Analysis of dyke breaks during the 2002 flood in Saxony/Germany

Size: px
Start display at page:

Download "Analysis of dyke breaks during the 2002 flood in Saxony/Germany"

Transcription

1 LARS 2007 Catchment and Lake Research Analysis of dyke breaks during the 2002 flood in Saxony/Germany H.-B. Horlacher, T. Heyer, D. Carstensen, U. Bielagk 1, E. Bielitz and U. Müller 2 1 Technical University Dresden, Institute for Hydraulic Engineering and Applied Hydromechanics 2 Dam Authority of the Free State of Saxony Abstract In August 2002 exceptional precipitation caused extreme floods in Saxonian Rivers. As a consequence only along the rivers Mulde and Elbe about 100 dyke breaks were reported. Intensive research was conducted in order to determine the main causes of failure, the failure mechanisms and to possibly describe the dam break chronology along both rivers. The paper reports about some of the results mainly focusing on the wide description of the dyke breaks in many respects, e.g. main causes of failure, circumstances of damage, direction of collapse. Introduction In August 2002 exceptional precipitation caused the occurrence of extreme flash and river floods in many Saxonian Rivers. In most cases record water levels were being observed. As a consequence flood protection devices were damaged resulting in heavy losses in economic terms and even human lives. Regarding the dykes only along the rivers Mulde and Elbe about 100 dyke breaks were reported on Saxonian territory. Elbe Vereinigte Mulde Zwickauer Mulde Freiberger Mulde Figure 1: General map of the study area 58

2 Catchment and Lake Research LARS 2007 Unfortunately only one week after the first flood another serious flood warning urged the authorities to immediately close all breaches with any materials available. Due to this time pressure a professional survey of the breaches could not be accomplished. However, in 2004 the Dam Authority of the Free State of Saxony contracted the Institute for Hydraulic Engineering and Applied Hydromechanics of the Technische Universität Dresden (IWD) to conduct subsequent analysis regarding the dyke breaks in order to outline the main failure causes and modes. The area under investigation stretched across the catchment areas of the rivers Vereinigte Mulde (including the tributaries Freiberger and Zwickauer Mulde) and Elbe on Saxonian territory (Fig. 1 & Table 1). Table 1: River reach lengths under investigation River Length [km] Elbe 175 Vereinigte Mulde 92 Freiberger Mulde 54 Zwickauer Mulde 11 First of all intensive inquiries had to be made due the time offset of the analysis to the flood event. Apart from the inquiries at the local authorities (Dam Authority of the Free State of Saxony, communities, municipalities), fire brigades, emergency forces and other potential eye witnesses were also interviewed over a period of one year in order to get the best overall picture for each dyke break. All of the relevant locations were investigated on site. As a result, various data was collected. All information was administrated in a database, which is for the purpose of a statistic analysis of the collected data. Hydrology Flood causes In the first two weeks of August 2002, exceptional rainfall occurred in the Elbe catchment. Thunderstorms with excessive precipitation were followed by less intense but long lasting rainfall. According to the classification of van Bebber, who categorised typical paths of low pressure areas, this weather situation was of type Vb (Fig. 2). This meteorological situation already caused several flash and river floods in central Europe in the past. Nevertheless, the 2002 event was extraordinary, since precipitation rates reached the all-time records in many locations. The rain gauge Zinnwald-Georgenfeld in the Ore Mountains has measured 312mm of precipitation in just 24 hours time. This is the highest value ever measured in Germany. Starting from the 12 th of August the area-wide precipitation generated flood situations in many Saxonian rivers. Especially the smaller mountain rivers showed their enormous destructive potential through the occurrence of flash floods. 59

3 LARS 2007 Catchment and Lake Research Figure 2: Path classification of low pressure areas after van Bebber (source: Elbe River Mainly because of the precipitation in the Moldau and Eger catchments on the 6th and 7th of August the water levels in the river Elbe rose rapidly. The Dresden gauge showed a water level rise of 400cm in only 3 days. On the 17 th of August the peak water level was reached with 940cm above datum so the maximum ever recorded value was exceeded by 63cm (Tab. 2). Table 2: Comparison of peak water levels at selected gauge stations along the Elbe River Gauge. HHW Year W peak Date ( past) cm cm cm Usti (CZ) /08/ Schoena /08/ Dresden /08/ Torgau /08/ According to the statistical analysis the related discharge of 4680m³/s is approximately equivalent to a 125-year flood. One should bear in mind that the designed flood for protection measures in Germany is usually set to a flood event with a statistic occurrence probability of 0,01 (1 in 100 years). Mulde river On the 11 th of August the discharge of the Mulde river was still average. Caused by the excessive precipitation on the 12 th and 13 th of August the storage capacity of the upriver area was quickly reached. Hence, the biggest share of the rain was transferred directly as overland flow. The Mulde River is divided into two rivers at the upper part, namely the Freiberger Mulde and the Zwickauer Mulde (see Figure 1). Coincidentally the discharge peaks of both tributaries simultaneously reached the confluence on the 13 th of August, thus a tremendous flood wave was creacted. Consequently the water levels of the river exceeded the historical records by up to 3 60

