MERIS IPWV VALIDATION: A MULTISENSOR EXPERIMENTAL CAMPAIGN IN THE CENTRAL ITALY

Size: px
Start display at page:

Download "MERIS IPWV VALIDATION: A MULTISENSOR EXPERIMENTAL CAMPAIGN IN THE CENTRAL ITALY"

Transcription

1 MERIS IPWV VALIDATION: A MULTISENSOR EXPERIMENTAL CAMPAIGN IN THE CENTRAL ITALY P. Ciotti,, E. Di Giampaolo, P. Basili, S. Bonafoni, V. Mattioli, R. Biondi, E. Fionda, F. Consalvi, A. Memmo, D. Cimini, R. Pacione 5, F. Vespe 6 Dept. of Electrical Engineering, Univ. of L'Aquila, 67 Poggio di Roio, L'Aquila, Italy, p.ciotti@ing.univaq.it, emidio@ing.univaq.it Dept. of Electronic and Information Engineering, Univ. of Perugia, via Duranti 9 65 Perugia, Italy, basili@diei.unipg.it, bonafoni@diei.unipg.it, mattioli@diei.unipg.it, biondi@diei.unipg.it Fondazione Ugo Bordoni (FUB), viale Europa 9, Roma, Italy, ermanno@fub.it, fernando@fub.it Centro di Eccellenza CETEMPS, Univ. of L'Aquila, L'Aquila, Italy, adelaide.memmo@pstabruzzo.it, nico.cimini@aquila.infn.it 5 Telespazio, Centro di Geodesia Spaziale "G.Colombo", 75, Matera, Italy, rosa.pacione@asi.it 6 Agenzia Spaziale Italiana (ASI), Centro di Geodesia Spaziale "G.Colombo", 75, Matera, Italy, francesco.vespe@asi.it ABSTRACT This paper reports the results of an experimental campaign carried out in the Central Italy, considering also part of the Tyrrhenian Sea. Integrated precipitable water vapour estimates obtained from measurements of multiple sensors were produced for a period of about one year, with the purpose of validating the corresponding MERIS estimates. The validation is performed both at specific locations and over an extended area, considering ground based instruments (microwave radiometers, GPS receivers, radiosoundings) and satellite borne radiomenters (Special Sensor Microwave Imager Radiometer, ENVISAT Microwave Radiometer). INTRODUCTION In the framework of the validation activity of ENVISAT instruments and, in particular, with reference to MERIS measurements of atmospheric water vapour, this paper reports the results of an experimental campaign carried out at four test sites in the Central Italy and considering also part of the Tyrrhenian Sea. Integrated precipitable water vapour (IPWV) estimates obtained from measurements of multiple sensors, namely multichannel water vapour microwave radiometers (WVR), GPS receivers, radiosondes (RAOB), and meteorological stations, were produced for a period of about one year, with the purpose of validating the corresponding MERIS estimates. The test sites in our geographical network of instruments comprise the Elba Island, Perugia, L'Aquila, and Pomezia. Table I reports information about the four test sites and the locally available instrumentation. TABLE I Geographic positions and instrumental facilities of the four Italian MERIS test sites Test sites Lat ( N) Lon ( E) Instruments Perugia..6 GPS, WVR(/ GHz), Elba Island.76. GPS, L Aquila.7.5 GPS, Pomezia.65. WVR (, / GHz), RAOB, In addition, the IPWV outputs of the PSU/NCAR mesoscale numerical prediction model MM5 V. were produced and collected for reference at each of the test sites []. To assess the MERIS performances over a land background, we present local comparisons of MERIS water vapour estimates performed at each test site considering the available ground-based instrumentation and the outputs of the MM5 model. Proc. MERIS User Workshop, Frascati, Italy, November (ESA SP-59, May )

2 In order to evaluate the performances also over a sea background, we make comparisons based on IPWV maps of extended areas produced, on the one side, by MERIS and, on the other side, by geostatistical interpolation of the measurements (performed over land) of the Italian network of GPS receivers and the measurements (performed over sea) of the satellite based Special Sensor Microwave Imager Radiometer (SSM/I). A further element of comparison comes from IPWV measurements performed by the ENVISAT Microwave Radiometer (MWR). COMPARISON OF MERIS IPWV TO MEASUREMENTS OF THE GROUND BASED INSTRUMENTATION Neglecting scattering and ice contributions and considering a dual-channel WVR, with one frequency mainly sensitive to water vapour (subscript ) and the other to the liquid (subscript ), IPWV is estimated as [], []: IPWV = a +a τ +a τ () where τ, are the atmospheric opacities at the two frequencies computed from the corresponding brightness temperatures and a i are statistical retrieval coefficients []. Besides to the radiometric estimation of IPWV, in this work we exploited also the GPS receivers belonging to the Italian network: Zenith Total Delay (ZTD) time series were produced by the GIPSY/OASIS II software run at the Centro di Geodesia Spaziale G.Colombo of Matera [5]. The ZTD is usually divided into two components, the Zenith Hydrostatic Delay and the Zenith Wet Delay [6]: ZTD = ZHD+ZWD () The hydrostatic component can be modelled [7] with high accuracy; this allow an accurate computation of the wet component ZWD by subtracting ZHD from ZTD. The IPWV is than computed using the relationship: IPWV = π ZWD () where the factor π is a function of various physical constants and of the mean temperature of the water vapour in the atmosphere and can be computed as in [6]. Alternatively monthly averaged values of π can be computed from historical data bases of radiosoundings available for the sites of interest []. As a first example of results, Fig. shows time series of the ground based estimates of IPWV obtained by means of the above mentioned techniques (WVR, GPS and MM5), at the Elba Island test site for a period starting with the first available MERIS IPWV products (October ) and lasting until January. In order to make a comparison, we averaged MERIS IPWV pixel values provided by the first standard ESA algorithm (that we will refer to as the old ESA algorithm) within a circle having a radius of.5 centred on the latitude and longitude of the ground based instrumentation. We considered both clear sky and cloudy overpasses and computed also IPWV standard deviations within the selected circle. The mentioned statistics for MERIS IPWV are shown in Fig. as red circles (mean values) with error bars (standard deviations) for the cloud free cases while the corresponding cyan symbols refer to cloudy conditions as identified by the MERIS cloud flag or by an estimated optical thickness grater than zero. Besides of the cloudy cases, when MERIS is supposed to measure integrated water vapour only above the cloud, also for clear sky conditions the old ESA algorithm appears to underestimate IPWV with respect to the ground based instrumentation. As an additional example, Fig. shows a similar comparison performed at the Pomezia test site. In this case RAOB measurements were available and they are represented by blue diamonds, while a GPS receiver was not present. The shown period starts on the 6 th of June,, when new look up tables were used for the MERIS IPWV algorithm (referred to as the new ESA algorithm), and lasts until the middle of September. Fig. summarizes the comparison performed at the four test sites, considering separately the old and new ESA algorithms. In the left panel MERIS IPWV mean values are plotted versus corresponding ground based estimates as stars with different colour for each site. The best fitting line is shown in red. An underestimation of the MERIS IPWV values computed by the old ESA algorithm is noticeable in this figure as well as in Fig.. This underestimation is corrected by the new ESA algorithm that produces higher values of MERIS estimates, shown as diamonds in the right panel of Fig.. A grater correlation with the ground based measurements is also appreciable from the scatterplot. The new linear best fitting is again represented by a red line.

