ANOMALY DETECTION AND REMOVAL IN RADAR IMAGES (ANDRE) FINAL PROJECT REPORT. Roskien poisto tutkakuvista (ROPO) projektin loppuraportti

Size: px
Start display at page:

Download "ANOMALY DETECTION AND REMOVAL IN RADAR IMAGES (ANDRE) FINAL PROJECT REPORT. Roskien poisto tutkakuvista (ROPO) projektin loppuraportti"

Transcription

1 ANOMALY DETECTION AND REMOVAL IN RADAR IMAGES (ANDRE) FINAL PROJECT REPORT Roskien poisto tutkakuvista (ROPO) projektin loppuraportti Markus Peura, Finnish Meteorological Institute, Development Branch P.O. Box 503, Helsinki, Finland Project manager: Jarmo Koistinen October 18, 2002 ABSTRACT The goal of this project was to detect and remove the anomalies appearing in weather radar data. The main targets were sea clutter (ships, waves), interfering external emitters (telecommunication, other radars) as well as the sun, birds, insects, and aircraft. Methodologically, the strategy was to use computer-vision related techniques as well as simpler methods applying auxiliary meteorogical data sources. A central principle was to keep detection and removal as distinct processes. This design is meaningful when 1) generating products from the anomalies, when 2) generating radar image products for which user may set the degree of removal, and 3) for data fusion involving dynamic source weighting (by quality or confidence). The related software has been in operational use at the FMI since May The scientific novelties are explained in further detail in the related conference publication (Peura 2002a). 1 INTRODUCTION Weather radar images are frequently contaminated by non-meteorological echoes as well as echoes caused by anomalous propagation. Especially in spring, the temperature differences between sea and the lowest atmosphere causes radar beams to bend downwards, yielding strong echoes from sea waves and ships as well as other anomalies like second trip echoes and external emitters. Some anomalies are shown in Fig. 1. lowest sweep (0.5 ), original B-scan lowest sweep PPI, map composite Fig. 1. An example of radar data containing several types of anomalies FMI Korppoo radar at 04:30 EET on 9th July, The only actual precipitation is in the North / North-East. The anomalies are speckle noise, sun (the continuous line segment pointing to 40 ), emitter (170 & 280 ), insects (near the radar), ships (sharp small specks; sidelobes), and sea clutter (large speck between 180 and 270 ). The detectors presented in this paper will be demonstrated using this data.

2 Automated detection of the various anomalies has proven to be a difficult task. However, even if the performance of an automated detection scheme remains inferior to the quality of a meteorologist s analysis, there are still advantages like speed, consistency, and objectivity. One should also keep in mind that the requirement for the purity of data differs among applications. For example, operational generation of warnings often requires conservative anomaly removal, if any, whereas in computing motion vectors pure radar data samples are preferred even at the cost of spatial coverage. Practically, our computer vision based approach means that the targets are treated above all by their visual appearance. We group and discuss targets primarily under the detection algorithms expected to work on them. For example, small specks orginate from various sources, but a filter that removes them all in a single pass will do. However, in many cases, similar appearance tends to refer to similar origins. The detector set developed at the FMI is shown in Table 1. Table 1. Detectors and their primary targets. detector target BIOMET birds and insects near the radar SPECK noise; distinct specks EMITTER line segments SUN long line segments SHIP ships (and aircraft) VERT_GRAD* sea waves and ducting effects METEOSAT* suspiciously warm data DOPPLER* non-continuous doppler data * not operational (yet) In the filtering process, we treat detection and removal as separate processes. This principle is motivated by two aspects of efficient end-product computation. First, some anomalies are of interest of certain customer groups, such as birds for aviation. Second, products have varying requirements for the purity of data. Hence, the results of detection are presented as images of continuous-valued probabilities, enabling several products to be generated from a single original by repeated thresholding. This scheme is illustrated in Fig. 2. This philosophy is compatible with the data management and control design proposed for the new weather prediction system at the FMI (Kukkonen and Kallio 2002). Fig. 2. Overall scheme. Each detector processes input data and produces an independent detection map, probability of anomaly. 2

3 2 METHODS The principal image analysis techniques applied in this project are listed below. Selected techniques illustrated in Fig. 3 and Fig Mask operations. A variety of digital image processing tasks can be performed by means of masks (also called windows or templates). The mask techniques applied in this project are related to the common median filtering. Such detectors are efficient in cancelling sharp details such as outliers (say, ships in radar imagery) and speckle noise. (Haralick et al. 1987). 2. Morphological operations. In computer vision, morphology refers to operations causing expansion or retraction of shapes, typically not as a result of geometrical scaling but by so called erosion and dilation. In nature, repeated freezing and melting produce analogous results. In this project, morphology has been used in collecting evidence of anomalies by connecting adjacent segments. (Haralick et al. 1987, Sonka et al. 1993). sample image f(x, y) morphol. operation (horizontal closing) segment operation (speck area) segment operation (horizontal run lengths) Fig. 3. Basic image analysis operators. 3. Segment operations. Many graphics programs apply the flood-fill algorithm in painting objects automatically. This technique can be also used in spreading information in an image. One may for example scan all each segment in the image, compute its area (closed curve integral), and then spread the result within the segment. This way, further processing, say filtering too small specks in radar images, can be performed simply by thresholding and masking. If the objects of interest are elongated, it is reasonable to distinguish them by their runlengths, that is, by the segment lengths calculated in either horizontal or vertical direction. (Sonka et al. 1993, Gonzales and Woods 1992, Peura et al. 1998) 4. Fuzzification. Targets appearing in meteorological radar data different modes of precipitation, bright bands, sky conditions and anomalies cannot be separated by applying strict dbz thresholds. Hence, in detecting and classifying these targets we suggest producing smooth curves of probability (or certainty, confidence, quality, or Bayesian belief) instead of absolute if-then results. This approach also helps in keeping results independent from scaling and measuring units. We propose using soft peak and threshold functions for communicating meteorologist s expertise (Fig. 4). For motivation, consider translating the following sentence to a mathematical form: if the size of the image segment is around 8 pixels, or at least between 4 and 12 pixels, and its maximal intensity is over 40dBZ, then it is probably a ship δ (x, a) = a2 a 2 +x 2 fuzzy peak -a 0 a σ (x, a) = x a+ x fuzzy threshold -a 0 a Fig. 4. Suggestions of simple fuzzy functions. In both functions, a is a steepness parameter referring to a half-width. The algorithmic design of the detectors is explained in in the conference publication (Peura 2002a). 3