4 Catchment and Lake Research LARS 2007 metres. The statistical analysis of the peak discharges along the river Mulde which yielded to recurrence intervals between years. Therefore, flood protection measures along the river were significantly overloaded. Data base With the objective of clearly storing and arranging the collected data a relational thematically structured data base was established. Having in mind the parameters that could influence the dyke s failure mechanisms, a large number of attributes were defined within a record, e.g. geographic location, geometry, distance of toe to the main river bed (direct dykes, with floodplain), dyke structure (homogeneous, heterogeneous), subsoil structure, vegetation, preexisting damage caused by animals, breach geometry, approximate time of failure, etc. Before data entered into the data base it was necessary to verify the reported dyke failures. Since there was no fixed definition when a dyke actually has failed, the following criteria were defined to determine the set of dyke failures: sudden or gradual development of a breach due to a critical combination of parameters not manually initiated free surface flow through the breach with the water level below original dyke crest in the long run The verification procedure identified 84 records sets that fulfilled these criteria (Fig. 3). 310 reported damages 184 small and medium damages 126 large damages 42 other failures 84 dyke breaks 33 other damages 2 false reports 7 dyke openings (manmade) flood protection walls railroad dams bridge bearings... Figure 3: Verification outcome of reported damages From the mathematical point of view a large number of statistical evaluations are possible, since beside single parameter evaluations, multiple parameter analysis can also be conducted for the whole record. Restrictions derive from the varying information content in the records and from physically reasonable combinations of parameters. In the following only selected evaluations will be presented. 61

5 LARS 2007 Catchment and Lake Research Analysis Chronology of failures The determination of the dyke failure chronology turned out to be very difficult, since most dyke breaks occurred in rural areas. Only in very few cases the exact moment of failure could be appointed through the reports of eye witnesses. However, by analysing aerial photographs it was possible to determine dates of failure for all dyke breaks. It showed that the frequency of occurrence correlates directly with the transition of the flood waves in the rivers Mulde and Elbe (Fig. 4). Figure 4: Frequency of dyke breaks related to stage hydrographs of the 2002 flood Comparing the stage hydrographs in the Mulde River the influence of the dyke breaks should be noticed. It appears that most dyke breaks occurred after the designed water levels were exceeded so that most dykes can achieve their design goals. Due to limited knowledge about the moment of failure and the scarcely available stage hydrographs along both rivers, more detailed conclusions were not possible. Degree of damage Different breach shapes will develop depending on the failure mechanism, the duration, direction and intensity of flow through the breach and on the conditions of the dyke body and subsoil. Regarding their cross sections (perpendicular to the dyke s axis) the breaches were classified into three groups partial damage (a), total damage (b), total damage with large scours (c) (Fig. 5). As a result almost two-third of the dyke breaks were assigned to the set total damages with scour (Fig. 6 & Tab. 3). Especially along the river Mulde, where the water levels far surpassed the designed values, this breach type was determinant. 62

6 Catchment and Lake Research LARS 2007 Figure 5: Breach classification regarding cross section profiles Table 3: Frequency of dyke breaks classified after degree of damage Degree of Sum Elbe Mulde Freiberger Damage Mulde partial total total with scour Sum Partial damage Total damage Total damage with scour Figure 6: Breach classification, criteria: degree of damage Dyke overtopping As mentioned before large-scale dyke overtopping occurred during the 2002 flood. Overtopped dyke sections could be located by analysing air photographs taken during the flood event. The analysis showed that in 74 cases (88%) dykes broke in overtopped sections. It should be noted that although the dykes were overtopped over long stretches the breach itself, they were developed more or less only punctually (Fig. 7). Hence, the existence of certain additional conditions is responsible for the breach development on a specific location. Regarding dyke failure mechanisms the overtopping of the dyke may trigger several types of failure, e.g. outer erosion of inner slope, infiltration and others (Kortenhaus & Oumeraci 2002, Lecointe 1998, Wahl 1998). Further detection of the main failure mechanism initiated by overtopping can only 63

7 LARS 2007 Catchment and Lake Research be done on the basis of measured or observed data. In most cases such information was not available. Direction of failure Overloaded river embankments usually fail from river to land since this is in most cases the direction of the pressure gradients in the dyke body and the subsoil. The analysis of dyke failures along the river Mulde lead to the somewhat surprising result, that 15 (26%) out of 57 dyke breaks failed in the opposite direction. This phenomenon can be explained as follows: landside failures are caused by normal waterside failures in upstream river sections. The area behind the dyke then becomes flooded. If the spreading of the water is limited through the topography of the flooded area ( polder region ), the water level in that area can rise very quickly. The water head in the polder region can be higher than the actual water level in the river profile. riverside landside Figure 7: Overtopping and final breach extend (Mulde River) landside riverside Figure 9: Landside failure near Grubnitz (Mulde River) 64 Figure 8: Landside and waterside failure near Wurzen (Mulde River)

