Status and further development of CryoClim global Snow Cover Extent product

Size: px
Start display at page:

Download "Status and further development of CryoClim global Snow Cover Extent product"

Transcription

1 Status and further development of CryoClim global Snow Cover Extent product Rune Solberg 1, Øystein Rudjord 1, Arnt-Børre Salberg 1 and Mari Anne Killie 2 1) Norwegian Computing Center (NR), P.O. Box 114 Blindern, NO-0314 Oslo, Norway 2) Norwegian Meteorological Institute (MET Norway), P.O. Box 43 Blindern, NO-0313 Oslo Presentation at the WMO GCW 2 nd Snow Watch Team Meeting, Columbus, Ohio, USA, June 2016

2 Snow Cover Extent (SCE) product A sub-service of CryoClim ( Binary product based on three component algorithms developed in the CryoClim project: SCE from PMR (10 km) based on SMMR ( ) and SSM/I (1987-present) SCE from optical (5 km) based on AVHRR GAC (1982-present) SCE multi-sensor/temporal (5 km), a time-series combination of optical and PMR Global product (NH + SH) time series 1982 present Aggregation levels: Day, month, year Projection/files: EASE-Grid, NetCDF CF, Northern & Southern Hemisphere Climate-change indicator products: Snow season length, first and last day of snow

3 CryoClim Snow Phase 2 objectives 1. Mitigate weaknesses in the Version 1.0 single sensor components of the algorithm (optical and passive microwave radiometers) and multi-sensor/multitemporal data fusion to further increase the accuracy and robustness of the product. 2. Extend the product with uncertainty estimates at the product and per-pixel levels. 3. Advance the algorithms and processing chains with the inclusion of Sentinel-3 OLCI and SLSTR data. 4. Perform more extensive validation of the product in space and time, including focus on inter-sensor issues in the time series. 5. Include the results in the CryoClim processing chain for snow and advance the operational level of the processing. Project period

4 The PMR SCE algorithm is based on an estimate of the probability of snow PP(SS kk xx 1, xx 2,, xx nn )= SMMR Snow classes: Snow & no snow Features: x1=t18v-t37v x2=t18h-t37h PP xx 1 SS kk PP xx 2 SS kk PP(xx nn SS kk ) PP(SS kk ) CC mm=1 PP xx 1 SS mm PP xx 2 SS mm PP(xx nn SS mm ) PP(SS mm ) SSM/I Snow classes: Dry snow, wet snow, no snow & no snow with a large portion of water Features: x1=t37v-t37h x3=t22v-t85v x2=t19v-t37v x5=t22v x4=(1.95 T19v-0.95 T19h)/0.95 SMMR SSM/I F SSM/I F SSM/I F15

5 The optical AVHRR GAC SCE algorithm is based on an estimate of probability of snow PP(SS kk xx 1, xx 2,, xx nn )= PP xx 1 SS kk PP xx 2 SS kk PP(xx nn SS kk ) PP(SS kk ) PP xx 1 SS mm PP xx 2 SS mm PP(xx nn SS mm ) PP(SS mm ) CC mm=1 prob. for snow prob. for cloud prob. for bare ground

6 A state model based on fusion of single-sensor state models Optical Multi-sensor PMR

7 Implemented the model applying the Hidden Markov Model framework In HMM we observe a system assumed to evolve through a series of different states States: Observables: QQ = SS 1, SS 2,, SS vv XX TT = XX 1, XX 2,, XX TT Transitions from one state to another happen with certain probabilities While in a given state the system will produce observables with a certain probability density Note that a there is one state model per grid cell Prob. distr.: Transition probabilities.: pp XX tt EE tt = SS ii, ii = 1, 2,, vv pp EE tt = SS ii EE tt 1 = SS jj, ii, jj = 1, 2,, vv Initial conditions: pp(ee 1 = SS ii ), ii = 1, 2,, vv

8 Training the algorithm Pr(S) p(snow O ) 0 p(snow O ) 1 p(bare ground snow) 0 p(snow O ) 0.5 Time Climatological probability of snow Per grid cell daily climatological probability of snow computed from Savitzky-Golay smoothed PMR snow probabilities Used to estimate transition probabilities

9 Using the Viterbi algorithm to determine the model sequence best explaining the temporal observations The Viterbi algorithm is a dynamic-programming algorithm for finding the most likely sequence of hidden states (the Viterbi path) that results in a sequence of the observables The algorithm requires as input the state probability density functions, the transition probabilities between the different states and the initial probability of each state VV tt,kk = pp XX tt kk max ii VV 1,kk = pp XX 1 kk pp(ee 1 = SS kk ) pp EE tt = SS ii EE tt 1 = SS jj VV tt 1,kk Final state model chosen

10 Snow season 2005

11 Mitigation of product errors Scattered snow in the summer. Corrected by increasing run-in time from 7 to 15 days Processing errors creating false snow corrected Errors in metadata and static data fixed: Missing pixels in lat/lon grid around poles Area outside map marked as water Land mask error around date line Misc. errors in metadata fixed Uncorrected (left) and corrected (right) product, Asia, July 25, 2002 North America, 30 Aug

12 Remaining known issues Too much snow in Himalaya and surrounding regions in summer: Originates from training of the PMR snow cover product Related to resampling of land cover data Some permanently snowfree shorelines Seems to be a water-land mixture problem Himalaya, 15 July 2005 Systematic lack of snow in some coastal regions 12