3 .5.5 => October => November => December => January W VR (Elba Island) GPS_Gipsy MM5 MERIS stdev (cloudy) MERIS avg (cloudy) MERIS stdev (cloud free) MERIS avg (cloud free) HO_COLUMN [cm] Julian day (years /) Figure. Time series of IPWV from WVR (black line), GPS (blue line) and MM5 outputs (green line), measured at the Elba Island. MERIS estimates and their standard deviations are superimposed (red symbols: cloud free cases; cyan symbols: cloudy cases)..5 => July => August => September.5 IPWV [cm].5.5 WVR MM5 RAOB's MERIS std MERIS avg Julian day (year ) Figure. Time series of IPWV from WVR (black line), MM5 outputs (green line) and RAOB (blue diamonds) measured at Pomezia. MERIS estimates and their standard deviations are superimposed (red symbols).

4 IPWV [cm] from MERIS L'Aquila Perugia Elba Pomezia IPWV [cm] from WVR/GPS IPWV [cm] from MERIS L'Aquila Perugia Elba Pomezia IPWV [cm] from WVR/GPS Figure. Scatterplot of MERIS IPWV versus WVR or GPS ground based estimates. In the left panel stars correspond to the old ESA algorithm while in the right panel diamonds correspond to the new ESA algorithm for comparisons belonging to two different time periods. Black symbols refer to L Aquila, green ones to Perugia, blue ones to Elba and red ones to Pomezia sites. Finally, Table II reports some statistical details of the comparison for the old and the new ESA algorithms. TABLE II Statistics of the comparison of MERIS IPWV to WVR or GPS values measured at the four test sites IPWV MERIS - IPWV GBASED Linear Best Fitting Algorithm N samples Bias [cm] St. Dev [cm] Corr. Coeff. Slope Intercept Old_ESA New _ESA MERIS IPWV OVER SEA BACKGROUND: COMPARISON WITH SSM/I AND MWR MEASUREMENTS In order to assess the capability of MERIS in the estimation of IPWV over a sea background we considered comparisons to satellite microwave measurements of columnar water vapour obtained by both the SSM/I radiometer on board of DMSP satellites and the MWR on board of ENVISAT. The SSM/I is a conical scanning imaging radiometer operating in both polarizations at 9.5,.5 (only in vertical polarisation), 7, and 85.5 GHz, while the ENVISAT MWR is a nadir-viewing, two channel (.8 and 6.5 GHz) microwave radiometer providing an estimate of IPWV on a km diameter field of view. The SSM/I images used in this work were obtained from the NOAA SAA archive. The data were calibrated and geographically corrected, and a coastal mask was applied to avoid land background contamination in IPWV measurements. To infer IPWV over sea from the SSM/I brightness temperatures at different frequencies and polarisations, we have used the algorithm proposed by Gerard and Eymard [8]. Both SSM/I and MERIS IPWV maps have been produced with a spatial sampling of km in the North-South and in the East-West directions. We present results successive to the 6 th of June, obtained by the new ESA algorithm, limiting our analysis to clear sky conditions. Left panel of Fig. shows for comparison a scatterplot of IPWV retrievals from MERIS and from SSM/I data for ten passes (7 th June, 5 th July, th, th, th, th, rd and 7 th August, st and nd September ) over the Tyrrhenian Sea. Right panel shows for additional comparison a scatterplot of IPWV obtained from MERIS and from MWR for six passes (6 th and 7 th June, th, th, th and th August ) over the Tyrrhenian Sea. A low correlation and a MERIS IPWV underestimation with respect to the microwave sensors can be noticed in both panels. On the other hand, the comparison between the two microwave radiometer (SSM/I and MWR) retrievals, shown

5 in Fig. 5 relatively to data from eight passes (6 th and 7 th June, 5 th July, th, th and th August, st and nd September ) over the Tyrrhenian Sea, presents a fairly good agreement. IPWV from MERIS [cm] bias = [cm] std. dev. =.6758 [cm] corr. coef. =.888 n. samples = 75 IPWV from MERIS [cm] bias = -.89 [cm] std. dev. = 56 [cm] corr. coef. = 5 n. samples = 6 5 IPWV from SSMI [cm] 5 IPWV from MWR [cm] Fig.. Comparison of IPWV retrieved over the Tyrrhenian Sea. Left panel: from MERIS and from SSM/I data for ten passes. Right panel: from MERIS and from MWR data for six passes. IPWV from MWR [cm] bias = -.9 [cm] std. dev. =.67 [cm] corr. coef. =.95 n. samples = 7 5 IPWV from SSMI [cm] Fig. 5. Comparison of IPWV retrieved from MWR and from SSM/I data for eight passes over the Tyrrhenian Sea. Finally, we have performed an integration of IPWV estimates from SSM/I images (over sea) with IPWV retrievals obtained at the locations of the Italian network of GPS receivers (over land). The integration is based on the Kriging with trend interpolator, a geostatistical method that produces values on a regularly spaced grid from the irregularly spaced observations, taking also into account the IPWV dependence on the orography [9-].