8 Catchment and Lake Research LARS 2007 During the 2002 flood the landside dyke overtopping with overflow depths of about 1m had been observed whereas the water level in the river bed was still some decimetres below the dyke crest. Landside overtopping of dykes mainly occurred in corners of the polder area, which where for instance formed through the dyke connection to land of higher elevation or at connections of dykes with bridge bearings. On the Elbe river all embankments were failed from the waterside to landside since the dyke protected territory is extremely flat. As a consequence one single dyke failure usually caused the irrigation of large areas. Near the town of Torgau one breach with a width of about 340m flooded an area of over 20km². Failure Modes The failure of river embankments is in most cases the consequence of a time depending combination of several causes and effects. Event trees are one theoretic model to map the natural processes onto a theoretical background as for instance quoted by Foster & Fell (2000) for the special case of failure due to internal erosion. Concerning the dyke breaks under investigation the problem posed was the subsequent determination of the main failure modes, or even the single events which lead to failure. In order to achieve reliable results the presence of direct observations was required, which was rarely the case. Therefore in most cases a combined parametric-subjective analysis was conducted. Given the limited project frame a detailed analysis was not feasible. The assignment of the main failure causes, which are presented in the following gives only a rough estimation about the prevailing types of failure. The number of possible types of failure depends on the structure and the location of the dyke and is therefore variable. Kortenhaus & Oumeraci (2002) give an overview about the possible types of failure and name about 20 mechanisms. Although it is mainly focused on sea dykes, most outlined failure types are also relevant for river embankments. With regard to the large number of breaches and to the uncertainty in reasoning due to the limited amount of information about the main failure types, only four general classes were defined (Fig. 14). failure of... dyke body subsoil stability failure external erosion internal erosion subsoil failure - sliding of inner slope -sliding of outer slope - erosion of the surface layers through: - overtopping - piping - suffusion -concentrated leaks - heave -base failure -piping -sliding of dyke body -infiltration... - turbulence behind buildings - damage through floating debris Figure 10: Classification of main failure modes 65

9 LARS 2007 Catchment and Lake Research Conclusion The 2002 flood relentlessly revealed the weak points of the existing flood protection systems along many rivers in Saxony. Regarding the river embankments over 100 failures were reported, many of them were investigated within this project. Developing a dyke break data base is the major achievement of this project. The detailed compilation of over 80 failures during one flood event is considered extremely valuable for practical and even more for scientific purposes. Further research activities might build up on this information since the records might be used for calibration, validation and verification purposes, e.g. in breaching models or risk assessments. References Bielagk, U Diploma thesis: Analyse der Deichbrüche an Mulde und Elbe während des Hochwassers 2002 im Bereich Sachsen. Institut für Wasserbau und Technische Hydromechanik (IWD), Technische Universität Dresden, Germany Carstensen, D. & Horlacher, H.-B. et al Bewirtschaftungsmaßnahmen zum Erhalt der Schutzfunktion der Deichanlagen in Sachsen. Institut für Wasserbau und Technische Hydromechanik (IWD), Technische Universität Dresden, Germany Foster, M. & Fell, R Use of event trees to estimate the probability of failure of embankment dams by internal erosion and piping. In Proceedings of the 20 th International Congress on Large Dams (ICOLD), Beijing, Vol. 1, pp Kortenhaus, A. & Oumeraci, H Probabilistische Bemessungsmethoden für Seedeiche (ProDeich), Leichtweiss-Institut für Wasserbau, Technische Universität Braunschweig, Germany Lecointe, G. D Breaching Mechanisms of Embankments. MSc project. School of Civil Engineering, The University of Birmingham, United Kingdom Singh, V. P Dam Breach Modeling Technology. Kluwer Academic Publishers, Dordrecht, The Netherlands Wahl, T Prediction of Embankment Dam Breach Parameters: A Needs Assessment, IAHR Congress San Francisco, USA, August 1997 LfUG Vorläufiger Kurzbericht über die meteorologisch-hydrologische Situation beim Hochwasser im August Landesamt für Umwelt und Geologie, Dresden, Germany 66

10 Catchment and Lake Research LARS 2007 Notes: 67

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Deposition and Resuspension of Sediments in Near Bank Water Zones of the River Elbe

Deposition and Resuspension of Sediments in Near Bank Water Zones of the River Elbe 9th International Congress on Environmental Modelling and Software Brigham Young University BYU ScholarsArchive 4th International Congress on Environmental Modelling and Software - Barcelona, Catalonia,

More information

Appendix E Guidance for Shallow Flooding Analyses and Mapping

Appendix E Guidance for Shallow Flooding Analyses and Mapping Appendix E Guidance for Shallow Flooding Analyses and Mapping E.1 Introduction Different types of shallow flooding commonly occur throughout the United States. Types of flows that result in shallow flooding

More information

Floods Lecture #21 20

Floods Lecture #21 20 Floods 20 Lecture #21 What Is a Flood? Def: high discharge event along a river! Due to heavy rain or snow-melt During a flood, a river:! Erodes channel o Deeper & wider! Overflows channel o Deposits sediment

More information

Lecture 14: Floods. Key Questions

Lecture 14: Floods. Key Questions Lecture 14: Floods Key Questions 1. What is an upstream flood? 2. What is a downstream flood? 3. What were the setup conditions that cause floods? 4. What is a 100-year flood? 5. How are 100-year flood

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

A probabilistic storm surge risk model for the German North and Baltic Sea coast

A probabilistic storm surge risk model for the German North and Baltic Sea coast A probabilistic storm surge risk model for the German North and Baltic Sea coast Jan-Henrik Grabbert 1), Jan Deepen 2), Andreas Reiner 2), Stephan Mai 3), Harvey Rodda 4), Dietmar Pfeifer 5) and Andreas

More information

Flash flood disaster in Bayangol district, Ulaanbaatar

Flash flood disaster in Bayangol district, Ulaanbaatar Flash flood disaster in Bayangol district, Ulaanbaatar Advanced Training Workshop on Reservoir Sedimentation Management 10-16 October 2007. IRTCES, Beijing China Janchivdorj.L, Institute of Geoecology,MAS