13 Optical: Overall performance Overall very good performance Snow cover underestimated in spring 13

14 Improvements optical: Solar angle influences the PDFs No snow The spectral signatures applied are relatively independent of solar angle, but change character for low solar angles High probability for snow Current version: static PDFs. Can give false snow cover for low solar angles OSI SAF SST work

15 Uncertainty estimate, optical: Approach Optical snow cover product: Step 1: AVHRR swaths are processed Step 2: Swath products from one day are combined Goal: Retrieve per pixel uncertainty estimate for aggregated product. First step: uncertainty estimate per swath product pixel Plan: First approach is to combine U = 1 P and distance to nearest «other class» Tune this until the uncertainty matches the hit rate when comparing with synop snow observations 15

16 Uncertainty estimate, optical: Mixed spectral signatures MetOp-01 May 27th 2016, 09:37 UTC For the «signature» Ch3/Ch1, cloud is between snow and snow free. land snow cloud

17 Uncertainty estimate, optical: Aggregated, daily observations Daily product May 27th 2016 Elements to be included in swath product uncertainty estimate typically «matches» troubled area U = 1 P Distance to nearest «other class» Snow free Snow Cloud Aggregated product is not so much affected

18 Uncertainty estimate, multi-sensor: Multi-sensor uncertainty challenging Very difficult to estimate the snow cover uncertainty due to the complexity of the finite state hidden Markov model More or less impossible using classical uncertainty estimation methods like the delta method. Methods like bootstrapping is not practical since the computational load of the multi-sensor multi-temporal snow cover method is high. Moreover, bootstrapping on the training data will not capture all uncertainties. Principle of estimating the uncertainty from the likelihood The figure shows two probability density functions corresponding to two classes (red and green). The x-axis denotes the observed data value The dashed line is the decision boundary. The further to the right the observed data is along the x-axis, the more certain we are that the red class is the correct one. 18

19 Uncertainty estimate, multi-sensor: Cumulative log likelihood The cumulative log-likelihood of the state ωω tt, given the data XX tt = xx 1,, xx tt may be written as LLLL ωω tt XX tt = LLLL ωω tt 1 XX tt 1 + log pp xx tt ωω tt + log pp(ωω tt ωω tt 1 ) data probability density The cumulative likelihood of each state provides a measure of how likely a given state is at a given time instant. However, the sequence backtracking performed by the Viterbi algorithm may results in that the selected state does not correspond to the largest cumulative likelihood. We first estimate the probability of a given state ss from the log likelihood exp LLLL(ss XX) pp LLLL (ss) = ii exp (LLLL(ii XX)) transition probability We may also estimate the data probability corresponding to state ss at time tt pp dd (ss) = exp log pp xx tt ss ii exp (log pp xx tt ii ) 19

20 Uncertainty estimate, multi-sensor: The solution data probability When analysing the probability corresponding to the cumulative likelihood of the selected states we observe that the probability is more or less binary with a larger fraction of 1s and a smaller fraction of 0s (see figure). Probability values between 0 and 1 barely exist. This binary behaviour of the probability means that it is not suited as a proxy for the uncertainty. Histogram of the probability of selected states When we consider the data probability of the selected states we observe that the data probability is not binary. We therefore further investigate the data probability as a proxy for the uncertainty Histogram of the data probability of selected states 20

21 Uncertainty estimate, multi-sensor: Estimated from data probability Here we divide the data probability into five equal bins, and count how many times the estimated snow cover agrees with the ground truth snow-cover observations (met. stations) We observe that the accuracy decreases as the data probability decreases. The line is a calibrated estimate of the snow cover uncertainty High data probability corresponds to high accuracy Low data probability corresponds to low accuracy 21

22 Uncertainty estimate, multi-sensor: Example Northern Hemisphere White and red areas corresponds to certain snow cover estimates (accuracy close to 1) Violet areas corresponds to uncertain snow cover estimates (accuracy close to 0.5; pure guess ) Black areas are water bodies

23 Uncertainty estimate, multi-sensor: Example Europe White and red areas corresponds to certain snow cover estimates (accuracy close to 1) Violet areas corresponds to uncertain snow cover estimates (accuracy close to 0.5; pure guess ) Black areas are water bodies

24 Validation Datasets for validation: Snow depth from the Global Historical Climatology Network Daily (GHCN-D) SYNOP database applied in Phase 1 of product development Daily snow depth observations, including recent years Historical Soviet Daily Snow Dataset (HSDSD) Daily measurements of snow depth and snow cover from meteorological stations in former Soviet Union Former Soviet Union Hydrological Snow Surveys (FSUHSS) Snow transects from meteorological stations in former Soviet Union Russian meteorological stations (RIHMI) preliminary test confirms overall accuracy Ideally, should include a newer dataset covering more recent years and areas outside former Soviet Union, e.g.: more GHCN-D 24

25 Global Historical Climatology Network Daily (GHCN-D) Data set applied in the first phase of snow product development Daily snow depth observations from 2005 Filtering out obvious errors: Like stations with suspicious behaviour related to that zero snow depth not reported explicitly Validation results (2005): Very high accuracy in summer Somewhat lower accuracy in November-January Slightly lower accuracy in April Month Accuracy Number of samples January February March April May June July August September October November December Total

26 Historical Soviet Daily Snow Dataset (HSDSD) Around 280 stations in former Soviet Union Daily snow depth and snow cover measurements Until 1995 (currently 3.5 years of overlap) Filtering and assumptions: Using only stations with coordinates in GHCND data (more accurate). Consider less than 50% snow cover as bare ground. Remove anything slightly suspicious. All fields flagged as humidity measurements are assumed to be snow free. Validation results for the period 1 Aug Dec 1995: High accuracy in summer Lower accuracy in October-November Slightly lower accuracy in April Month Accuracy Number of samples January February March April May June July August September October November December Total