6 As an example of qualitative comparison, Fig. 6 shows in the left panel the MERIS precipitable water vapour image of August rd at 9:5 GMT, while the right panel shows the map of IPWV values over land and sea obtained by Kriging interpolation of SSM/I and GPS estimates. Figure 6. Map of MERIS IPWV values over land and sea (left panel); comparison with a map of the Kriging interpolation of SSM/I and GPS IPWV values (right panel)). A similar IPWV distribution is appreciable by the common grey scale used in the two maps. Notice that the black areas in the left panel are due to missing data in the MERIS IPWV measurements. The preliminary results of our measurement campaign, performed within the ENVISAT validation activity, show that the MERIS water vapour product, generated by the standard ESA algorithm, underestimates IPWV values both over land and sea backgrounds. The new ESA algorithm produces estimates much closer to all the validation measurements performed over land, while the comparison performed over the Tyrrhenian Sea with respect to satellite based microwave radiometers is less satisfactory. REFERENCES G. A. Grell, J. Dudhia and D.R. Stauff, "A description of the fifth-generation Penn State/NCAR mesoscale model (MM5)", NCAR Technical Note, NCAR/TN-98+STR, 7, 99.. E. R. Westwater, F.O. Guiraud, Ground-based microwave radiometric retrieval of precipitable water vapor in the presence of clouds with high liquid content, Radio Science, vol 5, pp , 98.. P. Basili, P. Ciotti, and E. Fionda, Accuracy of Physical, Statistical and Neural Network Based Algorithms for the Retrieval of Atmospheric Water by Ground-Based Microwave Radiometry, Proc. of IGARSS 98, Seattle, U.S.A., pp. 8-, July P.Basili, S. Bonafoni, R. Ferrara, P. Ciotti, E. Fionda, R. Ambrosini, Atmospheric Water Vapour Retrieval by Means of both a GPS Network and a Microwave Radiometer During an Experimental Campaign at Cagliari (Italy) in 999, IEEE Trans. on Geosci. and Remote Sensing, vol. GE-9, pp 6-,. 5. F. H. Webb and J. F. Zumberge, "An introduction to GIPSY/OASIS II, JPL D-88, M. Bevis, S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken and R.H. Ware, GPS meteorology: mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology, vol., pp , March J. Saastamoinen, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in the Use of Artificial Satellites for Geodesy. Geophys. Monogr. Ser., vol. 5, pp. 7-5, E. Gerard, L. Eymard, Remote Sensing of integrated cloud liquid water: Development of algorithms and quality control, Radio Science, vol., pp. -7, March-April N. A. C. Cressie, Statistics for spatial data. New York: John Wiley & Sons, 99.. P. Basili, S. Bonafoni, V. Mattioli, P. Ciotti, F.S. Marzano, G. d Auria, N. Pierdicca and L. Pulvirenti, Mapping of precipitable water vapour by integrating measurements of ground-based GPS receivers and satellite-based microwave radiometers, Proc. of IEEE/IGARSS, Toronto, Canada, -8 June,.. P. Basili, S. Bonafoni, V. Mattioli, P. Ciotti, N. Pierdicca and L. Pulvirenti, Comparing model analysis and remote sensing estimation of water vapour field over the Tyrrhenian area, Proc. of Tyrrhenian International Workshop on Remote Sensing, Elba Island, Italy, pp , September.

Anonymous Referee #2 In black => referee observations In red => our response. General comments

Anonymous Referee #2 In black => referee observations In red => our response. General comments Response to interactive comment of Referee #2 on Experimental total uncertainty of the derived GNSS-integrated water vapour using four co-located techniques in Finland by E. Fionda et al. Anonymous Referee

More information

LONG-TERM TRENDS IN THE AMOUNT OF ATMOSPHERIC WATER VAPOUR DERIVED FROM SPACE GEODETIC AND REMOTE SENSING TECHNIQUES

LONG-TERM TRENDS IN THE AMOUNT OF ATMOSPHERIC WATER VAPOUR DERIVED FROM SPACE GEODETIC AND REMOTE SENSING TECHNIQUES LONG-TERM TRENDS IN THE AMOUNT OF ATMOSPHERIC WATER VAPOUR DERIVED FROM SPACE GEODETIC AND REMOTE SENSING TECHNIQUES Rüdiger Haas, Tong Ning, and Gunnar Elgered Chalmers University of Technology, Onsala

More information

Inter-tropical Convergence Zone (ITCZ) analysis using AIRWAVE retrievals of TCWV from (A)ATSR series and potential extension of AIRWAVE to SLSTR

Inter-tropical Convergence Zone (ITCZ) analysis using AIRWAVE retrievals of TCWV from (A)ATSR series and potential extension of AIRWAVE to SLSTR Inter-tropical Convergence Zone (ITCZ) analysis using AIRWAVE retrievals of TCWV from (A)ATSR series and potential extension of AIRWAVE to SLSTR Enzo Papandrea (SERCO, CNR-ISAC, Enzo.Papandrea@serco.com)

More information

Modelling and measurement of rainfall by ground-based multispectral microwave radiometry

Modelling and measurement of rainfall by ground-based multispectral microwave radiometry Modelling and measurement of rainfall by ground-based multispectral microwave radiometry Frank S. Marzano 1, Domenico Cimini 1, Randolph Ware 2, Ermanno Fionda 3 and Piero Ciotti 1 1. Center of Excellence

More information

Water vapor integration methods to improve the quality of Synthetic Aperture Radar observations