4 3 DETECTION RESULTS This section addresses the current status of the detectors listed in Table 1. Efficiency of the detectors is illustrated in Fig BIOMET birds and insects. In the Finnish radar network, birds and insects ( biometeors ) appear regularly from spring to autumn. Biometeors form low-intensity speckled patterns near the radar. The applied detector is fairly simple - it directly fuzzifies these properties (low intensity and proximity). The results shown in Fig. 8 were obtained using threshold altitude (i.e. 50%-confidence) of 2500m and and threshold intensity of -5dBz. The detector is cabable of indicating the locations of biometeors relatively well but it cannot currently distinguish between small convective cells and dense flocks of birds. Although one could consider modelling the behaviour of biometeors (for birds, see (Koistinen 2000)), designing a fully automatic detector is an ambitious project. 2. SPECK speckle noise and distinct specks. Applying the segment methods explained in the previous section detection of distinct specks is straighforward. One simply sets a threshold for the segment size (in pixels, i.e. bins) corrensponding to the 50% probability of anomaly, then computes the segment sizes. It should be emphasized that segment-size based filtering is more accurate and faster than median filtering usually applied for similar tasks. 3. EMITTER and SUN line segments. In the Finnish radar network, the most frequent type of interfering radiation appears as straight line segments cause by other emitters. However, due to geometry, distant precipitation may appear more or less similarly. The challenge is to distinguish between these two. The detector is designed on the following assumptions: 1) emitter anomaly appears as horizontal segments of length at least a pixels, 2) such segments have maximal vertical width of w pixels (=degrees), and 3) occurrence of short, beam-wise segments implies increased probability of larger emitter anomalies in that direction. The SUN detector is similar to EMITTER with the exception that the expected region in the image the direction of the sun is precomputed. Fig. 5. Intermediate processing steps in detecting emitter segments with EMITTER (compare this with the b-scan image of Fig. 1). From left to right: 1) segments of vertical width 1 and the respective 2) thresholded averages of each beam, and 3) horizontal run lengths from which vertical run lengths have been subtracted. Fig. 6. Intermediate processing steps of SHIP. Left to right: 1) suspicious pixels extracted by simple high-boost filtering, 2) the previous result with horizontal segments pruned, and 3) artificially generated sidelobes to be matched with the actual ones in the input image. 4. SHIP marine (and airborne) vessels. As ships and aeroplanes are efficient reflectors of electromagnetic radiation they appear as sharp spots in weather radar images. The challenge is to distinguish these spots from 4

5 small convective cells; otherwise they risk being interpreted and forecasted as local showers or hail. The SHIP detector is currently the computationally heaviest anomaly detector applied at the FMI. The processing time for one radar volume remains still around a few seconds on the current Pentiums. 5. VERT_GRAD sea clutter detector. Typically, sea clutter interferes the lowest sweep(s) and disappears relatively sharply on the upper sweeps. On the contrary, precipitation echoes have smoother vertical gradients. Hence, our strategy is to consider the vertical gradient which is, however, fuzzily weighted by its altitude; the weight is inversely proportional to altitude. In addition, we should somehow cancel already-passed positive gradients, hence we always compute the gradient from the mimimum dbz value obtained that far. We used 50%-limits 3500m for altitude and -10dBZ/1000m for vertical gradient, and obtained the results shown in Fig METEOSAT 2nd trip, ducting and sea clutter. Precipitation implies ice particles hence too warm spots can be detected anomalous. Because of the low resolution of geostationary satellite data in the latitudes of Finland, the temperature of the smallest specks in radar images cannot be verified. Hence, we mask them out as a preprocessing stage. The results in Fig. 8 were obtained with a 50%-confidence threshold -5 C; respectively 0 C for a 75%-confidence. 7. DOPPLER birds and other indepedently moving targets. As opposite to precipitation, some anomalies have inconsistent doppler velocity fields. Especially insects, dense flocks of birds as well as some sea anomalies appear as discontinuities in doppler data. The results in Fig. 8 were obtained by detecting discontinuities in a 3 3pix window. Finally, in Fig. 7 we show the original image from which all the detectors listed in this paper have been applied. Variating the filtering threshold illustrates how a user can achieve a desired POD/FAR-type compromise. Fig. 7. Collective application of all the listed detectors with 40%, 50%, 75% and 90% filtering thresholds. 5

6 detector response (b-scan) extracted anomalies filtered image BIOMET SPECK EMITTER SHIP VERT_GRAD METEOSAT DOPPLER Fig. 8. Detection results for the case shown in Fig. 1. 6