27 Former Soviet Union Hydrological Snow Surveys (FSUHSS) Large number of snow transects in former Soviet Union measured until 1996 (1345 stations in total, not all in recent years) km long transects, usually three per month Several parameters measured, including snow cover and snow depth. Filtering: Using only stations with coordinates in GHCND data (more accurate). Contains no observations of bare ground! Validation results for the period 1 Aug Dec 1996: High accuracy in winter Lower accuracy in spring and autumn No data in summer Month Accuracy Number of samples January February March April May June July August September October November December Total

28 SnowPEx inter-comparison project 28

29 SnowPEx: Landsat inter-comparison Dozier Klein Salomonson TMSCAG TMSCAGca 30m 1 km 5 km CRCLIM 5km JXM10 5 km JXAM5 5 km GLSSE 1km M10C05 500m PATHF 5 km 29

30 Conclusions and way forward Status: Way forward: Most know misclassification errors mitigated Retrieval algorithm for optical component being improved Development of per-pixel uncertainty estimate ongoing Validation results from Phase 1 using GHCN-D confirmed in Phase 2 with HSDSD, FSUHSS and RIHMI data: Overall accuracy 93% Improvements to the PMR component: Reducing diurnal effects from multiple swaths Atmospheric correction Porting optical algorithm to Sentinel-3 More comprehensive validation Additional met. station dataset outside former Soviet Union SnowPEx results feeding into improvement work cryoclim@cryoclim.net 30

31 Snow Watch contributions from CryoClim Long time series, 1982 present Snow maps covering all land area every day, independent of clouds and daylight Uncertainty estimate under development, according to 1 st Snow Watch meeting recommendation Assuring updates for decades into the future based on operational Sentinel-3 data and PMR (SMMR, SMMI, ) 31

32 Further ideas and suggestions SnowPEx: Very valuable contribution to the snow community. However, intercomparison is not absolute validation Suggests a follow-on to SnowPEx doing absolute validation (for snow cover) WorldView-3 s 16 bands allow use of advanced retrieval algorithms, which make it possible to study absolute accuracy of most current retrieval algorithms QuickBird VHR image from CryoLand validation WorldView-3 spectral coverage 32

Advancements and validation of the global CryoClim snow cover extent product

Advancements and validation of the global CryoClim snow cover extent product www.nr.no Advancements and validation of the global CryoClim snow cover extent product Rune Solberg1, Øystein Rudjord1, Arnt-Børre Salberg1 and Mari Anne Killie2 1) Norwegian Computing Center (NR), P.O.

More information

ADVANCEMENTS IN SNOW MONITORING

ADVANCEMENTS IN SNOW MONITORING Polar Space Task Group ADVANCEMENTS IN SNOW MONITORING Thomas Nagler, ENVEO IT GmbH, Innsbruck, Austria Outline Towards a pan-european Multi-sensor Snow Product SnowPEx Summary Upcoming activities SEOM

More information

Intercomparison and Evaluation Experiment

Intercomparison and Evaluation Experiment The SnowPEx Satellite Satellite Snow Product Intercomparison Snow and Evaluation Experiment Product (6/2014 5/2016) Intercomparison and Evaluation Experiment Report to PSTG WG Meeting # 5 DLR, 5 Oct 2015

More information

ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE

ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE Kari Luojus 1), Jouni Pulliainen 1), Matias Takala 1), Juha Lemmetyinen 1), Chris Derksen 2), Lawrence Mudryk 2), Michael Kern

More information

Evaluation of updated JXAM5 snow cover extent product using ground based snow depth information

Evaluation of updated JXAM5 snow cover extent product using ground based snow depth information 2 nd International Satellite Snow Product Intercomparison Workshop ISSPI-2 University Memorial Center (UMC), University of Colorado Boulder, 14-16 September 2015 Evaluation of updated JXAM5 snow cover

More information

The Satellite Snow Product Intercomparison and Evaluation Experiment Objectives, Status, Expected Results

The Satellite Snow Product Intercomparison and Evaluation Experiment Objectives, Status, Expected Results SnowPEx Satellite Snow Product Intercomparison and Evaluation Experiment (6/2014 5/2016) The Satellite Snow Product Intercomparison and Evaluation Experiment Objectives, Status, Expected Results Thomas

More information

OSI SAF Sea Ice Products

OSI SAF Sea Ice Products OSI SAF Sea Ice Products Steinar Eastwood, Matilde Jensen, Thomas Lavergne, Gorm Dybkjær, Signe Aaboe, Rasmus Tonboe, Atle Sørensen, Jacob Høyer, Lars-Anders Breivik, RolfHelge Pfeiffer, Mari Anne Killie

More information

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NOAA-CREST, City University of New York (CUNY) Center for Satellite Applications and Research (STAR), NOAA/NESDIS

More information

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Thomas NAGLER ENVEO Environmental Earth Observation IT GmbH INNSBRUCK, AUSTRIA Polar and Snow Cover Applications User Requirements

More information

Intercomparison of Snow Extent Products from Earth Observation Data

Intercomparison of Snow Extent Products from Earth Observation Data Intercomparison of Snow Extent Products from Earth Observation Data, Elisabeth Ripper, Gabriele Bippus, Helmut Rott FMI Richard Fernandes Kari Luojus Sari Metsämäki Dorothy Hall David Robinson Bojan Bojkov

