1 1. Blackett Laboratory, Imperial College, London

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT Why satellite data for climate monitoring? Global coverage Global consistency, sometimes also temporal consistency High spatial

More information

EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products

EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products Jochen Grandell 1 EUM/RSP/VWG/17/921460 Outline Overview of EUMETSAT missions Current...and

More information

Outgoing Longwave Radiation Product: Product Guide

Outgoing Longwave Radiation Product: Product Guide Outgoing Longwave Radiation Product: Product Guide Doc.No. : EUM/OPS/DOC/09/5176 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Issue : v1e Fax: +49 6151 807 555 Date : 6 May

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Evapotranspiration monitoring with Meteosat Second Generation satellites: method, products and utility in drought detection.

Evapotranspiration monitoring with Meteosat Second Generation satellites: method, products and utility in drought detection. Evapotranspiration monitoring with Meteosat Second Generation satellites: method, products and utility in drought detection. Nicolas Ghilain Royal Meteorological Institute Belgium EUMeTrain Event week

More information

Surface Radiation Budget from ARM Satellite Retrievals

Surface Radiation Budget from ARM Satellite Retrievals Surface Radiation Budget from ARM Satellite Retrievals P. Minnis, D. P. Kratz, and T. P. charlock Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia

More information

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Ed Pavelin and Stephen English Met Office, Exeter, UK Abstract A practical approach to the assimilation of cloud-affected

More information

NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting

NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting NWC-SAF Satellite Application Facility in Support to Nowcasting and Very Short Range Forecasting Marianne König Slide 1 Satellite Application Facilities (SAFs) in Europe Member State Cooperating State

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Bias correction of satellite data at Météo-France

Bias correction of satellite data at Météo-France Bias correction of satellite data at Météo-France É. Gérard, F. Rabier, D. Lacroix, P. Moll, T. Montmerle, P. Poli CNRM/GMAP 42 Avenue Coriolis, 31057 Toulouse, France 1. Introduction Bias correction at

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Remote sensing derived evapotranspiration: comparisons to observations and models and results over the full MSG disk and selected basins

Remote sensing derived evapotranspiration: comparisons to observations and models and results over the full MSG disk and selected basins 4 th LSA-SAF WORKSHOP Toulouse,France, 15 th to 17 th November 2010 Remote sensing derived evapotranspiration: comparisons to observations and models and results over the full MSG disk and selected basins

More information

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation G. A. Kelly, M. Tomassini and M. Matricardi European Centre for Medium-Range Weather Forecasts, Reading,

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION Kenneth Holmlund EUMETSAT Am Kavalleriesand 31 64293 Darmstadt Germany ABSTRACT The advent of the Meteosat Second Generation

More information

ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USING THE RADIANCE VALUES OF MODIS

ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USING THE RADIANCE VALUES OF MODIS ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USIN THE RADIANCE VALUES OF MODIS M. Moradizadeh a,, M. Momeni b, M.R. Saradjian a a Remote Sensing Division, Centre of Excellence

More information

Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model

Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model Niama Boukachaba, Vincent Guidard, Nadia Fourrié CNRM-GAME, Météo-France and CNRS,

More information

Towards a better use of AMSU over land at ECMWF

Towards a better use of AMSU over land at ECMWF Towards a better use of AMSU over land at ECMWF Blazej Krzeminski 1), Niels Bormann 1), Fatima Karbou 2) and Peter Bauer 1) 1) European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park,

More information

A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes

A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. C4, 3108, doi:10.1029/2002jc001418, 2003 A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes S. A. Josey

More information

Simulation and validation of land surface temperature algorithms for MODIS and AATSR data

Simulation and validation of land surface temperature algorithms for MODIS and AATSR data Tethys, 4, 27 32, 2007 www.tethys.cat ISSN-1697-1523 eissn-1139-3394 DOI:10.3369/tethys.2007.4.04 Journal edited by ACAM (Associació Catalana de Meteorologia) Simulation and validation of land surface

More information

A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements

A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements A Longwave Broadband QME Based on ARM Pyrgeometer and AERI Measurements Introduction S. A. Clough, A. D. Brown, C. Andronache, and E. J. Mlawer Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts

More information

Atmospheric longwave radiation under cloudy skies for HAM simulation programs

Atmospheric longwave radiation under cloudy skies for HAM simulation programs Atmospheric longwave radiation under cloudy skies for HAM simulation programs Claudia Finkenstein, Prof. Peter Häupl Institute of Building Climatology, Dept. of Architecture, TU Dresden, D- 162 Dresden

More information

WACMOS-ET LST Product. Algorithm Theoretical Basis Document

WACMOS-ET LST Product. Algorithm Theoretical Basis Document WACMOS-ET LST Product Algorithm Theoretical Basis Document João Paulo Martins Isabel Franco Trigo Ana Cordeiro Pires Instituto Português do Mar e da Atmosfera 2014 Contents 1 Summary... 3 2 Introduction...