7 4 CURRENT OPERATIONAL STATUS The current operational mode of the filter set applies brute force removal policy for anomalies: every pixel for which the confidence of anomaly is over 50% is simply erased from the image. One may think the resulting product as the best available radar data. One may however keep in mind that the threshold of compromise (erase anomalies vs. erase rain) varies in applications and users. 5 POSSIBLE FURTHER DEVELOPMENT In image restoration, one could also use more intelligent anomaly removal. Currently, removal of some anomalies found within precipitation may leave black spots in precipitation. One could for example spread the data from neighboring pixels to fill the gaps caused by erasing anomalous pixels. There are three detectors which would need further development before they can be taken to operational use: VERT_GRAD, METEOSAT and DOPPLER. The last detector (for birds, potentially) is technically the simplest and hence easiest to introduce. On the other hand, the current scheme generates the following intermediate products which are however not used as input for any end product. Given a radar volume as input, the currently unused intermediate products are: anomaly map (the most probable anomaly for each data point), confidence map for each anomaly, and total confidence map. These intermediate products could be used for example for generating: adaptive radar composite images weighted by data quality, nowcasting based on images weighted by data quality, radar images with probable anomalies marked radar images with anomalies made transparent or gray (smoothly based on their confidence), and detection products, for example bird maps. None of the detectors uses a sequence of images as input. No previous results of anomaly detection are utilized either. In future, these resources could be used as well. 6 DISCUSSION We presented a set of anomaly detectors for weather radar images. The detectors share a common basis in a set of image analysis techniques, but otherwise the detectors vary in performance and computational complexity. The performance of most detectors, especially for EMITTER, SUN and SHIP is satisfactory. Also the simple BIOMET works well in detecting the existence of birds and insects. The currently missing detector for strong bird echoes might be realized in the future based on the currently available biometeor support field. SPECK provides an exact means for handling invidual specks a property not achieved when using standard median filtering. Some detectors, like the METEOSAT, seem promising, but however do not seem to solve their proposed detection tasks autonomously but hopefully with a help of some additional information available in the future. 7 REFERENCES Gonzales, R. C. and Woods, R. E. (1992). Digital Image Processing, Addison-Wesley. Haralick, R. M., Sternberg, S. R. and Zhuang, X. (1987). Image analysis using mathematical morphology, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(4): Koistinen, J. (2000). Bird migration patterns on weather radars, 1st European Conference on Radar Meteorology, Bologna, Italy, Vol. 25 of Physics and Chemistry of the Earth (Part B: Hydrology, Oceans and Athmosphere), European Geophysical Society, Pergamon Press, pp

8 Kukkonen, P. and Kallio, A. (2002). Pro seija - sääennustusprosessin uudistus. Private communication, (FMI Intranet). Peura, M. (2002a). Computer vision methods for anomaly removal, Second European Conference on Radar Meteorology (ERAD02), Copernicus Gesellschaft. Peura, M. (2002b). An interface for monitoring radar images. operator/ropowww/browser.php (FMI Intranet). Peura, M. (2002c). Ropo-ohjelmisto. peura/ropo/ (FMI Intranet). Peura, M., Koistinen, J. and King, R. (1998). Visual modelling of radar images, COST-75: Advanced weather radar systems international seminar, European Commission, pp Sonka, M., Hlavac, V. and Boyle, R. (1993). Image Processing, Analysis and Computer Vision, Chapman & Hall Computing. 8

Fundamentals of Radar Display. Atmospheric Instrumentation

Fundamentals of Radar Display. Atmospheric Instrumentation Fundamentals of Radar Display Outline Fundamentals of Radar Display Scanning Strategies Basic Geometric Varieties WSR-88D Volume Coverage Patterns Classic Radar Displays and Signatures Precipitation Non-weather

More information

P5.4 WSR-88D REFLECTIVITY QUALITY CONTROL USING HORIZONTAL AND VERTICAL REFLECTIVITY STRUCTURE

P5.4 WSR-88D REFLECTIVITY QUALITY CONTROL USING HORIZONTAL AND VERTICAL REFLECTIVITY STRUCTURE P5.4 WSR-88D REFLECTIVITY QUALITY CONTROL USING HORIZONTAL AND VERTICAL REFLECTIVITY STRUCTURE Jian Zhang 1, Shunxin Wang 1, and Beth Clarke 1 1 Cooperative Institute for Mesoscale Meteorological Studies,

More information

Bird migration monitoring across Europe using weather radar

Bird migration monitoring across Europe using weather radar Bird migration monitoring across Europe using weather radar M. de Graaf 1, H. Leijnse 1, A. Dokter 2, J. Shamoun-Baranes 2, H. van Gasteren 3, J. Koistinen 4, and W. Bouten 2 1 Royal Netherlands Meteorological

More information

ERAD THE SIXTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

ERAD THE SIXTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Radar and lightning data based classification scheme for the severity of convective cells Pekka Rossi 1, Kalle Halmevaara 2, Antti Mäkelä 1, Jarmo Koistinen 1, Vesa Hasu 2 1. Finnish Meteorological Institute,

More information

Bird migration monitoring across Europe using

Bird migration monitoring across Europe using Bird migration monitoring across Europe using weather radar M. de Graaf, H. Leijnse, A. Dokter, J. Shamoun-Baranes, H. van Gasteren, J. Koistinen, and W. Bouten 7th European Conference on Radar in Meteorology

More information

Ecography. Supplementary material

Ecography. Supplementary material Ecography ECOG-04028 Dokter, A. M., Desmet, P., Spaaks, J. H., van Hoey, S., Veen, L., Verlinden, L., Nilsson, C., Haase, G., Leijnse, H., Farnsworth, A., Bouten, W. and Shamoun-Baranes, J. 2019. biorad:

More information

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK P13R.11 Hydrometeorological Decision Support System for the Lower Colorado River Authority *Charles A. Barrere, Jr. 1, Michael D. Eilts 1, and Beth Clarke 2 1 Weather Decision Technologies, Inc. Norman,

More information

Weather Radar and A3 Introduction

Weather Radar and A3 Introduction Weather Radar and A3 Introduction The term RADAR is an acronym formed from the term Radio Detection and Ranging. Nikola Tesla (of electric car fame) suggested in 1900 that moving targets should be observable

More information

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version ADL110B ADL120 ADL130 ADL140 How to use radar and strike images Version 1.00 22.08.2016 How to use radar and strike images 1 / 12 Revision 1.00-22.08.2016 WARNING: Like any information of the ADL in flight