Water vapor integration methods to improve the quality of Synthetic Aperture Radar observations Water vapor integration methods to improve the quality of Synthetic Aperture Radar observations Mario Montopoli 1,2, F.S. Marzano 2,3, E. Pichelli 2, D. Cimini 4, R. Ferretti 2, S. Bonafoni 5, D. Perissin

More information

Precipitable water observed by ground-based GPS receivers and microwave radiometry

Precipitable water observed by ground-based GPS receivers and microwave radiometry Earth Planets Space, 52, 445 450, 2000 Precipitable water observed by ground-based GPS receivers and microwave radiometry Yuei-An Liou, Cheng-Yung Huang, and Yu-Tun Teng Center for Space and Remote Sensing

More information

Assimilation of ground-based GPS data into a limited area model. M. Tomassini*

Assimilation of ground-based GPS data into a limited area model. M. Tomassini* Assimilation of ground-based GPS data into a limited area model M. Tomassini* GeoForschungsZentrum, Potsdam, Germany * On assignment to Deutscher Wetterdienst, Offenbach, Germany Abstract Two years of

More information

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations Elisabetta Ricciardelli*, Filomena Romano*, Nico Cimini*, Frank Silvio Marzano, Vincenzo Cuomo* *Institute of Methodologies

More information

The ESA project METAWAVE. Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapour Effects ESTEC 21207/07/NL/HE

The ESA project METAWAVE. Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapour Effects ESTEC 21207/07/NL/HE Atmospheric water vapour effects on SPACEBORNE Interferometric SAR imaging: an experiment to compare ground-based measurements, spaceborne radiometers and numerical weather prediction model at different

More information

Christina Selle, Shailen Desai IGS Workshop 2016, Sydney

Christina Selle, Shailen Desai IGS Workshop 2016, Sydney Optimization of tropospheric delay estimation parameters by comparison of GPS-based precipitable water vapor estimates with microwave radiometer measurements Christina Selle, Shailen Desai IGS Workshop

More information

4D-VAR assimilation of GPS-derived ZTD: a Case Study

4D-VAR assimilation of GPS-derived ZTD: a Case Study 4D-VAR assimilation of GPS-derived ZTD: a Case Study L. Cucurull and A. Rius, Institute of Space Studies of Catalonia (IEEC/CSIC), Barcelona, Spain. F. Vandenberghe, National Center for Atmospheric Research

More information

Atmospheric Water Vapor and Geoid Measurements in the Open Ocean with GPS

Atmospheric Water Vapor and Geoid Measurements in the Open Ocean with GPS Atmospheric Water Vapor and Geoid Measurements in the Open Ocean with GPS Christian Rocken, James Johnson, Teresa Van Hove, Tetsuya Iwabuchi COSMIC Program Office, University Corporation for Atmospheric

More information

Radar Interferometry Dealing with atmospheric errors for individual interferograms

Radar Interferometry Dealing with atmospheric errors for individual interferograms Radar Interferometry Dealing with atmospheric errors for individual interferograms Dr Zhenhong Li COMET, School of Geographical and Earth Sciences University of Glasgow Email: Zhenhong.Li@glasgow.ac.uk

More information

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA James Liljegren Ames Laboratory Ames, IA 515.294.8428 liljegren@ameslab.gov Introduction In the Arctic water vapor and clouds influence

More information

Synergetic Use of GPS Water Vapor and Meteosat Images for Synoptic Weather Forecasting

Synergetic Use of GPS Water Vapor and Meteosat Images for Synoptic Weather Forecasting 514 JOURNAL OF APPLIED METEOROLOGY Synergetic Use of GPS Water Vapor and Meteosat Images for Synoptic Weather Forecasting SIEBREN DE HAAN, SYLVIA BARLAG, HENK KLEIN BALTINK, AND FRANS DEBIE KNMI, De Bilt,

More information

2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA

2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA 2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA Lucia Mona*, 1, Aldo Amodeo 1, Carmela Cornacchia 1, Fabio Madonna 1, Gelsomina Pappalardo 1 and Ewan O Connor 2

More information

New Investigations and Contribution to Geodesy of the Italian GPS Fiducial Network at EUREF Analysis Center ASI/CGS

New Investigations and Contribution to Geodesy of the Italian GPS Fiducial Network at EUREF Analysis Center ASI/CGS 50 TWG / Status of the Permanent EUREF Network New Investigations and Contribution to Geodesy of the Italian GPS Fiducial Network at EUREF Analysis Center ASI/CGS C. FERRARO 1, R. DEVOTI 2, E. GUEGUEN

More information

Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment

Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L Aquila L Aquil, Italy E. R. Westwater Cooperative Institute for

More information

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c)

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c) 9B.3 IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST Tetsuya Iwabuchi *, J. J. Braun, and T. Van Hove UCAR, Boulder, Colorado 1. INTRODUCTION

More information

Impact of a high density GPS network on the operational forecast

Impact of a high density GPS network on the operational forecast Impact of a high density GPS network on the operational forecast C. Faccani, R. Ferretti, R. Pacione, T. Paolucci, F. Vespe, L. Cucurull To cite this version: C. Faccani, R. Ferretti, R. Pacione, T. Paolucci,

More information

COMPARISON OF SATELLITE DERIVED OCEAN SURFACE WIND SPEEDS AND THEIR ERROR DUE TO PRECIPITATION

COMPARISON OF SATELLITE DERIVED OCEAN SURFACE WIND SPEEDS AND THEIR ERROR DUE TO PRECIPITATION COMPARISON OF SATELLITE DERIVED OCEAN SURFACE WIND SPEEDS AND THEIR ERROR DUE TO PRECIPITATION A.-M. Blechschmidt and H. Graßl Meteorological Institute, University of Hamburg, Hamburg, Germany ABSTRACT

More information

VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS

VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS Rene Preusker, Peter Albert and Juergen Fischer 17th December 2002 Freie Universitaet Berlin Institut fuer Weltraumwissenschaften

More information

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions E. R. Westwater 1, D. Cimini 2, V. Mattioli 3, M. Klein 1, V. Leuski 1, A. J. Gasiewski 1 1 Center for Environmental

More information

The PaTrop Experiment

The PaTrop Experiment Improved estimation of the tropospheric delay component in GNSS and InSAR measurements in the Western Corinth Gulf (Greece), by the use of a highresolution meteorological model: The PaTrop Experiment N.