More information

Seeking a consistent view of energy and water flows through the climate system

Seeking a consistent view of energy and water flows through the climate system Seeking a consistent view of energy and water flows through the climate system Robert Pincus University of Colorado and NOAA/Earth System Research Lab Atmospheric Energy Balance [Wm -2 ] 340.1±0.1 97-101

More information

The skill of ECMWF cloudiness forecasts

The skill of ECMWF cloudiness forecasts from Newsletter Number 143 Spring 215 METEOROLOGY The skill of ECMWF cloudiness forecasts tounka25/istock/thinkstock doi:1.21957/lee5bz2g This article appeared in the Meteorology section of ECMWF Newsletter

More information

Hyperspectral Observations of Land Surfaces: Temperature & Emissivity

Hyperspectral Observations of Land Surfaces: Temperature & Emissivity Hyperspectral Observations of Land Surfaces: Temperature & Emissivity Isabel F. Trigo Contributions from: Frank Göttsche, Filipe Aires, Maxime Paul Outline Land Surface Temperature Products & Requirements

More information

EXPERIENCE IN THE HEIGHT ATTRIBUTION OF PURE WATER VAPOUR STRUCTURE DISPLACEMENT VECTORS

EXPERIENCE IN THE HEIGHT ATTRIBUTION OF PURE WATER VAPOUR STRUCTURE DISPLACEMENT VECTORS EXPERIENCE IN THE HEIGHT ATTRIBUTION OF PURE WATER VAPOUR STRUCTURE DISPLACEMENT VECTORS G. Büche, H, Karbstein, and H. Fischer Institut für Meteorologie und Klimaforschung Forschungszentrum Karlsruhe/Universität

More information

GUEDJ Stephanie KARBOU Fatima RABIER Florence LSA-SAF User Workshop 2010, Toulouse

GUEDJ Stephanie KARBOU Fatima RABIER Florence LSA-SAF User Workshop 2010, Toulouse CNRM/GAME GUEDJ Stephanie KARBOU Fatima RABIER Florence LSA-SAF User Workshop 2010, Toulouse INTRODUCTION (1/3) SEVIRI instrument Radiometer onboard METEOSAT-8/-9 (geostationnary) Measures «top-of-atmosphere»

More information

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA R. Meerkötter 1, G. Gesell 2, V. Grewe 1, C. König 1, S. Lohmann 1, H. Mannstein 1 Deutsches Zentrum für Luft- und Raumfahrt

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information

The potential impact of ozone sensitive data from MTG-IRS

The potential impact of ozone sensitive data from MTG-IRS The potential impact of ozone sensitive data from MTG-IRS R. Dragani, C. Lupu, C. Peubey, and T. McNally ECMWF rossana.dragani@ecmwf.int ECMWF May 24, 2017 The MTG IRS Long-Wave InfraRed band O 3 Can the

More information

Data assimilation of IASI radiances over land.

Data assimilation of IASI radiances over land. Data assimilation of IASI radiances over land. PhD supervised by Nadia Fourrié, Florence Rabier and Vincent Guidard. 18th International TOVS Study Conference 21-27 March 2012, Toulouse Contents 1. IASI

More information

P2.7 A GLOBAL INFRARED LAND SURFACE EMISSIVITY DATABASE AND ITS VALIDATION

P2.7 A GLOBAL INFRARED LAND SURFACE EMISSIVITY DATABASE AND ITS VALIDATION P2.7 A GLOBAL INFRARED LAND SURFACE EMISSIVITY DATABASE AND ITS VALIDATION Eva E. Borbas*, Leslie Moy, Suzanne W. Seemann, Robert O. Knuteson, Paolo Antonelli, Jun Li, Hung-Lung Huang, Space Science and

More information

22nd-26th February th International Wind Workshop Tokyo, Japan

22nd-26th February th International Wind Workshop Tokyo, Japan New developments in the High Resolution Winds Product (HRW), at the Satellite Application Facility on support to Nowcasting and Very short range forecasting (NWCSAF) 22nd-26th February 2010 10th International

More information

Results from the ARM Mobile Facility

Results from the ARM Mobile Facility AMMA Workshop, Toulouse, November 2006 Results from the ARM Mobile Facility Background Anthony Slingo Environmental Systems Science Centre University of Reading, UK Selected results, including a major