More information

Meteorology 311. RADAR Fall 2016

Meteorology 311. RADAR Fall 2016 Meteorology 311 RADAR Fall 2016 What is it? RADAR RAdio Detection And Ranging Transmits electromagnetic pulses toward target. Tranmission rate is around 100 s pulses per second (318-1304 Hz). Short silent

More information

Uta Gjertsen 1 and Günther Haase 2. Norwegian Meteorological Institute, Oslo, Norway

Uta Gjertsen 1 and Günther Haase 2. Norwegian Meteorological Institute, Oslo, Norway 4.11 RADAR DATA QUALITY THE CHALLENGE OF BEAM BLOCKAGES AND PROPAGATION CHANGES Uta Gjertsen 1 and Günther Haase 2 1 Norwegian Meteorological Institute, Oslo, Norway 2 Swedish Meteorological and Hydrological

More information

DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE

DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE H. Kyznarová 1 and P. Novák 2 1 Charles University, Faculty of Mathematics and Physics, kyznarova@chmi.cz 2 Czech Hydrometeorological

More information

An Algorithm for Pre-Processing of Satellite Images of Cyclone Clouds

An Algorithm for Pre-Processing of Satellite Images of Cyclone Clouds An Algorithm for Pre-Processing of Satellite Images of Cyclone Clouds Ishita Dutta West Bengal University of Technology BF-142 Sector I Salt Lake Kolkata 700064, India Mallika De University of Kalyani

More information

Convective Structures in Clear-Air Echoes seen by a Weather Radar

Convective Structures in Clear-Air Echoes seen by a Weather Radar Convective Structures in Clear-Air Echoes seen by a Weather Radar Martin Hagen Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen, Germany Weather Radar Weather radar are normally used to locate

More information

Assimilation of Doppler radar observations for high-resolution numerical weather prediction

Assimilation of Doppler radar observations for high-resolution numerical weather prediction Assimilation of Doppler radar observations for high-resolution numerical weather prediction Susan Rennie, Peter Steinle, Mark Curtis, Yi Xiao, Alan Seed Introduction Numerical Weather Prediction (NWP)

More information

Real time mitigation of ground clutter

Real time mitigation of ground clutter Real time mitigation of ground clutter John C. Hubbert, Mike Dixon and Scott Ellis National Center for Atmospheric Research, Boulder CO 1. Introduction The identification and mitigation of anomalous propagation

More information

Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom

Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom 2.6 LOCAL VERTICAL PROFILE CORRECTIONS USING DATA FROM MULTIPLE SCAN ELEVATIONS Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom 1. INTRODUCTION The variation of reflectivity

More information

The next generation in weather radar software.

The next generation in weather radar software. The next generation in weather radar software. PUBLISHED BY Vaisala Oyj Phone (int.): +358 9 8949 1 P.O. Box 26 Fax: +358 9 8949 2227 FI-00421 Helsinki Finland Try IRIS Focus at iris.vaisala.com. Vaisala

More information

Chapter 12: Meteorology

Chapter 12: Meteorology Chapter 12: Meteorology Section 1: The Causes of Weather 1. Compare and contrast weather and climate. 2. Analyze how imbalances in the heating of Earth s surface create weather. 3. Describe how and where

More information

Aviation Hazards: Thunderstorms and Deep Convection

Aviation Hazards: Thunderstorms and Deep Convection Aviation Hazards: Thunderstorms and Deep Convection TREND Diagnosis of thunderstorm hazards using imagery Contents Satellite imagery Visible, infrared, water vapour Basic cloud identification Identifying

More information

An Introduction of Unmanned Aerial Systems (UAS) for Weather Operations

An Introduction of Unmanned Aerial Systems (UAS) for Weather Operations An Introduction of Unmanned Aerial Systems (UAS) for Weather Operations Chotipong Chamchalaem Graduate Seminar Spring 2017 Cal Poly San Luis Obispo Motivation Interest in exploring new applications for

More information

HydroClass TM. Separating meteorological and non-meteorological targets in Vaisala radar systems. Laura C. Alku 8th July 2014

HydroClass TM. Separating meteorological and non-meteorological targets in Vaisala radar systems. Laura C. Alku 8th July 2014 HydroClass TM Separating meteorological and non-meteorological targets in Vaisala radar systems 8th July 2014 HydroClass Software for hydrometeor classification Uses dual polarization observations Utilizes

More information

1 Introduction. 2 Wind dependent boundary conditions for oil slick detection. 2.1 Some theoretical aspects

1 Introduction. 2 Wind dependent boundary conditions for oil slick detection. 2.1 Some theoretical aspects On C-Band SAR Based Oil Slick Detection in the Baltic Sea Markku Similä, István Heiler, Juha Karvonen, and Kimmo Kahma Finnish Institute of Marine Research (FIMR), PB 2, FIN-00561, Helsinki, Finland Email

More information

118 RECONSTRUCTION OF RADAR RFLECTIVITY IN CLUTTER AREAS

118 RECONSTRUCTION OF RADAR RFLECTIVITY IN CLUTTER AREAS 8 RECONSTRUCTION OF RADAR RFLECTIVITY IN CLUTTER AREAS Shinju Park, Marc Berenguer Centre de Recerca Aplicada en Hidrometeorologia, Universitat Politècnica de Catalunya (BarcelonaTech), Barcelona, Spain..

