Gravity wave events and polar stratospheric clouds over the Antarctic Peninsula from spaceborne lidar observations

Size: px
Start display at page:

Download "Gravity wave events and polar stratospheric clouds over the Antarctic Peninsula from spaceborne lidar observations"

Transcription

1 Gravity wave events and polar stratospheric clouds over the Antarctic Peninsula from spaceborne lidar observations V. Noel, A. Hertzog, H. Chepfer Laboratoire de Météorologie Dynamique, IPSL/CNRS 1

2 1. Polar Stratospheric Clouds [PSCs] form during polar winter nighttime (May - Sep) play an active part in the formation of the seasonal ozone hole sun-activated reactions on PSC particles transform passive species (e.g. HCl) into active chlorine and bromine that cause ozone loss Sedimentation of PSC particle scavenge nitric acid, slowing down the reconversion of active chlorine into passive species 30km 10km PSC as seen by CALIOP: altitude, composition 2 CALIPSO orbit track

3 PSC particles H2O NAT "type Ia" NATrock Ice "type II" STS "type Ib" H2SO4 HNO3 Particle nucleation is driven by mixing ratios, temperature, pressure In reality, PSCs are often mixtures of all particle types This talk will focus on Ice and NAT PSCs 3

4 PSC formation and GW - ice For 5 ppmv water vapour, the ice frost point T ice goes from ~ 189K (60 hpa) to 183K (20 hpa) pretty cold even by stratospheric standards Ice PSCs are relatively rare and occur primarily near the Peninsula or the Transantarctic mountains - GW are a primary influence T < Tice Ice PSC Example of GW-caused PSC- June GW Ice PSC observed above the Peninsula by CALIOP Peninsula 173K 183K 193K 203K 213K 223K Modelled WRF temperatures 4

5 PSC formation and GW - NAT T NAT is ~6K warmer than T ice : 189K to 195K - very frequent Homogeneous NAT nucleation is inefficient (2-4 days), NAT PSC formation is slow 5

6 PSC formation and GW - NAT T NAT is ~6K warmer than T ice : 189K to 195K - very frequent Homogeneous NAT nucleation is inefficient (2-4 days), NAT PSC formation is slow NAT crystals can nucleate heterogeneously on crystals from Ice PSCs How important are GW for the formation of the PSC population? June Upstream: clear-sky Downstream : NAT PSC Ice PSC NAT PSC "Mountain-wave seeding" upstream downstream 6

7 Methodology Model WRF PSC CAL Observations Volume T<T ice T<T NAT Volume PSC ice/nat Compare, taking into account GW events 7

8 2. Model domain 2000 km 100 cells WRF model (3.2.1) 120 vertical levels, p_top = 5hPa 38 levels in hpa range ( km 3 ) Initialized with ERA-Interim reanalyses 0.75 resolution stratospheric wind and temperature JJA hours timestep 8

9 Example of GW event - July 19th 2006 T<T ice ΔWmax GW identified by the frequency of profiles affected by strong vertical winds, i.e. > 1m/s 9

10 GW activity 2006 Frequency of GW-affected profiles, 2006 June: 2.1% July: 1.8% August: 0.1% 1.2% of the domain ( hpa) affected by GW in High GW activity in June, July Severe drop in August

11 wind speed and temperatures wind speed m/s GW w > 1 m/s GW GW 29 days / 78 (37%) affected by GW GW events are linked to colder temperatures, but no clear relationship between intensity of winds and cold temperatures reached Short GW events (<1day) do not seem to affect temperatures PSC case study GW event criteria: existence of winds > 1 m/s for at least 24 h temperature [K] To evaluate V Tice and V TNAT, fluctuations of T ice and T NAT need to be accounted for 11

12 Ice and NAT frost points ~5 ppmv Daily H 2 O [ppmv] ~4 ppmv derived from MLS profiles of H 2 O and HNO 3 mixing ratios above the Peninsula WRF: T(t,x,y,P) MLS: T ice (t,p) and T NAT (t,p) V Tice (t,x,y,p) V TNAT (t,x,y,p) 12