More information

New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations M.N. Deeter and J. Vivekanandan Research Applications Library National Center for Atmospheric Research Boulder,

More information

TOWARDS SEQUENTIAL WATER VAPOR PREDICTIONS BASED ON TIME SERIES OF GPS AND MERIS OBSERVATIONS.

TOWARDS SEQUENTIAL WATER VAPOR PREDICTIONS BASED ON TIME SERIES OF GPS AND MERIS OBSERVATIONS. TOWARDS SEQUENTIAL WATER VAPOR PREDICTIONS BASED ON TIME SERIES OF GPS AND MERIS OBSERVATIONS. Roderik Lindenbergh 1, Hans van der Marel 1, Maxim Keshin 2, and Siebren de Haan 3 1 Delft Institute of Earth

More information

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER L. G. Tilstra (1), P. Stammes (1) (1) Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE de Bilt, The Netherlands

More information

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model PIERS ONLINE, VOL. 6, NO. 3, 2010 262 Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model D. Perissin 1, E. Pichelli 2, R. Ferretti

More information

Lambertian surface scattering at AMSU-B frequencies:

Lambertian surface scattering at AMSU-B frequencies: Lambertian surface scattering at AMSU-B frequencies: An analysis of airborne microwave data measured over snowcovered surfaces Chawn Harlow, 2nd Workshop on Remote Sensing and Modeling of Land Surface

More information

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute Use of ground-based GNSS measurements in data assimilation Reima Eresmaa Finnish Meteorological Institute 16 June 2006 Outline 1) Introduction GNSS * positioning Tropospheric delay 2) GNSS as a meteorological

More information

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003 Christian Sutton Microwave Water Radiometer measurements of tropospheric moisture ATOC 5235 Remote Sensing Spring 23 ABSTRACT The Microwave Water Radiometer (MWR) is a two channel microwave receiver used

More information

Statistical Modeling of Atmospheric Mean Temperature in sub Sahel West Africa

Statistical Modeling of Atmospheric Mean Temperature in sub Sahel West Africa Statistical Modeling of Atmospheric Mean Temperature in sub Sahel West Africa Falaiye O. A. *, Sukam Y. M. * and Abimbola O. J. ** arxiv:1901.02342v1 [physics.ao-ph] 27 Dec 2018 * Department of Physics,

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

GPS Tomography and Remote Sensing Techniques for Water Vapor Determination in the ESCOMPTE Campaign

GPS Tomography and Remote Sensing Techniques for Water Vapor Determination in the ESCOMPTE Campaign GPS Tomography and Remote Sensing Techniques for Water Vapor Determination in the ESCOMPTE Campaign S. Lutz 1, M. Troller 1, A. Somieski 1, A. Walpersdorf 2, E. Doerflinger 3, A. Geiger 1, B. Bürki 1,

More information

AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites

AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites AIRS and IASI Precipitable Water Vapor (PWV) Absolute Accuracy at Tropical, Mid-Latitude, and Arctic Ground-Truth Sites Robert Knuteson, Sarah Bedka, Jacola Roman, Dave Tobin, Dave Turner, Hank Revercomb

More information

Humidity 3D field comparisons between GNSS tomography, IASI satellite observations and ALARO model. Belgian Institute for Space Aeronomy BIRA 3

Humidity 3D field comparisons between GNSS tomography, IASI satellite observations and ALARO model. Belgian Institute for Space Aeronomy BIRA 3 Oral Presentation, EGU0-85 Humidity D field comparisons between, H. Brenot, C. Champollion, A. Deckmyn, R. van Malderen, N. Kumps, R. Warnant, E. Goudenhoofdt, L. Delobbe and M. De Mazière contact: Belgian

More information

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics Proceedings of ERAD (2002): 190 194 c Copernicus GmbH 2002 ERAD 2002 Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics D. N. Moisseev 1, R. F. Hanssen

More information

GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italy) during MAP-SOP

GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italy) during MAP-SOP ANNALS OF GEOPHYSICS, VOL. 45, N. 5, October 2002 GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italy) during MAP-SOP Mauro Boccolari

More information

Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF

Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF Comparison of DMI Retrieval of CHAMP Occultation Data with ECMWF Jakob Grove-Rasmussen Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark jgr@dmi.dk Summary. At DMI a processing

More information

ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153

ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153 ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153 Shiv R. Pal 1, David I. Wardle 2, Hans Fast 2, Richard Berman 3, Richard

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Atmospheric Profiles Over Land and Ocean from AMSU

Atmospheric Profiles Over Land and Ocean from AMSU P1.18 Atmospheric Profiles Over Land and Ocean from AMSU John M. Forsythe, Kevin M. Donofrio, Ron W. Kessler, Andrew S. Jones, Cynthia L. Combs, Phil Shott and Thomas H. Vonder Haar DoD Center for Geosciences

More information

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom

More information

Microwave radiometry of clouds and precipitation:

Microwave radiometry of clouds and precipitation: Microrad08 March 11-14, 208 Florence, Italy Microwave radiometry of clouds and precipitation: the contribution of the Sapienza group and Giovanni d Auria F.S. Marzano 1, N. Pierdicca 1, L. Pulvirenti 1,

More information

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions E. R. Westwater 1, D. Cimini 2, V. Mattioli 3, M. Klein 1, V. Leuski 1, A. J. Gasiewski 1 1 Center for Environmental

More information

Ground-based millimeter and submillimeter-wave radiometry for the observation of the Arctic atmosphere