More information

For the operational forecaster one important precondition for the diagnosis and prediction of

For the operational forecaster one important precondition for the diagnosis and prediction of Initiation of Deep Moist Convection at WV-Boundaries Vienna, Austria For the operational forecaster one important precondition for the diagnosis and prediction of convective activity is the availability

More information

Validation of Direct Normal Irradiance from Meteosat Second Generation. DNICast

Validation of Direct Normal Irradiance from Meteosat Second Generation. DNICast Validation of Direct Normal Irradiance from Meteosat Second Generation DNICast A. Meyer 1), L. Vuilleumier 1), R. Stöckli 1), S. Wilbert 2), and L. F. Zarzalejo 3) 1) Federal Office of Meteorology and

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

CTTH Cloud Top Temperature and Height

CTTH Cloud Top Temperature and Height CTTH Cloud Top Temperature and Height 15 th June 2004 Madrid Hervé Le Gléau and Marcel Derrien Météo-France / CMS lannion 1 Plan of CTTH presentation Algorithms short description Some examples Planned

More information

Extraction of incident irradiance from LWIR hyperspectral imagery

Extraction of incident irradiance from LWIR hyperspectral imagery DRDC-RDDC-215-P14 Extraction of incident irradiance from LWIR hyperspectral imagery Pierre Lahaie, DRDC Valcartier 2459 De la Bravoure Road, Quebec, Qc, Canada ABSTRACT The atmospheric correction of thermal

More information

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth I. The arth as a Whole (Atmosphere and Surface Treated as One Layer) Longwave infrared (LWIR) radiation earth to space by the earth back to space Incoming solar radiation Top of the Solar radiation absorbed

More information

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF Carole Peubey, Tony McNally, Jean-Noël Thépaut, Sakari Uppala and Dick Dee ECMWF, UK Abstract Currently, ECMWF assimilates clear sky radiances

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT P2.32 GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT Jun Li, Fengying Sun, Suzanne Seemann, Elisabeth Weisz, and Hung-Lung Huang Cooperative Institute for Meteorological Satellite Studies (CIMSS) University

More information

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003 Christian Sutton Microwave Water Radiometer measurements of tropospheric moisture ATOC 5235 Remote Sensing Spring 23 ABSTRACT The Microwave Water Radiometer (MWR) is a two channel microwave receiver used

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada ECMWF-JCSDA Workshop on Assimilating Satellite Observations of Clouds and Precipitation into NWP models ECMWF, Reading (UK) Sylvain

More information

An Alternate Algorithm to Evaluate the Reflected Downward Flux Term for a Fast Forward Model

An Alternate Algorithm to Evaluate the Reflected Downward Flux Term for a Fast Forward Model An Alternate Algorithm to Evaluate the Reflected Downward Flux Term for a Fast Forward Model Introduction D.S. Turner Meteorological Service of Canada Downsview, Ontario, Canada In order to assimilate

More information

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Laura Stewart MetOffice Reading, Meteorology Building, University of Reading, Reading, RG6 6BB Abstract The potential to derive AMVs

More information

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys 3.2 Observational Data 3.2.1 Data used in the analysis Data Short description Parameters to be used for analysis SYNOP Surface observations at fixed stations over land P,, T, Rh SHIP BUOY TEMP PILOT Aircraft

More information

Comparison of Long-term Downward Radiation Observations at Tateno with JRA-25 and ERA-40 Data

Comparison of Long-term Downward Radiation Observations at Tateno with JRA-25 and ERA-40 Data Comparison of Long-term Downward Radiation Observations at Tateno with JRA-25 and ERA-40 Data Nozomu Ohkawara, Yasuo Hirose Ozone and Radiation Division, Aerological Observatory, Japan Meteorological Agency

More information

Global Instability Index: Product Guide

Global Instability Index: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/802106 v1c e-signed EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 September 2015 http://www.eumetsat.int WBS/DBS

More information

The EUMETSAT Satellite Application Facility on Land Surface Analysis (Land SAF): Proposed Products

The EUMETSAT Satellite Application Facility on Land Surface Analysis (Land SAF): Proposed Products The EUMETSAT Satellite Application Facility on Land Surface Analysis (Land SAF): Proposed Products by: Alirio Arboleda Based on material provided by Carla Barroso (IPMA) OBJECTIVE Introduce the EUMETSAT

More information

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Christophe Accadia, Sabatino Di Michele, Vinia Mattioli, Jörg Ackermann, Sreerekha Thonipparambil,