13 3. Comparison with CALIOP observations 2006 For each CALIPSO orbit crossing the domain Identify closest WRF run (3h) Extract vertical profiles of WRF temperatures in stratosphere ( hpa) along the CALIPSO orbit track WRF required to take into account "imperfect" satellite sampling ~4% of the domain per day Reproject profiles on CALIOP vertical grid Quantify volume of T<T ice, T<T NAT 13 Detect PSCs based on backscatter thresholding J J A S Identify PSC types following classification scheme from Pitts et al Quantify volume of ice and NAT PSC Orbit-level comparison of V Tice, V PSCi and V TNAT, V PSCn aggregated over 1-day periods CAL

14 V Tice vs. V PSCi 2006 sampled PSC volume T<Tice volume CAL WRF GW Ice PSC 50 days (72%) in 2006 all occur on days with T<T ice, on 74% of those days closely follow fluctuations in T ice (except end August) GW 29 days (42%), all sampled 25 show ice PSCs (85%) no obvious correlation with increase in T<T ice or PSC volume (sampling?) 14

15 V TNAT vs. V PSCn 2006 GW sampled PSC volume T<TNAT volume CAL WRF NAT PSC missing CALIPSO data on 100% of sampled days in 2006, all days T<T NAT follows fluctuations in T ice, although the volume is relatively much smaller (due to nucleation inefficiency) relationship with GW even less clear 15

16 Ice PSCs and GW 170 days GW (38%) days T<T ice (85%) 260 days Ice PSC (62%) sampled days Occurrence of T<T ice 85% of days, GW or no GW Occurrence of Ice PSC 86% of days T < T ice GW 65% of days T < T ice no GW volume with T < T ice GW days: less small volumes of T<T ice smaller average volume of T<T ice higher volume of Ice PSC +70% on average More efficient PSC formation, thanks to colder temperatures? 16 volume of ice PSC

17 NAT PSCs and GW According to the mountain-wave hypothesis, the formation of NAT PSC should be enhanced during gravity wave events (heterogeneous vs. homogeneous nucleation) V PSCn / V TNAT should increase during GW Not really the case on average V PSCn / V TNAT 17

18 V PSCn / V TNAT mapped Mapping the spatial evolution of V PSCn /V TNAT reveals new details V PSCn / V TNAT, GW V PSCn / V TNAT, no GW V PSCn / V TNAT GW events are linked to a downstream increase in nucleation efficiency (East of the Peninsula), coupled to a decrease upstream (West) The ~33% increase can be attributed to heterogeneous nucleation on ice PSCs The cause of the ~33% decrease is unclear 18

19 Summary Fluctuations in observed volumes of ice and NAT PSCs follow modelled volumes of T<T ice and T<T NAT Differences in nucleation efficiency Volume Ice PSC = 0.6 * volume T < T ice Volume NAT PSC = 0.15 * volume T < T NAT Over the Peninsula, T < T ice are not more frequent during GW events (85% of the time in any case) If GW, more ice PSCs are observed, PSC volume higher by ~70% on average More ice crystals for heterogeneous nucleation of NAT during GW Mountain-wave seeding effect evidenced by ~33% downstream increase in NAT nucleation efficiency compensated by a unexplained symmetric upstream decrease 19

20 20

21 backup slides 21

22 Outlook Use actual PSC identification from Pitts et al. 20x20 km might not be enough to simulate the intensity and extent of GW Extrapolate total volume of NAT PSC created from GW events to the total domain, from sampled results 22

23 GW activity and temperatures WRF vol. GW vol. with T < T ice vol. with T < T NAT All years 1.2% 4.1% 41.6% 0.6% 4.2% 40.2% 0.8% 5.9% 38.4% 0.4% 5.1% 35.1% 1.1% 6.2% 38.6% 0.8% 5.3% 38.7% J J A J J A J J A 0.7% 1.2% 0.5% 2.2% 5.1% 8.5% 32 % 39 % 43 % The intensity of GW activity does not seem to affect significantly the volume T < T ice or T < T NAT 23

24 CALIOP detection 24

25 notes - why not using the WRF mixing ratios? 25

Simulation of Polar Ozone Depletion: An Update

Simulation of Polar Ozone Depletion: An Update Simulation of Polar Ozone Depletion: An Update Image taken from www.zmescience.com D. Kinnison (NCAR), S. Solomon (MIT), and J. Bandoro (MIT) February 17, 2015 WACCM Working Group Meeting, Boulder Co.