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

WP2.1 BREACH FORMATION LARGE SCALE EMBANKMENT FAILURE

WP2.1 BREACH FORMATION LARGE SCALE EMBANKMENT FAILURE WP2. BREACH FORMATION LARGE SCALE EMBANKMENT FAILURE Kjetil Arne Vaskinn, Sweco Gröner Norway Aslak Løvoll, Norconsult AS Norway Kaare Höeg, Norwegian Geotechnical Institute (NGI), Norway WP2. BREACH FORMATION

More information

Rebuilding Flood-Conscious Society

Rebuilding Flood-Conscious Society A zone where strong flood flow or river bank erosion by levee breach are anticipated, which likely to occur collapsing/washing away of house. Set up the joint councils by relative stakeholders(river managers,

More information

Pirai river (Bolivia)

Pirai river (Bolivia) Pirai river (Bolivia) Confluent of the Amazon river which average discharge is only 6 m3/s, but with peak discharge over 5000 m3/s, a challenge for river basin management and for flood control HYDROEUROPE

More information

Opanuku Stream Benchmark Validation 1. Introduction. 2. The Opanuku Stream Model

Opanuku Stream Benchmark Validation 1. Introduction. 2. The Opanuku Stream Model Opanuku Stream Benchmark Validation 1. Introduction The model accuracy benchmark published by the Flood Risk Management Committee of the IAHR in http://members.iahr.org/imis/communitymanagement/communitylayouts/flood_risk_manageme

More information

Haiti and Dominican Republic Flash Flood Initial Planning Meeting

Haiti and Dominican Republic Flash Flood Initial Planning Meeting Dr Rochelle Graham Climate Scientist Haiti and Dominican Republic Flash Flood Initial Planning Meeting September 7 th to 9 th, 2016 Hydrologic Research Center http://www.hrcwater.org Haiti and Dominican

More information

Earth Sciences Research Centre Potsdam Telegrafenberg Potsdam, Germany

Earth Sciences Research Centre Potsdam Telegrafenberg Potsdam, Germany Earth Sciences Research Centre Potsdam Telegrafenberg 14473 Potsdam, Germany Research on Levee Failure in the Framework of the German Research Network Natural Disasters www.dfnk.de First IMPACT Workshop

More information

Modelling Breach Formation through Embankments

Modelling Breach Formation through Embankments Modelling Breach Formation through Embankments Mohamed A. A. Mohamed, Paul G. Samuels, Mark W. Morris, Gurmel S. Ghataora 2 HR Wallingford Howbery Park, Wallingford, Oxon, OX 8BA, UK 2 School of Civil

More information

Engineering Hydrology

Engineering Hydrology Engineering Hydrology Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

A Simple Procedure for Estimating Loss of Life from Dam Failure. Wayne J. Graham, P.E. 1

A Simple Procedure for Estimating Loss of Life from Dam Failure. Wayne J. Graham, P.E. 1 A Simple Procedure for Estimating Loss of Life from Dam Failure Wayne J. Graham, P.E. 1 INTRODUCTION Evaluating the consequences resulting from a dam failure is an important and integral part of any dam

More information

Modeling Great Britain s Flood Defenses. Flood Defense in Great Britain. By Dr. Yizhong Qu

Modeling Great Britain s Flood Defenses. Flood Defense in Great Britain. By Dr. Yizhong Qu Modeling Great Britain s Flood Defenses AIRCurrents Editor s note: AIR launched its Inland Flood Model for Great Britain in December 2008. The hazard module captures the physical processes of rainfall-runoff

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

SEVERE WEATHER 101. Flood Basics

SEVERE WEATHER 101. Flood Basics SEVERE WEATHER 101 Flood Basics What is flooding? Flooding is an overflowing of water onto land that is normally dry. Floods can happen during heavy rains, when ocean waves come on shore, when snow melts

More information

URBAS Prediction and management of flash floods in urban areas

URBAS Prediction and management of flash floods in urban areas URBAS Prediction and management of flash floods in urban areas 1 Thomas Einfalt, Klaus Friedeheim, Andreas Wagner Project funded by the Federal Ministry of Education and Research BMBF (Germany) as a part

More information

SECTION II Hydrological risk

SECTION II Hydrological risk Chapter 3 Understanding disaster risk: hazard related risk issues SECTION II Hydrological risk Peter Salamon Coordinating lead author Hannah Cloke Lead author 3.4 Giuliano di Baldassarre Owen Landeg Florian

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Floodplain Modeling and Mapping Using The Geographical Information Systems (GIS) and Hec-RAS/Hec-GeoRAS Applications. Case of Edirne, Turkey.

Floodplain Modeling and Mapping Using The Geographical Information Systems (GIS) and Hec-RAS/Hec-GeoRAS Applications. Case of Edirne, Turkey. Floodplain Modeling and Mapping Using The Geographical Information Systems (GIS) and Hec-RAS/Hec-GeoRAS Applications. Case of Edirne, Turkey. Fuad Hajibayov *1, Basak Demires Ozkul 1, Fatih Terzi 1 1 Istanbul

More information

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION "Workshop On Land Use Planning And Water Management, With Focus On Flood Risk Management Oslo, Norway. Wednesday 31 January and Thursday 1 February 2007 APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING

More information

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES Gully erosion A complex of processes whereby the removal of soil is characterised by incised channels in the landscape. NSW Soil Conservation Service,

More information

Physical landscapes River landscapes in the UK

Physical landscapes River landscapes in the UK Physical landscapes River landscapes in the UK The shape of river valleys change s as rivers flow downstream - PROCESSES Erosion Abrasion or corrasion Attrition Hydraulic Action Solution or corrosion Deposition