More information

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 15B.1 RADAR RAINFALL ESTIMATES AND NOWCASTS: THE CHALLENGING ROAD FROM RESEARCH TO WARNINGS Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 1. Introduction Warnings are

More information

Improved radar QPE with temporal interpolation using an advection scheme

Improved radar QPE with temporal interpolation using an advection scheme Improved radar QPE with temporal interpolation using an advection scheme Alrun Jasper-Tönnies 1 and Markus Jessen 1 1 hydro & meteo GmbH & Co, KG, Breite Str. 6-8, 23552 Lübeck, Germany (Dated: 18 July

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Data quality in the BALTRAD+ Project

Data quality in the BALTRAD+ Project Data quality in the BALTRAD+ Project Jan Szturc 1, Daniel Michelson 2, Jarmo Koistinen 3, Günther Haase 2, Markus Peura 3, Rashpal Gill 4, Martin B. Sørensen 4, Katarzyna Ośródka 1, Anna Jurczyk 1 1 Institute

More information

ERAD Czech weather radar data utilization for precipitation nowcasting. Proceedings of ERAD (2004): c Copernicus GmbH 2004

ERAD Czech weather radar data utilization for precipitation nowcasting. Proceedings of ERAD (2004): c Copernicus GmbH 2004 Proceedings of ERAD (2004): 459 463 c Copernicus GmbH 2004 ERAD 2004 Czech weather radar data utilization for precipitation nowcasting P. Novák Czech Hydrometeorological Institute, Radar Department, Na

More information

ERAD Challenges for precipitation estimation in mountainous regions. Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Challenges for precipitation estimation in mountainous regions. Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (2002): 250 254 c Copernicus GmbH 2002 ERAD 2002 Challenges for precipitation estimation in mountainous regions U. Gjertsen and J. I. Dahl Norwegian Meteorological Institute, Research

More information

P4.11 SINGLE-DOPPLER RADAR WIND-FIELD RETRIEVAL EXPERIMENT ON A QUALIFIED VELOCITY-AZIMUTH PROCESSING TECHNIQUE

P4.11 SINGLE-DOPPLER RADAR WIND-FIELD RETRIEVAL EXPERIMENT ON A QUALIFIED VELOCITY-AZIMUTH PROCESSING TECHNIQUE P4.11 SINGLE-DOPPLER RADAR WIND-FIELD RETRIEVAL EXPERIMENT ON A QUALIFIED VELOCITY-AZIMUTH PROCESSING TECHNIQUE Yongmei Zhou and Roland Stull University of British Columbia, Vancouver, BC, Canada Robert

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT FRANÇOIS BECKER International Space University and University Louis Pasteur, Strasbourg, France; E-mail: becker@isu.isunet.edu Abstract. Remote sensing

More information

Combining Meteosat data and weather radar products to improve the meteorological surveillance and nowcasting

Combining Meteosat data and weather radar products to improve the meteorological surveillance and nowcasting Combining Meteosat data and weather radar products to improve the meteorological surveillance and nowcasting R. Hernandez (1)(2), S. Gaztelumendi (1)(2), K. Otxoa de Alda (1)(2), I. R. Gelpi (1)(2), J.

More information

The Radar Quality Control and Quantitative Precipitation Estimation Intercomparison Project. RQQI (pronounced Rickey)

The Radar Quality Control and Quantitative Precipitation Estimation Intercomparison Project. RQQI (pronounced Rickey) The Radar Quality Control and Quantitative Precipitation Estimation Intercomparison Project RQQI (pronounced Rickey) Paul Joe and Alan Seed Environment Canada Centre for Australian Weather and Climate

More information

Lab 6 Radar Imagery Interpretation

Lab 6 Radar Imagery Interpretation Lab 6 Radar Imagery Interpretation Background Weather radar (radio detection and ranging) is another very useful remote sensing tool used in meteorological forecasting. Microwave radar was developed in

More information

3D radar reflectivity mosaics based on a variational method

3D radar reflectivity mosaics based on a variational method ERAD 1 - THE SEVENTH EUROPEAN ONFERENE ON RADAR IN METEOROLOGY AND HYDROLOGY 3D radar reflectivity mosaics based on a variational method Jordi Roca-Sancho, Marc erenguer, Daniel Sempere-Torres entre de

More information

Cloud analysis from METEOSAT data using image segmentation for climate model verification

Cloud analysis from METEOSAT data using image segmentation for climate model verification Cloud analysis from METEOSAT data using image segmentation for climate model verification R. Huckle 1, F. Olesen 2 Institut für Meteorologie und Klimaforschung, 1 University of Karlsruhe, 2 Forschungszentrum

More information

Long term analysis of convective storm tracks based on C-band radar reflectivity measurements

Long term analysis of convective storm tracks based on C-band radar reflectivity measurements Long term analysis of convective storm tracks based on C-band radar reflectivity measurements Edouard Goudenhoofdt, Maarten Reyniers and Laurent Delobbe Royal Meteorological Institute of Belgium, 1180

More information

Sami Alhumaidi, Ph.D. Prince Sultan Advanced Technology Institute King Saud University Radar Symposium, Riyadh December 9, 2014

Sami Alhumaidi, Ph.D. Prince Sultan Advanced Technology Institute King Saud University Radar Symposium, Riyadh December 9, 2014 Anomalous Wave Propagation and its Adverse Effects on Military Operations Sami Alhumaidi, Ph.D. Prince Sultan Advanced Technology Institute King Saud University Radar Symposium, Riyadh December 9, 2014

More information

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine.

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine. Automatic Can Separation Kjersti Aas Line Eikvil Otto Milvang Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway e-mail: Kjersti.Aas@nr.no Tel: (+47) 22 85 25 00 Fax: (+47) 22 69 76

More information

SNOW COVER MAPPING USING METOP/AVHRR DATA

SNOW COVER MAPPING USING METOP/AVHRR DATA SNOW COVER MAPPING USING METOP/AVHRR DATA Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00101 Helsinki, Finland Abstract LSA SAF snow cover

More information

Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003.

Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003. SAFIR WARNING : Expected risk Radar-based Probability of Hail 0915 0930 0945 1000 Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003. Lightning

More information

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys 3.2 Observational Data 3.2.1 Data used in the analysis Data Short description Parameters to be used for analysis SYNOP Surface observations at fixed stations over land P,, T, Rh SHIP BUOY TEMP PILOT Aircraft

More information

Used to extract image components that are useful in the representation and description of region shape, such as

Used to extract image components that are useful in the representation and description of region shape, such as Used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction skeletons convex hull morphological filtering thinning pruning Sets

More information

Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output Downloaded from orbit.dtu.dk on: Jul 25, 2017 Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output Bøvith, Thomas; Nielsen, Allan Aasbjerg;

More information

Satellite-Based Detection of Fog and Very Low Stratus

Satellite-Based Detection of Fog and Very Low Stratus Satellite-Based Detection of Fog and Very Low Stratus A High-Latitude Case Study Centred on the Helsinki Testbed Experiment J. Cermak 1, J. Kotro 2, O. Hyvärinen 2, V. Nietosvaara 2, J. Bendix 1 1: Laboratory

More information

Use of lightning data to improve observations for aeronautical activities

Use of lightning data to improve observations for aeronautical activities Use of lightning data to improve observations for aeronautical activities Françoise Honoré Jean-Marc Yvagnes Patrick Thomas Météo_France Toulouse France I Introduction Aeronautical activities are very

More information

Long term performance monitoring of ASCAT-A

Long term performance monitoring of ASCAT-A Long term performance monitoring of ASCAT-A Craig Anderson and Julia Figa-Saldaña EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt, Germany. Abstract The Advanced Scatterometer (ASCAT) on the METOP series of

More information

Radar data quality issues in Northern Europe

Radar data quality issues in Northern Europe Radar data quality issues in Northern Europe E. Saltikoff 1, U. Gjertsen 2, D. Michelson 3, I. Holleman 4, J. Seltmann 5, K. Odakivi 6, A. Huuskonen 1, H. Hohti 1, J. Koistinen 1, H. Pohjola 1, and G.

More information

11B.3 ADAPTIVE TECHNIQUE TO EXTRACT INTRINSIC INSECTS BACKSCATTER DIFFERENTIAL PHASE FROM POLARIMETRIC SPECTRA

11B.3 ADAPTIVE TECHNIQUE TO EXTRACT INTRINSIC INSECTS BACKSCATTER DIFFERENTIAL PHASE FROM POLARIMETRIC SPECTRA 11B.3 ADAPTIVE TECHNIQUE TO EXTRACT INTRINSIC INSECTS BACKSCATTER DIFFERENTIAL PHASE FROM POLARIMETRIC SPECTRA Svetlana Bachmann* and Dusan Zrnic Cooperative Institute for Mesoscale Meteorological Studies,

More information

Towards a Fuzzy Spatial Database for Nowcasting

Towards a Fuzzy Spatial Database for Nowcasting Towards a Fuzzy Spatial Database for Nowcasting Norbert Driedger and Brian Greaves Meteorological Service of Canada, King Weather Radar Research Station, 14780 Jane St., King City, Ontario, Canada L7B

More information

CS 4495 Computer Vision Binary images and Morphology

CS 4495 Computer Vision Binary images and Morphology CS 4495 Computer Vision Binary images and Aaron Bobick School of Interactive Computing Administrivia PS6 should be working on it! Due Sunday Nov 24 th. Some issues with reading frames. Resolved? Exam:

More information

Section 7: Hazard Avoidance

Section 7: Hazard Avoidance 7.1 In-Flight Hazard Awareness Section 7: Hazard Avoidance As technology improves, pilots have more and more real-time information within reach in all phases of flight. Terrain proximity, real-time weather

More information

The next generation in weather radar software.

The next generation in weather radar software. The next generation in weather radar software. PUBLISHED BY Vaisala Oyj Phone (int.): +358 9 8949 1 P.O. Box 26 Fax: +358 9 8949 2227 FI-00421 Helsinki Finland Try IRIS Focus at iris.vaisala.com. Vaisala

More information

Vaisala Weather Radar.

Vaisala Weather Radar. Vaisala Weather Radar. You will see more. Your next weather radar. We chose the new Vaisala radar as we believe it s the best on the market. The new Vaisala radars and software tools are warmly welcomed

More information

CNES R&D and available software for Space Images based risk and disaster management

CNES R&D and available software for Space Images based risk and disaster management CNES R&D and available software for Space Images based risk and disaster management 1/21 Contributors: CNES (Centre National d Etudes Spatiales), Toulouse, France Hélène Vadon Jordi Inglada 2/21 Content

More information

an experiment to assess the hydrological value of a portable X-band radar

an experiment to assess the hydrological value of a portable X-band radar ERAD 12 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY RAINSCANNER@Barcelona: an experiment to assess the hydrological value of a portable X-band radar Marc Berenguer1, Shinju

More information

ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER

ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER P4R.6 ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER Michael Dixon, Cathy Kessinger and John Hubbert National Center for Atmospheric Research*, Boulder, Colorado

More information

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0)

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0) Page: 1/26 Validation Report for Precipitation SAF/NWC/CDOP2/INM/SCI/VR/15, Issue 1, Rev. 0 15 July 2013 Applicable to SAFNWC/MSG version 2013 Prepared by AEMET Page: 2/26 REPORT SIGNATURE TABLE Function

More information

IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS. Ronald Hannesen* Selex-Gematronik, Neuss, Germany

IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS. Ronald Hannesen* Selex-Gematronik, Neuss, Germany P13.14 IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS Ronald Hannesen* Selex-Gematronik, Neuss, Germany 1. INTRODUCTION A two-step radar echo classification is applied on polarimetric radar data:

More information

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA Piotr Struzik Institute of Meteorology and Water Management, Satellite Remote Sensing Centre

More information

Monitoring and characterizing offshore wind variability with weather radars for wind energy applications

Monitoring and characterizing offshore wind variability with weather radars for wind energy applications Monitoring and characterizing offshore wind variability with weather radars for wind energy applications Pierre-Julien Trombe (pmtr@dtu.dk) & Pierre Pinson 2 (ppin@elektro.dtu.dk) Dpt. of Applied Mathematics