More information

Vertical distribution of dust aerosols from 5 years of CALIPSO observations

Vertical distribution of dust aerosols from 5 years of CALIPSO observations Vertical distribution of dust aerosols from 5 years of CALIPSO observations, Alain Chédin, Sophie Peyridieu Laboratoire de Météorologie Dynamique CNRS/IPSL, Ecole Polytechnique christoforos.tsamalis@lmd.polytechnique.fr

More information

Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA

Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA Simulation of Polar Ozone Depletion in SD-WACCM4 / MERRA D. Kinnison (NCAR), S. Solomon (MIT), J. Bandoro (MIT), and R. Garcia (NCAR) June 16, 2015 WACCM Working Group Meeting, Baltimore MD. Image courtesy

More information

WACCM Studies at CU-Boulder

WACCM Studies at CU-Boulder WACCM Studies at CU-Boulder V.L. Harvey, C.E. Randall, O.B. Toon, E. Peck, S. Benze, M. Brakebusch, L. Holt, D. Wheeler, J. France, E. Wolf, Y. Zhu, X. Fang, C. Jackman, M. Mills, D. Marsh Most Topics

More information

A Novel Cirrus Cloud Retrieval Method For GCM High Cloud Validations

A Novel Cirrus Cloud Retrieval Method For GCM High Cloud Validations A Novel Cirrus Cloud Retrieval Method For GCM High Cloud Validations David Mitchell Anne Garnier Melody Avery Desert Research Institute Science Systems & Applications, Inc. NASA Langley Reno, Nevada Hampton,

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination

CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination Atmos. Chem. Phys., 9, 777 79, 9 www.atmos-chem-phys.net/9/777/9/ Author(s) 9. This work is distributed under the Creative Commons Attribution. License. Atmospheric Chemistry and Physics CALIPSO polar

More information

BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS

BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS quentin@oma.be Motivations BASCOE produces operational analyses of MLS since 2009 for the validation of MACC O 3 (Lefever et al.,

More information

Analysis of PSC Formation using Parcel Temperature Histories

Analysis of PSC Formation using Parcel Temperature Histories Department of Physics and Astronomy; University of Canterbury Private Bag 4800, Christchurch, New Zealand Analysis of PSC Formation using Parcel Temperature Histories Master of Science Thesis Fraser Dennison

More information

Sudden stratospheric warming and O3 depletion

Sudden stratospheric warming and O3 depletion Sudden Stratospheric Warming (SSW) and O3 T. Flury, K. Hocke, N. Kämpfer, A. Haefele Institute of Applied Physics, University of Bern ISSI workshop Outline 1) GROMOS measures O3 depletion during SSW 2)

More information

Atmospheric Chemistry and Physics

Atmospheric Chemistry and Physics Atmos. Chem. Phys., 5, 739 753, 5 www.atmos-chem-phys.org/acp/5/739/ SRef-ID: 8-73/acp/5-5-739 European Geosciences Union Atmospheric Chemistry and Physics Influence of mountain waves and NAT nucleation

More information

Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others.

Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others. Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others. Outline Using CALIOP to Validate MODIS Cloud Detection, Cloud Height Assignment, Optical Properties Clouds and Surface

More information

Raman spectroscopy measurements of Polar Stratospheric Cloud (PSC) mimics

Raman spectroscopy measurements of Polar Stratospheric Cloud (PSC) mimics Raman spectroscopy measurements of Polar Stratospheric Cloud (PSC) mimics Eoin Riordan and John R Sodeau CRAC - Department of Chemistry & Environment Research Institute, University College Cork, Ireland.

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

ATM 507 Lecture 9 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Next Class Tuesday, Sept. 30 Today s topics Polar Stratospheric Chemistry and the Ozone Hole, Required reading: 20 Questions and

More information

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation 1. What is the basic difference between ultraviolet, visible, and infrared radiation? A) half-life B) temperature C) wavelength D) wave velocity 2. In New York State, the risk of sunburn is greatest between

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

GEOGRAPHY AND HISTORY

GEOGRAPHY AND HISTORY GEOGRAPHY AND HISTORY YEAR 1, PART 1 www.vicensvives.es Contents 01 Our planet Earth 02 The representation of the Earth: maps 03 The Earth s relief 04 Rivers and seas 05 Weather and climate 06 Climates

More information

Understanding the Relation between V PSC and Arctic Ozone Loss

Understanding the Relation between V PSC and Arctic Ozone Loss Understanding the Relation between V PSC and Arctic Ozone Loss Neil Harris European Ozone Research Coordinating Unit Department of Chemistry, University of Cambridge Ralph Lehmann, Markus Rex, Peter von