More information

Estimating Probable Maximum Precipitation for Linau River Basin in Sarawak

Estimating Probable Maximum Precipitation for Linau River Basin in Sarawak Estimating Probable Maximum Precipitation for Linau River Basin in Sarawak M. Hussain, S. Nadya and F.J. Chia Hydropower Development Division, Sarawak Energy Berhad, 93050, Kuching, Sarawak, Malaysia Date

More information

4.17 Spain. Catalonia

4.17 Spain. Catalonia 4.17 Spain Catalonia In Spain, inundation studies are the responsibility of the respective Hydrographic Confederations of each river basin (River Basin Authorities). The actual status of inundation studies

More information

Appendix 15 Computational Methodology

Appendix 15 Computational Methodology Appendix 15 Computational Methodology Introduction This Appendix describes the process used by the risk team to determine the final loss exceedence values in the risk analysis. The process involved the

More information

Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling

Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling J. Persson M. Jewert N. Isaksson Norconsult AB, Sweden Norconsult AB, Sweden Fortum Generation AB, Sweden ABSTRACT

More information

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Floodplain modeling Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Scientific Staff: Dr Carmen Maftei, Professor, Civil Engineering Dept. Dr Konstantinos

More information

Probability Estimation of River Channel Capacity

Probability Estimation of River Channel Capacity 1 Paper N 0 : V.07 Probability Estimation of River Channel Capacity Jaromir Riha Pavel Golik Abstract: Recently, the risk analysis of floodplain areas has been one of the most frequently used tools for

More information

Karamea floodplain investigation

Karamea floodplain investigation Karamea floodplain investigation NIWA Client Report: CHC2010-107 October 2010 NIWA Project: ELF 10234/1 Karamea floodplain investigation Graeme Smart Jo Bind NIWA contact/corresponding author Graeme Smart

More information

Rock Sizing for Multi-Pipe & Culvert Outlets

Rock Sizing for Multi-Pipe & Culvert Outlets Rock Sizing for Multi-Pipe & Culvert Outlets STORMWATER AND WATERWAY MANAGEMENT PRACTICES Photo 1 Rock pad outlet structure at end of a duel stormwater pipe outlet Photo 2 Rock pad outlet structure at

More information

IMPACTS OF SECONDARY FLOOD EMBANKMENTS ON THE WAIMAKARIRI FLOODPLAIN, NEW ZEALAND

IMPACTS OF SECONDARY FLOOD EMBANKMENTS ON THE WAIMAKARIRI FLOODPLAIN, NEW ZEALAND IMPACTS OF SECONDARY FLOOD EMBANKMENTS ON THE WAIMAKARIRI FLOODPLAIN, NEW ZEALAND Terry van Kalken (1), Tony Oliver (2), Ian Heslop (2), Tony Boyle (2) (1) DHI Water & Environment, e-centre, Oaklands Road,

More information

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently The Effects of Flooding on Structures Or What to Expect when the Drought Ends Violently Let s Define Flood Increase in discharge compared to normal level Direct runoff of rainfall (we re talking about

More information

Understanding disaster risk ~ Lessons from 2009 Typhoon Morakot, Southern Taiwan

Understanding disaster risk ~ Lessons from 2009 Typhoon Morakot, Southern Taiwan Understanding disaster risk ~ Lessons from 2009 Typhoon Morakot, Southern Taiwan Wen Chi Lai, Chjeng-Lun Shieh Disaster Prevention Research Center, National Cheng-Kung University 1. Introduction 08/10

More information

COASTAL FLOODING RISK CALCULATIONS FOR THE BELGIAN COAST

COASTAL FLOODING RISK CALCULATIONS FOR THE BELGIAN COAST COASTAL FLOODING RISK CALCULATIONS FOR THE BELGIAN COAST Verwaest, T. 1, Van der Biest, K. 1, Vanpouce, P. 2, Reyns, J. 2, Vanderimpen, P. 3, De Vos, L. 2, De Rouc, J. 2, Mertens, T. 4 This paper details

More information

OIKOS > landslide > mechanism >predisposing causes

OIKOS > landslide > mechanism >predisposing causes predisposing causes and trigger OIKOS > landslide > mechanism >predisposing causes Landslides are events that occur in space and time. As such, it is usually possible to identify both one or more landslide

More information

Ground Water Protection Council 2017 Annual Forum Boston, Massachusetts. Ben Binder (303)

Ground Water Protection Council 2017 Annual Forum Boston, Massachusetts. Ben Binder (303) Ground Water Protection Council 2017 Annual Forum Boston, Massachusetts Protecting Groundwater Sources from Flood Borne Contamination Ben Binder (303) 860-0600 Digital Design Group, Inc. The Problem Houston

More information

Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation

Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation Engineering, 2013, 5, 997-1005 Published Online December 2013 (http://www.scirp.org/journal/eng) http://dx.doi.org/10.4236/eng.2013.512121 Analysis of the Cause for the Collapse of a Temporary Bridge Using

More information

Waipatiki Catchment Flood Hazard Analysis. June 2008 AM 08/04 HBRC Plan Number 4029

Waipatiki Catchment Flood Hazard Analysis. June 2008 AM 08/04 HBRC Plan Number 4029 Waipatiki Catchment Flood Hazard Analysis June 2008 AM 08/04 HBRC Plan Number 4029 Asset Management Group Technical Report ISSN 1174 3085 Engineering Section Waipatiki Catchment: Flood Hazard Analysis