More information

A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO

A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO Wiel M.F. Wauben, Instrumental Department, Royal Netherlands Meteorological Institute (KNMI) P.O. Box 201, 3730 AE De Bilt,

More information

P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D. Arthur Witt* and Rodger A. Brown

P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D. Arthur Witt* and Rodger A. Brown P4.8 PERFORMANCE OF A NEW VELOCITY DEALIASING ALGORITHM FOR THE WSR-88D Arthur Witt* and Rodger A. Brown NOAA/National Severe Storms Laboratory, Norman, Oklahoma Zhongqi Jing NOAA/National Weather Service

More information

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (2002): 150 154 c Copernicus GmbH 2002 ERAD 2002 Enhancement of precipitation by liquid carbon dioxide seeding K. Nishiyama 1, K. Wakimizu 2, Y. Suzuki 2, H. Yoshikoshi 2, and N. Fukuta

More information

TIME EVOLUTION OF A STORM FROM X-POL IN SÃO PAULO: 225 A ZH-ZDR AND TITAN METRICS COMPARISON

TIME EVOLUTION OF A STORM FROM X-POL IN SÃO PAULO: 225 A ZH-ZDR AND TITAN METRICS COMPARISON TIME EVOLUTION OF A STORM FROM X-POL IN SÃO PAULO: 225 A ZH-ZDR AND TITAN METRICS COMPARISON * Roberto V Calheiros 1 ; Ana M Gomes 2 ; Maria A Lima 1 ; Carlos F de Angelis 3 ; Jojhy Sakuragi 4 (1) Voluntary

More information

Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm

Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm John K. Williams,, Greg Meymaris,, Jason Craig, Gary Blackburn, Wiebke Deierling,, and Frank McDonough AMS 15 th Conference on Aviation,

More information

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations Elisabetta Ricciardelli*, Filomena Romano*, Nico Cimini*, Frank Silvio Marzano, Vincenzo Cuomo* *Institute of Methodologies

More information

Chapter 3 Convective Dynamics Part V ñ Bright Bands, Bow Echoes and MCCs. Bright band associated with stratiform precipitation in a squall line system

Chapter 3 Convective Dynamics Part V ñ Bright Bands, Bow Echoes and MCCs. Bright band associated with stratiform precipitation in a squall line system Chapter 3 Convective Dynamics Part V ñ Bright Bands, Bow Echoes and MCCs Photographs Todd Lindley (This part contains materials taken from UCAR MCS training module) Bright band associated with stratiform

More information

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning.

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning. WEATHER rain thunder The explosive sound of air as it is heated by lightning. rainbow lightning hurricane They are intense storms with swirling winds up to 150 miles per hour. tornado cold front warm front

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

"Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting"

Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting "Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting" Marianne König 1, Monika Pajek 2, Piotr Struzik 2 1) EUMETSAT 2) Institute of Meteorology and Water Management, Kraków,

More information

Release Notes for the DPR Level 2 and 3 products

Release Notes for the DPR Level 2 and 3 products Release Notes for the DPR Level 2 and 3 products DPR Level 2 and 3 Version 4 products have been released to public users since March 2016. Caveats for these products are described as follows. All users

More information

WMO Priorities and Perspectives on IPWG

WMO Priorities and Perspectives on IPWG WMO Priorities and Perspectives on IPWG Stephan Bojinski WMO Space Programme IPWG-6, São José dos Campos, Brazil, 15-19 October 2012 1. Introduction to WMO Extended Abstract The World Meteorological Organization

More information

P5.2 CORRECTING AND ENHANCING AP MITIGATION WITHIN ORPG COMPOSITE REFLECTIVITY PRODUCTS FOR FAA SYSTEMS

P5.2 CORRECTING AND ENHANCING AP MITIGATION WITHIN ORPG COMPOSITE REFLECTIVITY PRODUCTS FOR FAA SYSTEMS P5.2 CORRECTING AND ENHANCING AP MITIGATION WITHIN ORPG COMPOSITE REFLECTIVITY PRODUCTS FOR FAA SYSTEMS Christopher W. Porter* Cooperative Institute for Mesoscale Meteorological Studies/ University of

More information

ATS 351, Spring 2010 Lab #9 Weather Radar - 55 points

ATS 351, Spring 2010 Lab #9 Weather Radar - 55 points ATS 351, Spring 2010 Lab #9 Weather Radar - 55 points 1. (5 points) If a radar has a maximum unambiguous range of 300km, what is its PRF? (The speed of light, c, is equal to 3x10 8 m/s) The equation to

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

Verification of ECMWF products at the Finnish Meteorological Institute

Verification of ECMWF products at the Finnish Meteorological Institute Verification of ECMWF products at the Finnish Meteorological Institute by Juha Kilpinen, Pertti Nurmi, Petra Roiha and Martti Heikinheimo 1. Summary of major highlights A new verification system became

More information

Study on the rainfall dependence structure using radar and rain gauge data

Study on the rainfall dependence structure using radar and rain gauge data International Workshop Advances in Statistical hydrology, May 23-25 2010, Taormina, Italy Study on the rainfall dependence structure using radar and rain gauge data V. Montesarchio, F. Russo, F. Napolitano

More information

LIFE12 ENV/FIN/ st summary report of snow data 30/09/2014

LIFE12 ENV/FIN/ st summary report of snow data 30/09/2014 LIFE Project Number 1st summary report of snow data Reporting Date 30/09/2014 LIFE+ PROJECT NAME or Acronym Climate change indicators and vulnerability of boreal zone applying innovative observation and

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 7 Sept 11 th, 2018 Pranav Mantini Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Today Review Binary Image Processing Opening and Closing Skeletonization