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders ASSIMILATION OF METEOSAT RADIANCE DATA WITHIN THE 4DVAR SYSTEM AT ECMWF Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders European Centre for Medium Range Weather Forecasts Shinfield Park,

More information

VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM

VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM C. Bertrand 1, R. Stöckli 2, M. Journée 1 1 Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium

More information

Assimilation of precipitation-related observations into global NWP models

Assimilation of precipitation-related observations into global NWP models Assimilation of precipitation-related observations into global NWP models Alan Geer, Katrin Lonitz, Philippe Lopez, Fabrizio Baordo, Niels Bormann, Peter Lean, Stephen English Slide 1 H-SAF workshop 4

More information

Meteorological product extraction: Making use of MSG imagery

Meteorological product extraction: Making use of MSG imagery Meteorological product extraction: Making use of MSG imagery Kenneth Holmlund, Simon Elliott, Leo van de Berg, Stephen Tjemkes* Meteorological Operations Division *Meteorological Division EUMETSAT Am Kavalleriesand

More information

H-SAF future developments on Convective Precipitation Retrieval

H-SAF future developments on Convective Precipitation Retrieval H-SAF future developments on Convective Precipitation Retrieval Francesco Zauli 1, Daniele Biron 1, Davide Melfi 1, Antonio Vocino 1, Massimiliano Sist 2, Michele De Rosa 2, Matteo Picchiani 2, De Leonibus

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution

Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution W. L. Smith 1,2, E. Weisz 1, and J. McNabb 2 1 University of

More information

Atmospheric Motion Vectors: Product Guide

Atmospheric Motion Vectors: Product Guide Atmospheric Motion Vectors: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786435 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 9 April 2015

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

Observations needed for verification of additional forecast products

Observations needed for verification of additional forecast products Observations needed for verification of additional forecast products Clive Wilson ( & Marion Mittermaier) 12th Workshop on Meteorological Operational Systems, ECMWF, 2-6 November 2009 Additional forecast

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0)

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0) Page: 1/26 Validation Report for Precipitation SAF/NWC/CDOP2/INM/SCI/VR/15, Issue 1, Rev. 0 15 July 2013 Applicable to SAFNWC/MSG version 2013 Prepared by AEMET Page: 2/26 REPORT SIGNATURE TABLE Function

More information

AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS

AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS Elizabeth Noyes, Gary Corlett, John Remedios, Xin Kong, and David Llewellyn-Jones Department of Physics and Astronomy, University

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES Ian Grant Anja Schubert Australian Bureau of Meteorology GPO Box 1289

More information

Comparison of cloud statistics from Meteosat with regional climate model data

Comparison of cloud statistics from Meteosat with regional climate model data Comparison of cloud statistics from Meteosat with regional climate model data R. Huckle, F. Olesen, G. Schädler Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany (roger.huckle@imk.fzk.de

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Improving real time observation and nowcasting RDT E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Introduction Satellite Application Facilities (SAFs) are

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany EUMETSAT PLANS Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D-64295 Darmstadt Germany Page 1 EUMETSAT SATELLITE PROGRAMMES 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 METEOSAT

More information

The LSA-SAF Albedo products

The LSA-SAF Albedo products The LSA-SAF Albedo products G. Jacob, D. Carrer & J.-L. Roujean CNRM-GAME, Météo France, Toulouse 2 Outline Method for retrieval Theoretical Framework Available Input BRDF Inversion Algorithm overview

More information

Observational Needs for Polar Atmospheric Science

Observational Needs for Polar Atmospheric Science Observational Needs for Polar Atmospheric Science John J. Cassano University of Colorado with contributions from: Ed Eloranta, Matthew Lazzara, Julien Nicolas, Ola Persson, Matthew Shupe, and Von Walden

More information

Xianglei Huang University of Michigan Xiuhong Chen & Mark Flanner (Univ. of Michigan), Ping Yang (Texas A&M), Dan Feldman and Chiancy Kuo (LBL, DoE)

Xianglei Huang University of Michigan Xiuhong Chen & Mark Flanner (Univ. of Michigan), Ping Yang (Texas A&M), Dan Feldman and Chiancy Kuo (LBL, DoE) Incorporating realistic surface LW spectral emissivity into the CESM Model: Impact on simulated climate and the potential sea-ice emissivity feedback mechanism Xianglei Huang University of Michigan Xiuhong

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES José Miguel Fernández Serdán, Javier García Pereda Servicio de Técnicas de Análisis y Predicción, Servicio de

More information

COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA

COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA Tomas Cebecauer 1, Richard Perez 2 and Marcel Suri 1 1 GeoModel Solar, Bratislava (Slovakia) 2 State University

More information