Ground-based millimeter and submillimeter-wave radiometry for the observation of the Arctic atmosphere Ground-based millimeter and submillimeter-wave radiometry for the observation of the Arctic atmosphere Domenico Cimini 1, Francesco Nasir 2, Fernando Consalvi 3 and Ed Westwater 4 1 CETEMPS, Università

More information

Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review

Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review Ground-based GPS networks for remote sensing of the atmospheric water vapour content: a review Gunnar Elgered Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992

More information

Bias correction of satellite data at the Met Office

Bias correction of satellite data at the Met Office Bias correction of satellite data at the Met Office Nigel Atkinson, James Cameron, Brett Candy and Steve English ECMWF/EUMETSAT NWP-SAF Workshop on Bias estimation and correction in data assimilation,

More information

Passive Microwave Sea Ice Concentration Climate Data Record

Passive Microwave Sea Ice Concentration Climate Data Record Passive Microwave Sea Ice Concentration Climate Data Record 1. Intent of This Document and POC 1a) This document is intended for users who wish to compare satellite derived observations with climate model

More information

CURRENT STATUS OF SCIAMACHY POLARISATION MEASUREMENTS. J.M. Krijger 1 and L.G. Tilstra 2

CURRENT STATUS OF SCIAMACHY POLARISATION MEASUREMENTS. J.M. Krijger 1 and L.G. Tilstra 2 % % CURRENT STATUS OF SCIAMACHY POLARISATION MEASUREMENTS JM Krijger 1 and LG Tilstra 2 1 SRON (National Institute for Space Research), Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands, krijger@sronnl

More information

Workshop on Numerical Weather Models for Space Geodesy Positioning

Workshop on Numerical Weather Models for Space Geodesy Positioning Workshop on Numerical Weather Models for Space Geodesy Positioning Marcelo C. Santos University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB Room C25 (ADI Room), Head

More information

Accuracy of Ground-Based Microwave Radiometer and Balloon-Borne Measurements During the WVIOP2000 Field Experiment

Accuracy of Ground-Based Microwave Radiometer and Balloon-Borne Measurements During the WVIOP2000 Field Experiment IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 11, NOVEMBER 2003 2605 Accuracy of Ground-Based Microwave Radiometer and Balloon-Borne Measurements During the WVIOP2000 Field Experiment

More information

H. Sarkar, Ph.D. 1,2* ; S.K. Midya, Ph.D. 2 ; and S. Goswami, M.Sc. 2

H. Sarkar, Ph.D. 1,2* ; S.K. Midya, Ph.D. 2 ; and S. Goswami, M.Sc. 2 A Comparative Study of Integrated Water Vapor (IWV) and of Attenuation of 94 GHz Signal from Radiometer and Radiosonde Observations during Monsoon Period over Kolkata, India. H. Sarkar, Ph.D. 1,2* ; S.K.

More information

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS 1 Working Group on Data Assimilation 2 Developments at DWD: Integrated water vapour (IWV) from ground-based Christoph Schraff, Maria Tomassini, and Klaus Stephan Deutscher Wetterdienst, Frankfurter Strasse

More information

ON WET TROPOSPHERIC CORRECTION FOR ALTIMETRY IN COASTAL REGIONS

ON WET TROPOSPHERIC CORRECTION FOR ALTIMETRY IN COASTAL REGIONS ON WET TROPOSPHERIC CORRECTION FOR ALTIMETRY IN COASTAL REGIONS Charles Desportes (1), Estelle Obligis (1), Laurence Eymard (2) (1) CLS (DOS), 8-10 rue Hermès, 31520 Ramonville St-Agne, France, Email:

More information

Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport.

Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport. Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport. Peter Ryan Bureau of Meteorology, Melbourne, Australia Peter.J.Ryan@bom.gov.au ABSTRACT The aim

More information

MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar

MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar National Aeronautics and Space Administration MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar Eric Fielding and Evan Fishbein Jet Propulsion Laboratory, California Inst. of Tech. Zhenhong

More information

H-SAF future developments on Convective Precipitation Retrieval

H-SAF future developments on Convective Precipitation Retrieval H-SAF future developments on Convective Precipitation Retrieval Francesco Zauli 1, Daniele Biron 1, Davide Melfi 1, Antonio Vocino 1, Massimiliano Sist 2, Michele De Rosa 2, Matteo Picchiani 2, De Leonibus

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

The role of CORS GNSS data for climate monitoring: case study using NIGNET network

The role of CORS GNSS data for climate monitoring: case study using NIGNET network The role of CORS GNSS data for climate monitoring: case study using NIGNET network Adeyemi ADEBOMEHIN, A. AYOOLA, Kufrey EKO, Nigeria and André SÁ, Portugal Key words: GNSS, CORS, Climate, Water Vapor

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

USV TEST FLIGHT BY STRATOSPHERIC BALLOON: PRELIMINARY MISSION ANALYSIS

USV TEST FLIGHT BY STRATOSPHERIC BALLOON: PRELIMINARY MISSION ANALYSIS USV TEST FLIGHT BY STRATOSPHERIC BALLOON: PRELIMINARY MISSION ANALYSIS A. Cardillo a, I. Musso a, R. Ibba b, O.Cosentino b a Institute of Information Science and Technologies, National Research Council,

More information

COMBINING WATER VAPOR DATA FROM GPS AND MERIS.