More information

Topographic Maps. Take Notes as you view the slides

Topographic Maps. Take Notes as you view the slides Topographic Maps Take Notes as you view the slides Lesson Objectives Define a topographic map and state its uses. Describe how contour lines show the elevations, shape, and slope of the land. Identify

More information

THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION

THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION Research Paper Advances in River Engineering, JSCE, Vol.19, 2013,June THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION Seongsim YOON

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Hydro-engineers.ch HEC-RAS ANALAYSIS. River: L Aïre Mesfin Tewolde. Hydro-engineers.ch 23 oct. 2017

Hydro-engineers.ch HEC-RAS ANALAYSIS. River: L Aïre Mesfin Tewolde. Hydro-engineers.ch 23 oct. 2017 Hydro-engineers.ch HEC-RAS ANALAYSIS River: L Aïre Mesfin Tewolde 17 Hydro-engineers.ch 23 oct. 2017 PREPARED BY MESFIN TEWOLDE [TEMPORARY MISSION] Hydro-engineers.ch HEC-RAS ANALYSIS [January- March 2014]

More information

Assessment of the catastrophic events originated in the river Vere basin

Assessment of the catastrophic events originated in the river Vere basin Assessment of the catastrophic events originated in the river Vere basin Tbilisi, Georgia Presenter: Irakli Megrelidze Deputy Head of Hydrometeorological Department (National Environmental Agency) Hydrology

More information

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL Dawen YANG, Eik Chay LOW and Toshio KOIKE Department of

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Summary of the 2017 Spring Flood

Summary of the 2017 Spring Flood Ottawa River Regulation Planning Board Commission de planification de la régularisation de la rivière des Outaouais The main cause of the exceptional 2017 spring flooding can be described easily in just

More information

Tool 2.1.4: Inundation modelling of present day and future floods

Tool 2.1.4: Inundation modelling of present day and future floods Impacts of Climate Change on Urban Infrastructure & the Built Environment A Toolbox Tool 2.1.4: Inundation modelling of present day and future floods Authors M. Duncan 1 and G. Smart 1 Affiliation 1 NIWA,

More information

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan 8 Current Issues and Research on Sediment Movement in the River Catchments of Japan YUTAKA ICHIKAWA INTRODUCTION Prediction of sediment movement is one of the challenging tasks in water-related research.

More information

Innovative Ways to Monitor Land Displacement

Innovative Ways to Monitor Land Displacement ARTICLE Innovative Ways to Monitor Land Displacement When people think about landslides, they usually imagine large mud streams which cause considerable loss of life. Whereas such large-scale disasters

More information

12 th Polish German Seminar on Coastal Research The Baltic Sea at the middle of 21 th century

12 th Polish German Seminar on Coastal Research The Baltic Sea at the middle of 21 th century Risk Analyis for Coastal Areas 12 th Polish German Seminar on Coastal Research The Baltic Sea at the middle of 21 th century M.Sc. Angelika Gruhn, Dipl.-Ing. Dörte Salecker, Prof. Dr.-Ing. Peter Fröhle

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

GEOMORPHIC CHANGES OF A LANDSLIDE DAM BY OVERTOPPING EROSION

GEOMORPHIC CHANGES OF A LANDSLIDE DAM BY OVERTOPPING EROSION DOI: 10.4408/IJEGE.2011-03.B-087 GEOMORPHIC CHANGES OF A LANDSLIDE DAM BY OVERTOPPING EROSION K. Yoshino (*), T. Uchida (*), T. shimizu (*) & K. Tamura (*) (*) Incorporated Administrative Agency, Public

More information

Grant 0299-NEP: Water Resources Project Preparatory Facility

Grant 0299-NEP: Water Resources Project Preparatory Facility Document Produced under Grant Project Number: 45206 May 2016 Grant 0299-NEP: Water Resources Project Preparatory Facility Final Report Volume 3 East Rapti (1 of 9) Prepared by Pvt. Ltd. For Ministry of

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia)

Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia) European Water 57: 171-177, 2017. 2017 E.W. Publications Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia) N. Dragičević *, B. Karleuša and N. Ožanić Faculty

More information

Severe Weather Watches, Advisories & Warnings

Severe Weather Watches, Advisories & Warnings Severe Weather Watches, Advisories & Warnings Tornado Watch Issued by the Storm Prediction Center when conditions are favorable for the development of severe thunderstorms and tornadoes over a larger-scale

More information

Rapid Hazard Assessment of Heavy Rainfall Triggered Landslide Dams A Review

Rapid Hazard Assessment of Heavy Rainfall Triggered Landslide Dams A Review Rapid Hazard Assessment of Heavy Rainfall Triggered Landslide Dams A Review Focus on the developed technologies in Taiwan J. J. Dong Graduate Institute of Applied Geology, National Central University,

More information

Monitoring Scour Critical Bridges During Floods For Local Bridge Owners. Presented by

Monitoring Scour Critical Bridges During Floods For Local Bridge Owners. Presented by Monitoring Scour Critical Bridges During Floods For Local Bridge Owners Presented by SAFETY FIRST DO NOT ENDANGER YOURSELF OR OTHERS WHILE MONITORING BRIDGES DO NOT ENTER FLOOD WATERS FLOOD WATERS INCLUDE