More information

A. Windnagel M. Savoie NSIDC

A. Windnagel M. Savoie NSIDC National Snow and Ice Data Center ADVANCING KNOWLEDGE OF EARTH'S FROZEN REGIONS Special Report #18 06 July 2016 A. Windnagel M. Savoie NSIDC W. Meier NASA GSFC i 2 Contents List of Figures... 4 List of

More information

From L1 to L2 for sea ice concentration. Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF

From L1 to L2 for sea ice concentration. Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF From L1 to L2 for sea ice concentration Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF Sea-ice concentration = sea-ice surface fraction Water Ice e.g. Kern et al. 2016, The Cryosphere

More information

ESA GlobSnow - project overview

ESA GlobSnow - project overview ESA GlobSnow - project overview GCW 1 st Implementation meeting Geneve, 23 Nov. 2011 K. Luojus & J. Pulliainen (FMI) + R. Solberg (NR) Finnish Meteorological Institute 1.12.2011 1 ESA GlobSnow ESA-GlobSnow

More information

OSI SAF Sea Ice products

OSI SAF Sea Ice products OSI SAF Sea Ice products Lars-Anders Brevik, Gorm Dybkjær, Steinar Eastwood, Øystein Godøy, Mari Anne Killie, Thomas Lavergne, Rasmus Tonboe, Signe Aaboe Norwegian Meteorological Institute Danish Meteorological

More information

Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow

Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow Examples on Sentinel data applications in Finland, possibilities, plans and how NSDC will be utilized - Snow Kari Luojus, Jouni Pulliainen, Jyri Heilimo, Matias Takala, Juha Lemmetyinen, Ali Arslan, Timo

More information

NOAA Snow Map Climate Data Record Generated at Rutgers

NOAA Snow Map Climate Data Record Generated at Rutgers NOAA Snow Map Climate Data Record Generated at Rutgers David A. Robinson Rutgers University Piscataway, NJ Snow Watch 2013 Downsview, Ontario January 29, 2013 December 2012 snow extent departures Motivation

More information

Annex I to Target Area Assessments

Annex I to Target Area Assessments Baltic Challenges and Chances for local and regional development generated by Climate Change Annex I to Target Area Assessments Climate Change Support Material (Climate Change Scenarios) SWEDEN September

More information

C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e

C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e C o p e r n i c u s L a n d M o n i t o r i n g S e r v i c e Integration into existing Snow and Ice Services and draft product specifications Annett BARTSCH b.geos Copernicus High Resolution Snow and

More information

We greatly appreciate the thoughtful comments from the reviewers. According to the reviewer s comments, we revised the original manuscript.

We greatly appreciate the thoughtful comments from the reviewers. According to the reviewer s comments, we revised the original manuscript. Response to the reviews of TC-2018-108 The potential of sea ice leads as a predictor for seasonal Arctic sea ice extent prediction by Yuanyuan Zhang, Xiao Cheng, Jiping Liu, and Fengming Hui We greatly

More information

Bugs in JRA-55 snow depth analysis

Bugs in JRA-55 snow depth analysis 14 December 2015 Climate Prediction Division, Japan Meteorological Agency Bugs in JRA-55 snow depth analysis Bugs were recently found in the snow depth analysis (i.e., the snow depth data generation process)

More information

Passive Microwave Sea Ice Concentration Climate Data Record

Passive Microwave Sea Ice Concentration Climate Data Record Passive Microwave Sea Ice Concentration Climate Data Record 1. Intent of This Document and POC 1a) This document is intended for users who wish to compare satellite derived observations with climate model

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT Hristomir Branzov 1, Valentina Pencheva 2 1 National Institute of Meteorology and Hydrology, Sofia, Bulgaria, Hristomir.Branzov@meteo.bg

More information

Assimilation of Globsnow data into HIRLAM. Mostamandy Suleiman Sodankyla August 2011

Assimilation of Globsnow data into HIRLAM. Mostamandy Suleiman Sodankyla August 2011 Assimilation of Globsnow data into HIRLAM Mostamandy Suleiman Sodankyla August 2011 Motivation Small number of observations (especially in eastern Europe and Russia) 00 cm of snow problem Non-uniform in

More information

Could Instrumentation Drift Account for Arctic Sea Ice Decline?

Could Instrumentation Drift Account for Arctic Sea Ice Decline? Could Instrumentation Drift Account for Arctic Sea Ice Decline? Jonathan J. Drake 3/31/2012 One of the key datasets used as evidence of anthropogenic global warming is the apparent decline in Arctic sea

More information

Assimilation of GlobSnow Data in HIRLAM. Suleiman Mostamandy Kalle Eerola Laura Rontu Katya Kourzeneva

Assimilation of GlobSnow Data in HIRLAM. Suleiman Mostamandy Kalle Eerola Laura Rontu Katya Kourzeneva Assimilation of GlobSnow Data in HIRLAM Suleiman Mostamandy Kalle Eerola Laura Rontu Katya Kourzeneva 10/03/2011 Contents Introduction Snow from satellites Globsnow Other satellites The current study Experiment

More information

Climate Models and Snow: Projections and Predictions, Decades to Days

Climate Models and Snow: Projections and Predictions, Decades to Days Climate Models and Snow: Projections and Predictions, Decades to Days Outline Three Snow Lectures: 1. Why you should care about snow 2. How we measure snow 3. Snow and climate modeling The observational

More information

Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!)

Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!) Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!) Daniel Grosvenor & Robert Wood (U. Washington) Using scattered solar radiation to infer

More information

EUMETSAT STATUS AND PLANS

EUMETSAT STATUS AND PLANS 1 EUM/TSS/VWG/15/826793 07/10/2015 EUMETSAT STATUS AND PLANS François Montagner, Marine Applications Manager, EUMETSAT WMO Polar Space Task Group 5 5-7 October 2015, DLR, Oberpfaffenhofen PSTG Strategic

More information

NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov

NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov NESDIS Global Automated Satellite Snow Product: Current Status and Planned Upgrades Peter Romanov NOAA-CREST, City University of New York (CUNY) Center for Satellite Applications and Research (STAR), NOAA/NESDIS

More information

ERA-CLIM2 Review Meeting WP3 Overview

ERA-CLIM2 Review Meeting WP3 Overview WP3 Overview Stefan Brönnimann Overview > Work achieved during last 9 months D.3.3 D.3.6, 3.7 D.3.10, 3.13, 3.14 D.3.19 > Outreach and publications December 15, 2017 2 Registry -> Updated, Delivered December

More information

Seasonal Climate Watch September 2018 to January 2019

Seasonal Climate Watch September 2018 to January 2019 Seasonal Climate Watch September 2018 to January 2019 Date issued: Aug 31, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is still in a neutral phase and is still expected to rise towards an

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Preparation for Himawari 8

Preparation for Himawari 8 Preparation for Himawari 8 Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 1/18 Introduction Background The Japan Meteorological Agency

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

QUALITY INFORMATION DOCUMENT For Arctic Ice Extent Indicator. ARC_SEAICE_INDEX_002

QUALITY INFORMATION DOCUMENT For Arctic Ice Extent Indicator. ARC_SEAICE_INDEX_002 QUALITY INFORMATION DOCUMENT For Arctic Ice Extent Indicator. Issue: 1.2 Contributors: Steinar Eastwood, Lars-Anders Breivik, Bruce Hackett, Thomas Lavergne, Gorm Dybkjær, Cecilie Wettre Approval Date

More information

Investigation of Arctic ice cover variance using XX century historical ice charts information and last decades microwave data

Investigation of Arctic ice cover variance using XX century historical ice charts information and last decades microwave data Investigation of Arctic ice cover variance using XX century historical ice charts information and last decades microwave data Vasily Smolyanitsky, Arctic and Antarctic Research Institute & JCOMM Expert

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Weather and meteorological

More information

SEASONAL AND ANNUAL TRENDS OF AUSTRALIAN MINIMUM/MAXIMUM DAILY TEMPERATURES DURING

SEASONAL AND ANNUAL TRENDS OF AUSTRALIAN MINIMUM/MAXIMUM DAILY TEMPERATURES DURING SEASONAL AND ANNUAL TRENDS OF AUSTRALIAN MINIMUM/MAXIMUM DAILY TEMPERATURES DURING 1856-2014 W. A. van Wijngaarden* and A. Mouraviev Physics Department, York University, Toronto, Ontario, Canada 1. INTRODUCTION

More information

Validation of passive microwave snow algorithms

Validation of passive microwave snow algorithms Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 87 Validation of passive microwave snow algorithms RICHARD L. ARMSTRONG

More information

The Application of Satellite Data i n the Global Surface Data Assimil ation System at KMA

The Application of Satellite Data i n the Global Surface Data Assimil ation System at KMA The Application of Satellite Data i n the Global Surface Data Assimil ation System at KMA Mee-Ja Kim, Hae-Mi Noh, SeiYoung Park, Sangwon Joo KMA/NIMS kimmee74@korea.kr 14 March, 2016 The 4th Workshop on

More information

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Abstract Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Vibeke W. Thyness 1, Leif Toudal Pedersen 2, Harald Schyberg 1, Frank T. Tveter 1 1 Norwegian Meteorological Institute (met.no) Box 43 Blindern,

More information

Long-term global time series of MODIS and VIIRS SSTs

Long-term global time series of MODIS and VIIRS SSTs Long-term global time series of MODIS and VIIRS SSTs Peter J. Minnett, Katherine Kilpatrick, Guillermo Podestá, Yang Liu, Elizabeth Williams, Susan Walsh, Goshka Szczodrak, and Miguel Angel Izaguirre Ocean

More information

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction 4.3 Ensemble Prediction System 4.3.1 Introduction JMA launched its operational ensemble prediction systems (EPSs) for one-month forecasting, one-week forecasting, and seasonal forecasting in March of 1996,

More information

IASI L2Pcore sea surface temperature. By Anne O Carroll, Thomas August, Pierre Le Borgne and Anne Marsouin

IASI L2Pcore sea surface temperature. By Anne O Carroll, Thomas August, Pierre Le Borgne and Anne Marsouin IASI L2Pcore sea surface temperature By Anne O Carroll, Thomas August, Pierre Le Borgne and Anne Marsouin Abstract Anne O Carroll EUMETSAT Eumetsat Allee 1 64295 Darmstadt Germany Tel: +49 6151 807 676

More information

Sea ice concentration off Dronning Maud Land, Antarctica

Sea ice concentration off Dronning Maud Land, Antarctica Rapportserie nr. 117 Olga Pavlova and Jan-Gunnar Winther Sea ice concentration off Dronning Maud Land, Antarctica The Norwegian Polar Institute is Norway s main institution for research, monitoring and

More information

Studying snow cover in European Russia with the use of remote sensing methods

Studying snow cover in European Russia with the use of remote sensing methods 40 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Studying snow cover in European Russia with the use