COMBINING WATER VAPOR DATA FROM GPS AND MERIS. COMBINING WATER VAPOR DATA FROM GPS AND MERIS. Roderik Lindenbergh, Maxim Keshin, Hans van der Marel and Ramon Hanssen Delft Institute of Earth Observation and Space Systems, Delft University of Technology

More information

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry JULY 1999 GÜLDNER AND SPÄNKUCH 981 Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry J. GÜLDNER AND D. SPÄNKUCH Deutscher Wetterdienst, Meteorologisches

More information

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f Compensating for atmospheric eects on passive radiometry at 85.5 GHz using a radiative transfer model and NWP model data Stefan Kern Institute of Environmental Physics University of Bremen, 28334 Bremen,

More information

S E S S I O N 2 : R E A L - T I M E A P P L I C A T I O N S A N D P R O D U C T S

S E S S I O N 2 : R E A L - T I M E A P P L I C A T I O N S A N D P R O D U C T S I G S S E S S I O N 2 : R E A L - T I M E A P P L I C A T I O N S A N D P R O D U C T S 40 Position Paper for the Real Time Applications and Products Session Yoaz Bar-Sever, JPL, and John Dow, ESOC Guided

More information

Bias correction of satellite data at Météo-France

Bias correction of satellite data at Météo-France Bias correction of satellite data at Météo-France É. Gérard, F. Rabier, D. Lacroix, P. Moll, T. Montmerle, P. Poli CNRM/GMAP 42 Avenue Coriolis, 31057 Toulouse, France 1. Introduction Bias correction at

More information

REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS

REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS REFINED AND SITE-AUGMENTED TROPOSPHERIC DELAY MODELS FOR GNSS Daniel Landskron, Gregor Möller, Armin Hofmeister, Johannes Böhm, and Robert Weber Technische Universität Wien, Austria Gußhausstraße 27-29,

More information

Analysis and prediction of stratospheric balloons trajectories

Analysis and prediction of stratospheric balloons trajectories Mem. S.A.It. Vol. 79, 915 c SAIt 2008 Memorie della Analysis and prediction of stratospheric balloons trajectories A. Cardillo 1, A. Memmo 2, I. Musso 1, R. Ibba 3, and D. Spoto 4 1 ISTI-CNR, via G. Moruzzi

More information

A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Winter Water Vapor Experiment

A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Winter Water Vapor Experiment A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Winter Water Vapor Experiment E. R. Westwater, Y. Han, A. Gasiewski, and M. Klein Cooperative

More information

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Discritnination of a wet snow cover using passive tnicrowa ve satellite data Annals of Glaciology 17 1993 International Glaciological Society Discritnination of a wet snow cover using passive tnicrowa ve satellite data A. E. WALKER AND B. E. GOODISON Canadian Climate Centre, 4905

More information

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements Characteristics of Global Precipitable Water Revealed by COSMIC Measurements Ching-Yuang Huang 1,2, Wen-Hsin Teng 1, Shu-Peng Ho 3, Ying-Hwa Kuo 3, and Xin-Jia Zhou 3 1 Department of Atmospheric Sciences,

More information

P1.12 MESOSCALE VARIATIONAL ASSIMILATION OF PROFILING RADIOMETER DATA. Thomas Nehrkorn and Christopher Grassotti *

P1.12 MESOSCALE VARIATIONAL ASSIMILATION OF PROFILING RADIOMETER DATA. Thomas Nehrkorn and Christopher Grassotti * P1.12 MESOSCALE VARIATIONAL ASSIMILATION OF PROFILING RADIOMETER DATA Thomas Nehrkorn and Christopher Grassotti * Atmospheric and Environmental Research, Inc. Lexington, Massachusetts Randolph Ware Radiometrics

More information

On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere

On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere Meteorol. Appl. 7, 61 68 (000) On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere T Ragne Emardson, Onsala Space Observatory, Chalmers University

More information

Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor

Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor 1710 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 16 Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor LARRY M. MCMILLIN National Environmental Satellite,

More information

MULTISENSORY SATELLITE STUDY OF MESOSCALE CYCLONES OVER THE NORTHERN PACIFIC

MULTISENSORY SATELLITE STUDY OF MESOSCALE CYCLONES OVER THE NORTHERN PACIFIC MULTISENSORY SATELLITE STUDY OF MESOSCALE CYCLONES OVER THE NORTHERN PACIFIC 13B.2 Irina A. Gurvich *, Leonid M. Mitnik, Maia L. Mitnik, and Michael K. Pichugin V.I. Il ichev Pacific Oceanological Institute,

More information

Channel frequency optimization of spaceborne millimeter-wave radiometer for integrated water vapor retrieval in Arctic region

Channel frequency optimization of spaceborne millimeter-wave radiometer for integrated water vapor retrieval in Arctic region Issue 3, Volume 2, 2008 157 Channel frequency optimization of spaceborne millimeter-wave radiometer for integrated water vapor retrieval in Arctic region Haibo Zhao and Jungang Miao Abstract Water vapor

More information

Sea ice concentration off Dronning Maud Land, Antarctica

Sea ice concentration off Dronning Maud Land, Antarctica Rapportserie nr. 117 Olga Pavlova and Jan-Gunnar Winther Sea ice concentration off Dronning Maud Land, Antarctica The Norwegian Polar Institute is Norway s main institution for research, monitoring and

More information

COMBINED OZONE RETRIEVAL USING THE MICHELSON INTERFEROMETER FOR PASSIVE ATMOSPHERIC SOUNDING (MIPAS) AND THE TROPOSPHERIC EMISSION SPECTROMETER (TES)

COMBINED OZONE RETRIEVAL USING THE MICHELSON INTERFEROMETER FOR PASSIVE ATMOSPHERIC SOUNDING (MIPAS) AND THE TROPOSPHERIC EMISSION SPECTROMETER (TES) COMBINED OZONE RETRIEVAL USING THE MICHELSON INTERFEROMETER FOR PASSIVE ATMOSPHERIC SOUNDING (MIPAS) AND THE TROPOSPHERIC EMISSION SPECTROMETER (TES) Claire Waymark, Anu Dudhia, John Barnett, Fred Taylor,

More information

Spatial interpolation of GPS integrated water vapour measurements made in the Swiss Alps

Spatial interpolation of GPS integrated water vapour measurements made in the Swiss Alps METEOROLOGICAL APPLICATIONS Meteorol. Appl. 14: 15 26 (7) Published online in Wiley InterScience (www.interscience.wiley.com).2 Spatial interpolation of GPS integrated water vapour measurements made in

More information

The Effect of Gradients in the GPS Estimation of Tropospheric Water Vapor

The Effect of Gradients in the GPS Estimation of Tropospheric Water Vapor The Effect of Gradients in the GPS Estimation of Tropospheric Water Vapor A. J. Coster 1, A.E.Niell 2, F.S.Solheim 3, V.B. Mendes 4, P.C. Toor 4, R. B. Langley 4, 1 MIT Lincoln Laboratory, Millstone Radar,

More information

AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS

AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS AN ACCURACY ASSESSMENT OF AATSR LST DATA USING EMPIRICAL AND THEORETICAL METHODS Elizabeth Noyes, Gary Corlett, John Remedios, Xin Kong, and David Llewellyn-Jones Department of Physics and Astronomy, University

More information

A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS. A.F.