More information

Progress Report. Flood Hazard Mapping in Thailand

Progress Report. Flood Hazard Mapping in Thailand Progress Report Flood Hazard Mapping in Thailand Prepared By: Mr. PAITOON NAKTAE Chief of Safety Standard sub-beuro Disaster Prevention beuro Department of Disaster Prevention and Mitigation THAILAND E-mail:

More information

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY Chad A. Whaley, Department of Earth Sciences, University of South Alabama, MobileAL, 36688. E-MAIL: caw408@jaguar1.usouthal.edu The ultimate goal of this

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

THE NEED FOR AN ADDITIONAL SPILLWAY AT THE SANFORD DAM BOILING SPRING LAKES, NC. Presentation for The Brunswick County Commissioners April 20, 2015

THE NEED FOR AN ADDITIONAL SPILLWAY AT THE SANFORD DAM BOILING SPRING LAKES, NC. Presentation for The Brunswick County Commissioners April 20, 2015 THE NEED FOR AN ADDITIONAL SPILLWAY AT THE SANFORD DAM BOILING SPRING LAKES, NC Presentation for The Brunswick County Commissioners April 20, 2015 The Sanford Dam Earth Dam constructed in 1961 Drainage

More information

Rainfall Analysis. Prof. M.M.M. Najim

Rainfall Analysis. Prof. M.M.M. Najim Rainfall Analysis Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Estimate long term mean rainfall for a new station Describe the usage of a hyetograph Define recurrence

More information

Dam Break Analysis Using HEC-RAS and HEC-GeoRAS A Case Study of Ajwa Reservoir

Dam Break Analysis Using HEC-RAS and HEC-GeoRAS A Case Study of Ajwa Reservoir Journal of Water Resources and Ocean Science 2016; 5(6): 108-113 http://www.sciencepublishinggroup.com/j/wros doi: 10.11648/j.wros.20160506.15 ISSN: 2328-7969 (Print); ISSN: 2328-7993 (Online) Case Report

More information

Practical aspects of dam break analysis

Practical aspects of dam break analysis Practical aspects of dam break analysis Louis C Hattingh Hattingh Anderson Associates CC Dam break analysis It is a model You need to understand what you model & have an idea of the answers that you expect

More information

PRECIPITATION. Assignment 1

PRECIPITATION. Assignment 1 Assignment 1 PRECIPIAION Due: 25.10.2017 Monitoring of precipitation is based on an almost worldwide network of measuring stations (point measurements). However, for the investigation of fundamental questions

More information

Ice Phenomena on the Lower Vistula

Ice Phenomena on the Lower Vistula Geophysica (2011), 47(1 2), 57 67 Ice Phenomena on the Lower Vistula Wojciech Majewski Institute of Meteorology and Water Management, 61 Podleśna str. 01-673 Warsaw, Poland (Received: June 2010; Accepted:

More information

C o p e r n i c u s E m e r g e n c y M a n a g e m e n t S e r v i c e f o r e c a s t i n g f l o o d s

C o p e r n i c u s E m e r g e n c y M a n a g e m e n t S e r v i c e f o r e c a s t i n g f l o o d s C o p e r n i c u s E m e r g e n c y M a n a g e m e n t S e r v i c e f o r e c a s t i n g f l o o d s Copernicus & Copernicus Services Copernicus EU Copernicus EU Copernicus EU www.copernicus.eu W

More information

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques İrfan Akar University of Atatürk, Institute of Social Sciences, Erzurum, Turkey D. Maktav & C. Uysal

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Course Contents Introduction to Random Variables (RVs) Probability Distributions

More information

A Public Guide to Storm and Flood Hydrology. Version 2, August 2017

A Public Guide to Storm and Flood Hydrology. Version 2, August 2017 Version 2, 2017 A Public Guide to Storm and Flood Hydrology Version 2, August 2017 Prepared by: Published by: Diagrams by: Photos by: Grant Witheridge, Catchments & Creeks Pty Ltd Catchments & Creeks Pty

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA

HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA HYDRAULIC MODELLING OF NENJIANG RIVER FLOODPLAIN IN NORTHEAST CHINA Xiao Fei MEE08181 Supervisor: A.W. Jayawardena ABSTRACT In 1998, the worst flood recorded for over 200 years hit the Songhua River Basin

More information

Zainab Mohamed Yusof*, Syura Fazreen Hamzah 1 & Shahabuddin Amerudin 2

Zainab Mohamed Yusof*, Syura Fazreen Hamzah 1 & Shahabuddin Amerudin 2 Malaysian Journal of Civil Engineering 29 Special Issue (1):100-117 (2017) EROSION CHARACTERISTICS OF A MEDIUM SAND BREACHED EMBANKMENT Zainab Mohamed Yusof*, Syura Fazreen Hamzah 1 & Shahabuddin Amerudin

More information

HYDROLOGICAL AND HYDRODYNAMIC ASSESSMENT OF KEDARNATH FLOOD. N.N.Rai Director, Central Water Commission, India

HYDROLOGICAL AND HYDRODYNAMIC ASSESSMENT OF KEDARNATH FLOOD. N.N.Rai Director, Central Water Commission, India HYDROLOGICAL AND HYDRODYNAMIC ASSESSMENT OF KEDARNATH FLOOD by N.N.Rai Director, Central Water Commission, India Location Map INTRODUCTION Kedarnath Shrine is situated at Lat 30.74 N and Long 79.06 E in

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reduce sediment production (watershed management); upstream sediment trapping; bypass