More information

Climate Variables for Energy: WP2

Climate Variables for Energy: WP2 Climate Variables for Energy: WP2 Phil Jones CRU, UEA, Norwich, UK Within ECEM, WP2 provides climate data for numerous variables to feed into WP3, where ESCIIs will be used to produce energy-relevant series

More information

Use of Ultrasonic Wind sensors in Norway

Use of Ultrasonic Wind sensors in Norway Use of Ultrasonic Wind sensors in Norway Hildegunn D. Nygaard and Mareile Wolff Norwegian Meteorological Institute, Observation Department P.O. Box 43 Blindern, NO 0313 OSLO, Norway Phone: +47 22 96 30

More information

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Discritnination of a wet snow cover using passive tnicrowa ve satellite data Annals of Glaciology 17 1993 International Glaciological Society Discritnination of a wet snow cover using passive tnicrowa ve satellite data A. E. WALKER AND B. E. GOODISON Canadian Climate Centre, 4905

More information

Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O

Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O April 28, 2010 J. Pulliainen, J. Lemmetyinen, A. Kontu, M. Takala, K. Luojus, K. Rautiainen, A.N.

More information

NOAA s Climate Normals. Pre-release Webcast presented by NOAA s National Climatic Data Center June 13, 2011

NOAA s Climate Normals. Pre-release Webcast presented by NOAA s National Climatic Data Center June 13, 2011 NOAA s 1981-2010 Climate Normals Pre-release Webcast presented by NOAA s National Climatic Data Center June 13, 2011 Takeaway Messages Most Normals will be available July 1 via FTP NWS Normals to be loaded

More information

EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES

EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES EUMETSAT LSA-SAF EVAPOTRANSPIRATION PRODUCTS STATUS AND PERSPECTIVES Arboleda, N. Ghilain, F. Gellens-Meulenberghs Royal Meteorological Institute, Avenue Circulaire, 3, B-1180 Bruxelles, BELGIUM Corresponding

More information

Met Éireann Climatological Note No. 15 Long-term rainfall averages for Ireland,

Met Éireann Climatological Note No. 15 Long-term rainfall averages for Ireland, Met Éireann Climatological Note No. 15 Long-term rainfall averages for Ireland, 1981-2010 Séamus Walsh Glasnevin Hill, Dublin 9 2016 Disclaimer Although every effort has been made to ensure the accuracy

More information

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region Yale-NUIST Center on Atmospheric Environment Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region ZhangZhen 2015.07.10 1 Outline Introduction Data

More information

Becky Bolinger Water Availability Task Force November 13, 2018

Becky Bolinger Water Availability Task Force November 13, 2018 Colorado Climate Center WATF Climate Update Becky Bolinger Water Availability Task Force November 13, 2018 COLORADO CLIMATE CENTER Water Year 2018 Colorado s Climate in Review COLORADO CLIMATE CENTER

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f Compensating for atmospheric eects on passive radiometry at 85.5 GHz using a radiative transfer model and NWP model data Stefan Kern Institute of Environmental Physics University of Bremen, 28334 Bremen,

More information

Some NOAA Products that Address PSTG Satellite Observing Requirements. Jeff Key NOAA/NESDIS Madison, Wisconsin USA

Some NOAA Products that Address PSTG Satellite Observing Requirements. Jeff Key NOAA/NESDIS Madison, Wisconsin USA Some NOAA Products that Address PSTG Satellite Observing Requirements Jeff Key NOAA/NESDIS Madison, Wisconsin USA WMO Polar Space Task Group, 4 th meeting, Greenbelt, 30 September 2014 Relevant Missions

More information

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA R. Meerkötter 1, G. Gesell 2, V. Grewe 1, C. König 1, S. Lohmann 1, H. Mannstein 1 Deutsches Zentrum für Luft- und Raumfahrt

More information

IASI RADIANCES CLIMATOLOGY. Thierry PHULPIN* and Joaquin GONZALEZ** *Now at TIRSEC **Now at CNES/DLA

IASI RADIANCES CLIMATOLOGY. Thierry PHULPIN* and Joaquin GONZALEZ** *Now at TIRSEC **Now at CNES/DLA IASI RADIANCES CLIMATOLOGY Thierry PHULPIN* and Joaquin GONZALEZ** *Now at TIRSEC **Now at CNES/DLA 1 ITSC 19 JEJU 25 March- 1 April 2014 OUTLINE RATIONALE METHODOLOGY PRODUCTS EXPLOITATION OF THE STATISTICS

More information

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L12207, doi:10.1029/2004gl020067, 2004 Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations Axel J. Schweiger Applied Physics

More information

ECMWF snow data assimilation: Use of snow cover products and In situ snow depth data for NWP

ECMWF snow data assimilation: Use of snow cover products and In situ snow depth data for NWP snow data assimilation: Use of snow cover products and In situ snow depth data for NWP Patricia de Rosnay Thanks to: Ioannis Mallas, Gianpaolo Balsamo, Philippe Lopez, Anne Fouilloux, Mohamed Dahoui, Lars

More information

2009 Progress Report To The National Aeronautics and Space Administration NASA Energy and Water Cycle Study (NEWS) Program

2009 Progress Report To The National Aeronautics and Space Administration NASA Energy and Water Cycle Study (NEWS) Program 2009 Progress Report To The National Aeronautics and Space Administration NASA Energy and Water Cycle Study (NEWS) Program Proposal Title: Grant Number: PI: The Challenges of Utilizing Satellite Precipitation

More information

The importance of long-term Arctic weather station data for setting the research stage for climate change studies