More information

OPERA: Operational Programme for the Exchange of Weather Radar Information

OPERA: Operational Programme for the Exchange of Weather Radar Information OPERA: Operational Programme for the Exchange of Weather Radar Information ALADIN-HIRLAM workshop, Toulouse Maud Martet 26-28 April 2016 OPERA: An EUMETNET Project EUMETNET: EIG of 31 European National

More information

7B.4 EVALUATING A HAIL SIZE DISCRIMINATION ALGORITHM FOR DUAL-POLARIZED WSR-88Ds USING HIGH RESOLUTION REPORTS AND FORECASTER FEEDBACK

7B.4 EVALUATING A HAIL SIZE DISCRIMINATION ALGORITHM FOR DUAL-POLARIZED WSR-88Ds USING HIGH RESOLUTION REPORTS AND FORECASTER FEEDBACK 7B.4 EVALUATING A HAIL SIZE DISCRIMINATION ALGORITHM FOR DUAL-POLARIZED WSR-88Ds USING HIGH RESOLUTION REPORTS AND FORECASTER FEEDBACK Kiel L. Ortega 1, Alexander V. Ryzhkov 1, John Krause 1, Pengfei Zhang

More information

Monitoring bird migration by weather radar

Monitoring bird migration by weather radar Monitoring bird migration by weather radar Adriaan Dokter and Iwan Holleman Introduction Weather and bird migration are intimately related. Evolution has shaped the migration strategies of birds such that

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.6 Observation, nowcast and forecast of future needs 1.6.1 Advances in observing methods and use of observations

More information

A New Numerical Weather Prediction Approach to the NDFD's Sky Cover Grid

A New Numerical Weather Prediction Approach to the NDFD's Sky Cover Grid A New Numerical Weather Prediction Approach to the NDFD's Sky Cover Grid Jordan Gerth Graduate Research Assistant Cooperative Institute for Meteorological Satellite Studies (CIMSS) and Department of Atmospheric

More information

Analyzing the impact of wind turbines on operational weather radar products

Analyzing the impact of wind turbines on operational weather radar products Analyzing the impact of wind turbines on operational weather radar products Günther Haase 1, Daniel Johnson 1 and Kjell-Åke Eriksson 2 1 Swedish Meteorological and Hydrological Institute, S-60176 Norrköping,

More information

Supplementing convective objects with national emergency report data

Supplementing convective objects with national emergency report data Supplementing convective obects with national emergency report data Kalle Halmevaara 1, Pekka Rossi 2, Antti Mäkelä 2, Jarmo Koistinen 2, Vesa Hasu 1 1 Aalto University School of Science and Technology,

More information

National Satellite Data Centre and Finnish Sentinel Collaborative Ground Segment. Jyri Heilimo Finnish Meteorological Instute

National Satellite Data Centre and Finnish Sentinel Collaborative Ground Segment. Jyri Heilimo Finnish Meteorological Instute National Satellite Data Centre and Finnish Sentinel Collaborative Ground Segment Jyri Heilimo Finnish Meteorological Instute Sodankylä National Satellite Data Centre National satellite data centre providing

More information

Multi-Sensor Precipitation Reanalysis

Multi-Sensor Precipitation Reanalysis Multi-Sensor Precipitation Reanalysis Brian R. Nelson, Dongsoo Kim, and John J. Bates NOAA National Climatic Data Center, Asheville, North Carolina D.J. Seo NOAA NWS Office of Hydrologic Development, Silver

More information

eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract

eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract eport Nataša Strelec Mahović Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia EUMeTrain project Abstract The paper presents the concept of eport, an interface enabling the combined analysis

More information

REQUIREMENTS FOR WEATHER RADAR DATA. Review of the current and likely future hydrological requirements for Weather Radar data

REQUIREMENTS FOR WEATHER RADAR DATA. Review of the current and likely future hydrological requirements for Weather Radar data WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS WORKSHOP ON RADAR DATA EXCHANGE EXETER, UK, 24-26 APRIL 2013 CBS/OPAG-IOS/WxR_EXCHANGE/2.3

More information

Guidance on Aeronautical Meteorological Observer Competency Standards

Guidance on Aeronautical Meteorological Observer Competency Standards Guidance on Aeronautical Meteorological Observer Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Format of the Descriptions

More information

Observation strategies for severe rain in The Netherlands

Observation strategies for severe rain in The Netherlands Observation strategies for severe rain in The Netherlands Herman Russchenberg Delft University of Technology Challenge the future Our Earth is slowly warming The world population is moving into the cities

More information

Heuristic Tidal Advisor: An Innovative Algorithm for Tidal Prediction. Dr S E Taylor. MD. Geomatix Ltd UK. Sep 2016

Heuristic Tidal Advisor: An Innovative Algorithm for Tidal Prediction. Dr S E Taylor. MD. Geomatix Ltd UK. Sep 2016 Heuristic Tidal Advisor: An Innovative Algorithm for Tidal Prediction. Dr S E Taylor. MD. Geomatix Ltd UK. Sep 2016 Abstract The height of the tide is caused not only by the tide raising forces of the

More information

364 OPERA 4 - THE NEW PHASE OF OPERATIONAL WEATHER RADAR NETWORK IN EUROPE

364 OPERA 4 - THE NEW PHASE OF OPERATIONAL WEATHER RADAR NETWORK IN EUROPE 364 OPERA 4 - THE NEW PHASE OF OPERATIONAL WEATHER RADAR NETWORK IN EUROPE Elena Saltikoff*, Hidde Leijnse and Petr Novak FMI, KNMI and CHMI 1. INTRODUCTION The operational weather radar network in Europe

More information

Errors in surface rainfall rates retrieved from radar due to wind-drift

Errors in surface rainfall rates retrieved from radar due to wind-drift ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 6: 71 77 (2) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:.2/asl.96 Errors in surface rainfall rates retrieved from radar due to

More information