More information

Floodplain Risk Management in Dungog after the April 2015 Super Storm. Presentation Outline

Floodplain Risk Management in Dungog after the April 2015 Super Storm. Presentation Outline Presentation Outline Floodplain Risk Management in after the April 2015 Super Storm Rohan Hudson, Royal HaskoningDHV FMA 2017 Preparing for the Next Great Flood 17th May 2017 Background and Flood Mechanisms

More information

Flood Forecasting. Fredrik Wetterhall European Centre for Medium-Range Weather Forecasts

Flood Forecasting. Fredrik Wetterhall European Centre for Medium-Range Weather Forecasts Flood Forecasting Fredrik Wetterhall (fredrik.wetterhall@ecmwf.int) European Centre for Medium-Range Weather Forecasts Slide 1 Flooding a global challenge Number of floods Slide 2 Flooding a global challenge

More information

Section 5. Low-Gradient Streams. What Do You See? Think About It. Investigate. Learning Outcomes

Section 5. Low-Gradient Streams. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 4 Surface Processes Section 5 Low-Gradient Streams What Do You See? Learning Outcomes In this section, you will Use models and real-time streamflow data to understand the characteristics of lowgradient

More information

Floods. Floods COMMUNITY EMERGENCY RESPONSE TEAM FLOODS CONTENT INSTRUCTOR GUIDANCE

Floods. Floods COMMUNITY EMERGENCY RESPONSE TEAM FLOODS CONTENT INSTRUCTOR GUIDANCE Floods Floods Introduce this topic by explaining that floods are one of the most common hazards in the United States. A flood occurs any time a body of water rises to cover what is usually dry land. Display

More information

TRANSBOUNDARY FLOOD FORECASTING THROUGH DOWNSCALING OF GLOBAL WEATHER FORECASTING AND RRI MODEL SIMULATION

TRANSBOUNDARY FLOOD FORECASTING THROUGH DOWNSCALING OF GLOBAL WEATHER FORECASTING AND RRI MODEL SIMULATION TRANSBOUNDARY FLOOD FORECASTING THROUGH DOWNSCALING OF GLOBAL WEATHER FORECASTING AND RRI MODEL SIMULATION Rashid Bilal 1 Supervisor: Tomoki Ushiyama 2 MEE15624 ABSTRACT The study comprise of a transboundary

More information

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter

More information

WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION

WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION GUVERNUL MINISTERUL POSDRU MUNCII, FAMILIEI ŞI WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION PhD. student: ALUPOAE Daniel Gheorghe Asachi Technical University of Iasi, Faculty of Civil Engineering

More information

Hydrologic Forecast Centre Manitoba Infrastructure, Winnipeg, Manitoba. FEBRUARY OUTLOOK REPORT FOR MANITOBA February 23, 2018

Hydrologic Forecast Centre Manitoba Infrastructure, Winnipeg, Manitoba. FEBRUARY OUTLOOK REPORT FOR MANITOBA February 23, 2018 Page 1 of 17 Hydrologic Forecast Centre Manitoba Infrastructure, Winnipeg, Manitoba FEBRUARY OUTLOOK REPORT FOR MANITOBA February 23, 2018 Overview The February Outlook Report prepared by the Hydrologic

More information

COMMUNITY EMERGENCY RESPONSE TEAM FLOODS INTRODUCTION

COMMUNITY EMERGENCY RESPONSE TEAM FLOODS INTRODUCTION INTRODUCTION Floods are one of the most common hazards in the United States. A flood occurs any time a body of water rises to cover what is usually dry land. Flood effects can be local, impacting a neighborhood

More information

CHAPTER FIVE: THE LOWER MISSISSIPPI REGION AND PLAQUEMINES PARISH

CHAPTER FIVE: THE LOWER MISSISSIPPI REGION AND PLAQUEMINES PARISH CHAPTER FIVE: THE LOWER MISSISSIPPI REGION AND PLAQUEMINES PARISH 5.1 Overview Plaquemines Parish is the area where the last portion of the Mississippi River flows out into the Gulf of Mexico (see Figures

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 04 Gradually Varied Flow Lecture No. # 07 Rapidly Varied Flow: Hydraulic Jump

More information

Rock Sizing for Waterway & Gully Chutes

Rock Sizing for Waterway & Gully Chutes Rock Sizing for Waterway & Gully Chutes WATERWAY MANAGEMENT PRACTICES Photo 1 Rock-lined waterway chute Photo 2 Rock-lined gully chute 1. Introduction A waterway chute is a stabilised section of channel

More information

Harvesting in the Arab Region (

Harvesting in the Arab Region ( Title Shallow Water Flow Based Simulation Small Catchments Author(s) Tügel, Franziska; Özgen, Özgen; Had Uwe; Hinkelmann, Reinhard Proceedings of the Second Internati Citation Floods in Wadi Systems: Disaster

More information

Convention on the Protection and Use of Transboundary Watercourses and International Lakes

Convention on the Protection and Use of Transboundary Watercourses and International Lakes Convention on the Protection and Use of Transboundary Watercourses and International Lakes Seminar on flood prevention, protection and mitigation (Berlin, 21-22 June 2004) Conference room paper MP.WAT/SEM.3/CRP.

More information

Figure 1. Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel

Figure 1. Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel Rivers 1. Study Figure 1 showing the long profile of a river Figure 1 A Which part of the river is labelled in Figure 1? a) Mouth b) Source c) Lower course d) channel (1 mark) 2. Complete the sentences

More information