The importance of long-term Arctic weather station data for setting the research stage for climate change studies The importance of long-term Arctic weather station data for setting the research stage for climate change studies Taneil Uttal NOAA/Earth Systems Research Laboratory Boulder, Colorado Things to get out

More information

NSIDC Metrics Report. Lisa Booker February 9, 2012

NSIDC Metrics Report. Lisa Booker February 9, 2012 NSIDC Metrics Report Lisa Booker February 9, 2012 ACSI Scores 2011 ACSI survey summary Sent to 5458 users; increased number of users contacted NSIDC response rate was 10%, up 1% from last year. NSIDC Customer

More information

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Yongku Kim Institute for Mathematics Applied to Geosciences National

More information

Comparison results: time series Margherita Grossi

Comparison results: time series Margherita Grossi Comparison results: time series Margherita Grossi GOME Evolution Climate Product v2.01 vs. ECMWF ERAInterim GOME Evolution Climate Product v2.01 vs. SSM/I HOAPS4 In order to assess the quality and stability

More information

Development of sea ice climate data records. W. Meier

Development of sea ice climate data records. W. Meier Development of sea ice climate data records W. Meier WOAP Workshop, Frascati, Italy, 18 April 2011 Passive microwave sea ice data 32+ year record able to track long-term trends Near-complete, daily fields

More information

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS Bernhard Geiger, Dulce Lajas, Laurent Franchistéguy, Dominique Carrer, Jean-Louis Roujean, Siham Lanjeri, and Catherine Meurey

More information

Precipitation type detection Present Weather Sensor

Precipitation type detection Present Weather Sensor Precipitation type detection Present Weather Sensor Project no. 1289 Final report February 24 H. Bloemink MI/INSA/IO Contents 1 Introduction...3 2 Present weather determination...3 3 Experiment...4 3.1

More information

NESDIS Polar (Region) Products and Plans. Jeff Key NOAA/NESDIS Madison, Wisconsin USA

NESDIS Polar (Region) Products and Plans. Jeff Key NOAA/NESDIS Madison, Wisconsin USA NESDIS Polar (Region) Products and Plans Jeff Key NOAA/NESDIS Madison, Wisconsin USA WMO Polar Space Task Group, 2 nd meeting, Geneva, 12 14 June 2012 Relevant Missions and Products GOES R ABI Fractional

More information

Sea Ice Concentration Climate Data Record Validation Report

Sea Ice Concentration Climate Data Record Validation Report Sea Ice Concentration Climate Data Record Validation Report OSI-450 Version : 1.0 Date : 10/05/2017 Matilde Brandt Kreiner, John Lavelle, Rasmus Tonboe, Eva Howe Danish Meteorological Institute Thomas

More information

This is version v0.2 of this report issued together with the SIT and SIV data sets at the ICDC ESA-CCI- Projekt web page

This is version v0.2 of this report issued together with the SIT and SIV data sets at the ICDC ESA-CCI- Projekt web page Report about Retrieval of sea-ice volume (SIV) from SICCI-2 sea-ice thickness (SIT) data and combined OSI-450 and SICCI-2 sea-ice concentration (SIC) data version v0.2, June 2018 by Stefan Kern, ICDC,

More information

The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation The SeaFlux Turbulent Flux Dataset The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation Carol Anne Clayson1 J. Brent Roberts2 Alec S. Bogdanoff1,3 1. Woods Hole Oceanographic Institution, Woods

More information

A Validation Protocol for Continental Scale Snow Extent Products that Incorporates Product and Reference Uncertainty

A Validation Protocol for Continental Scale Snow Extent Products that Incorporates Product and Reference Uncertainty SnowPEX Satellite Snow Product Intercomparison and Evaluation Experiment (5/2014 4/2016) Richard Fernandes, Sari Metsaemaeki, Gabriele Bippus, Rune Solberg, Chris Derksen, Kari Lujois,Thomas Nagler, Bojan

More information

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS IMPACT OF IASI DATA ON FORECASTING POLAR LOWS Roger Randriamampianina rwegian Meteorological Institute, Pb. 43 Blindern, N-0313 Oslo, rway rogerr@met.no Abstract The rwegian THORPEX-IPY aims to significantly

More information

A re-sampling based weather generator

A re-sampling based weather generator A re-sampling based weather generator Sara Martino 1 Joint work with T. Nipen 2 and C. Lussana 2 1 Sintef Energy Resources 2 Norwegian Metereologic Institute Stockholm 7th Dec. 2017 Sara Martino Joint

More information

Validation of GOME-2 MetopA and MetopB ozone profiles M. Hess 1, W. Steinbrecht 1, L. Kins 1, O. Tuinder 2 1 DWD, 2 KNMI.

Validation of GOME-2 MetopA and MetopB ozone profiles M. Hess 1, W. Steinbrecht 1, L. Kins 1, O. Tuinder 2 1 DWD, 2 KNMI. Validation of GOME-2 MetopA and MetopB ozone profiles M. Hess 1, W. Steinbrecht 1, L. Kins 1, O. Tuinder 2 1 DWD, 2 KNMI Introduction The GOME-2 instruments on the MetopA and MetopB satellites measure

More information

Seasonal Climate Watch July to November 2018

Seasonal Climate Watch July to November 2018 Seasonal Climate Watch July to November 2018 Date issued: Jun 25, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is now in a neutral phase and is expected to rise towards an El Niño phase through

More information

OCEAN & SEA ICE SAF CDOP2. OSI-SAF Metop-A IASI Sea Surface Temperature L2P (OSI-208) Validation report. Version 1.4 April 2015