A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS. A.F. A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS A.F. Nerushev Institute of Experimental Meteorology. 82 Lenin Ave., Obninsk,

More information

EUMETSAT STATUS AND PLANS

EUMETSAT STATUS AND PLANS 1 EUM/TSS/VWG/15/826793 07/10/2015 EUMETSAT STATUS AND PLANS François Montagner, Marine Applications Manager, EUMETSAT WMO Polar Space Task Group 5 5-7 October 2015, DLR, Oberpfaffenhofen PSTG Strategic

More information

MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR

MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR T.Colavitto (1) (2), F.Congeduti (1), C.M. Medaglia (1), F. Fierli (1), P. D Aulerio (1) (1) Istituto di Scienze dell

More information

ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS

ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS S. Adham Khiabani a, M. J. Valadan Zoej a, M. R. Mobasheri a, M. Dehghani a Geodesy and Geomatics Engineering Faculty,

More information

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction Rachel Holley, Geoff Wadge, Min Zhu Environmental Systems Science Centre, University

More information

An update on the NOAA MSU/AMSU CDR development

An update on the NOAA MSU/AMSU CDR development An update on the NOAA MSU/AMSU CDR development Cheng-Zhi Zou NOAA/NESDIS/Center for Satellite Applications and Research International TOVS Study Conferences (ITSC), Monterey, CA, April 14-20, 2010 1 Outline

More information

SCIENCE CHINA Earth Sciences. A global empirical model for estimating zenith tropospheric delay

SCIENCE CHINA Earth Sciences. A global empirical model for estimating zenith tropospheric delay SCIENCE CHINA Earth Sciences RESEARCH PAPER January 2016 Vol.59 No.1: 118 128 doi: 10.1007/s11430-015-5173-8 A global empirical model for estimating zenith tropospheric delay YAO YiBin 1,2*, ZHANG Bao

More information

Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts

Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts Journal of the Meteorological Society of Japan, Vol. 82, No. 1B, pp. 453--457, 2004 453 Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts Ko KOIZUMI

More information

ADVANCED ATMOSPHERIC BOUNDARY LAYER TEMPERATURE PROFILING WITH MTP-5HE MICROWAVE SYSTEM

ADVANCED ATMOSPHERIC BOUNDARY LAYER TEMPERATURE PROFILING WITH MTP-5HE MICROWAVE SYSTEM ADVANCED ATMOSPHERIC BOUNDARY LAYER TEMPERATURE PROFILING WITH MTP-5HE MICROWAVE SYSTEM E. Kadygrov*, M. Khaikin*, E. Miller*, A. Shaposhnikov*, A. Troitsky** * Central Aerological Observatory, Dolgoprudny,

More information

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN John M. Forsythe, Stanley Q. Kidder, Andrew S. Jones and Thomas H. Vonder Haar Cooperative Institute

More information

Thermodynamic Profiling during the Winter Olympics

Thermodynamic Profiling during the Winter Olympics Thermodynamic Profiling during the Winter Olympics CMOS 2010 Congress Scientific Session: Vancouver 2010 Olympic and Paralympic Winter Games 4 June 2010 R. Ware 1, N. Cimini 2, G. Giuliani 2, E. Westwater

More information

Profiling Boundary Layer Temperature Using Microwave Radiometer in East Coast of China

Profiling Boundary Layer Temperature Using Microwave Radiometer in East Coast of China Progress In Electromagnetics Research M, Vol. 4, 19 6, 14 Profiling Boundary Layer Temperature Using Microwave Radiometer in East Coast of China Ning Wang *, Zhen-Wei Zhao, Le-Ke Lin, Qing-Lin Zhu, Hong-Guang

More information

Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS)

Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS) Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS) Juan A. Fernandez-Saldivar, Craig I. Underwood Surrey Space Centre,

More information

A New Microwave Snow Emissivity Model

A New Microwave Snow Emissivity Model A New Microwave Snow Emissivity Model Fuzhong Weng 1,2 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Office of Research and Applications Banghua Yan DSTI. Inc The 13 th International TOVS

More information

High resolution forecast models of water vapour over mountains: comparison of results from the UM and MERIS

High resolution forecast models of water vapour over mountains: comparison of results from the UM and MERIS High resolution forecast models of water vapour over mountains: comparison of results from the UM and MERIS Article Published Version Zhu, M., Wadge, G., Holley, R.J., James, I.N., Clark, P.A., Wang, C.

More information

Ground-Based Radiometric Profiling during Dynamic Weather Conditions

Ground-Based Radiometric Profiling during Dynamic Weather Conditions Ground-Based Radiometric Profiling during Dynamic Weather Conditions R. Ware 1,2, P. Herzegh 3, F. Vandenberghe 3, J. Vivekanandan 3, and E. Westwater 4 1 Corresponding Author: Radiometrics Corporation,

More information

The Effect of Clouds and Rain on the Aquarius Salinity Retrieval

The Effect of Clouds and Rain on the Aquarius Salinity Retrieval The Effect of Clouds and ain on the Aquarius Salinity etrieval Frank J. Wentz 1. adiative Transfer Equations At 1.4 GHz, the radiative transfer model for cloud and rain is considerably simpler than that

More information

Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance

Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance - Introduction - Deriving surface energy balance fluxes from net radiation measurements - Estimation of surface net radiation from

More information