OCEAN & SEA ICE SAF CDOP2. OSI-SAF Metop-A IASI Sea Surface Temperature L2P (OSI-208) Validation report. Version 1.4 April 2015 OCEAN & SEA ICE SAF CDOP2 OSI-SAF Metop-A IASI Sea Surface Temperature L2P (OSI-208) Validation report Version 1.4 April 2015 A. O Carroll and A. Marsouin EUMETSAT, Eumetsat-Allee 1, Darmstadt 64295, Germany

More information

AVHRR Global Winds Product: Validation Report

AVHRR Global Winds Product: Validation Report AVHRR Global Winds Product: Validation Report Doc.No. : EUM/TSS/REP/14/751801 Issue : v1d Date : 25 February 2015 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49

More information

Julia Figa-Saldaña & Klaus Scipal

Julia Figa-Saldaña & Klaus Scipal Julia Figa-Saldaña & Klaus Scipal julia.figa@eumetsat.int klaus.scipal@esa.int Meeting, Outline MetOp/EPS status MetOp/EPS Second Generation status 2016 scatterometer conference Other European ocean programme

More information

Application and verification of ECMWF products in Norway 2008

Application and verification of ECMWF products in Norway 2008 Application and verification of ECMWF products in Norway 2008 The Norwegian Meteorological Institute 1. Summary of major highlights The ECMWF products are widely used by forecasters to make forecasts for

More information

SNOW COVER MAPPING USING METOP/AVHRR DATA

SNOW COVER MAPPING USING METOP/AVHRR DATA SNOW COVER MAPPING USING METOP/AVHRR DATA Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00101 Helsinki, Finland Abstract LSA SAF snow cover

More information

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed Changing Hydrology under a Changing Climate for a Coastal Plain Watershed David Bosch USDA-ARS, Tifton, GA Jeff Arnold ARS Temple, TX and Peter Allen Baylor University, TX SEWRU Objectives 1. Project changes

More information

Operational systems for SST products. Prof. Chris Merchant University of Reading UK

Operational systems for SST products. Prof. Chris Merchant University of Reading UK Operational systems for SST products Prof. Chris Merchant University of Reading UK Classic Images from ATSR The Gulf Stream ATSR-2 Image, ƛ = 3.7µm Review the steps to get SST using a physical retrieval

More information

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region European Geosciences Union General Assembly 2013 Vienna, Austria, 7 12 April 2013 Session HS7.5/NP8.4: Hydroclimatic Stochastics The role of teleconnections in extreme (high and low) events: The case of

More information

WP 4 Testing Arctic sea ice predictability in NorESM

WP 4 Testing Arctic sea ice predictability in NorESM WP 4 Testing Arctic sea ice predictability in NorESM Jens Boldingh Debernard SSPARSE Kick-off meeting 08.11.2016 Norwegian Meteorological Institute Background Inherent coupled problem Time-frame relevant

More information

Detection of ship NO 2 emissions over Europe from satellite observations

Detection of ship NO 2 emissions over Europe from satellite observations Detection of ship NO 2 emissions over Europe from satellite observations Huan Yu DOAS seminar 24 April 2015 Ship Emissions to Atmosphere Reporting Service (SEARS project) Outline Introduction Shipping

More information

Seasonal Climate Watch June to October 2018

Seasonal Climate Watch June to October 2018 Seasonal Climate Watch June to October 2018 Date issued: May 28, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) has now moved into the neutral phase and is expected to rise towards an El Niño

More information

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT Why satellite data for climate monitoring? Global coverage Global consistency, sometimes also temporal consistency High spatial

More information

Jay Lawrimore NOAA National Climatic Data Center 9 October 2013

Jay Lawrimore NOAA National Climatic Data Center 9 October 2013 Jay Lawrimore NOAA National Climatic Data Center 9 October 2013 Daily data GHCN-Daily as the GSN Archive Monthly data GHCN-Monthly and CLIMAT messages International Surface Temperature Initiative Global

More information

Sentinel-3A Product Notice SLSTR Level-2 Sea Surface Temperature

Sentinel-3A Product Notice SLSTR Level-2 Sea Surface Temperature Sentinel-3A Product Notice SLSTR Level-2 Sea Surface Temperature Mission Sensor Product Sentinel-3A SLSTR Level 2 Sea Surface Temperature Product Notice ID EUM/OPS-SEN3/DOC/18/984462 S3A.PN-SLSTR-L2M.003

More information

Practice Seasons Moon Quiz

Practice Seasons Moon Quiz 1. Which diagram represents the tilt of Earth's axis relative to the Sun's rays on December 15? A) B) C) D) 2. The diagram below represents Earth in space on the first day of a season. 5. Base your answer

More information

Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods

Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods Hydrological Processes Hydrol. Process. 12, 429±442 (1998) Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods C.-Y. Xu 1 and V.P. Singh

More information

Application and verification of the ECMWF products Report 2007

Application and verification of the ECMWF products Report 2007 Application and verification of the ECMWF products Report 2007 National Meteorological Administration Romania 1. Summary of major highlights The medium range forecast activity within the National Meteorological

More information

Mass balance of sea ice in both hemispheres Airborne validation and the AWI CryoSat-2 sea ice data product

Mass balance of sea ice in both hemispheres Airborne validation and the AWI CryoSat-2 sea ice data product Mass balance of sea ice in both hemispheres Airborne validation and the AWI CryoSat-2 sea ice data product Stefan Hendricks Robert Ricker Veit Helm Sandra Schwegmann Christian Haas Andreas Herber Airborne

More information