More information

IV. Atmospheric Science Section

IV. Atmospheric Science Section EAPS 100 Planet Earth Lecture Topics Brief Outlines IV. Atmospheric Science Section 1. Introduction, Composition and Structure of the Atmosphere Learning objectives: Understand the basic characteristics

More information

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau C. Xu, Y. M. Ma, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences xuchao@itpcas.ac.cn

More information

CALIPSO observations of wave-induced PSCs with near-unity optical depth over Antarctica in

CALIPSO observations of wave-induced PSCs with near-unity optical depth over Antarctica in Author manuscript, published in "Journal of Geophysical Research 114 (2009) D05202" CALIPSO observations of wave-induced PSCs with near-unity optical depth over Antarctica in 2006-2007 Noel V. 1, Hertzog

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

Modeling polar ozone loss at the University of Colorado

Modeling polar ozone loss at the University of Colorado Modeling polar ozone loss at the University of Colorado CESM workshop Breckenridge, 06/21/2012 Matthias Brakebusch, Cora E. Randall, Douglas E. Kinnison, Simone Tilmes, Michelle L. Santee, Gloria L. Manney

More information

Improving the representation of the martian water cycle in the Global Climate Model of the LMD*

Improving the representation of the martian water cycle in the Global Climate Model of the LMD* Improving the representation of the martian water cycle in the Global Climate Model of the LMD* Margaux Vals, Laboratoire de Météorologie Dynamique*, Paris, Aymeric Spiga, François Forget, Ehouarn Millour

More information

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications A presentation for the 2016 meeting of the Committee on Earth Observation Satellites (COES) Atmospheric

More information

Antarctic Ozone Bulletin

Antarctic Ozone Bulletin Antarctic Ozone Bulletin No 1 / Altitude [km] 35 30 25 20 15 10 Temperature [ C] -90-80 -70-60 -50-40 -30 Neumayer 15 August Ozone Temperature Ozone sounding on 15 August from the German NDACC/GAW station

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Measurement Techniques. Biogeosciences. Earth System. Earth System. Model Development. Hydrology and. Solid Earth. The Cryosphere

Measurement Techniques. Biogeosciences. Earth System. Earth System. Model Development. Hydrology and. Solid Earth. The Cryosphere and Physics ess doi:10.5194/amt-6-703-2013 Author(s) 2013. CC Attribution 3.0 License. Atmospheric Measurement Techniques Biogeosciences Depolarization ratio of polar stratospheric clouds in coastal Antarctica:

More information

THE EARTH S CLIMATE SYSTEM

THE EARTH S CLIMATE SYSTEM THE EARTH S CLIMATE SYSTEM Earth s Climate System is driven by interactions between the parts of our biosphere So.what is the Biosphere? a relatively thin layer of Earth that has conditions suitable for

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds

Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009jd012114, 2009 Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds M. Höpfner, 1 M. C. Pitts, 2 and L. R. Poole 3

More information

J. Schneider & Chr. Voigt - Physics and Chemistry of Aerosols and Ice Clouds

J. Schneider & Chr. Voigt - Physics and Chemistry of Aerosols and Ice Clouds Chapter 8 Contrails and contrail cirrus 8.1 Introduction - Terminology 8.2 Contrail formation conditions 8.3 Heterogeneous nucleation on volatile aerosol and soot 8.4 Indirect effect of soot on cirrus

More information

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements SOFIE = the Solar Occultation For Ice Experiment, aboard AIM, NASA s Aeronomy of Ice in the Mesosphere mission Marty McHugh,

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Tropical Upper Tropospheric cloud systems from AIRS in synergy with CALIPSO and CloudSat : Properties and feedbacks

Tropical Upper Tropospheric cloud systems from AIRS in synergy with CALIPSO and CloudSat : Properties and feedbacks Tropical Upper Tropospheric cloud systems from AIRS in synergy with CALIPSO and CloudSat : Properties and feedbacks Sofia Protopapadaki, Claudia Stubenrauch, Artem Feofilov Laboratoire de Météorologie

More information

Science Chapter 13,14,15

Science Chapter 13,14,15 Science 1206 Chapter 13,14,15 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at

More information

Polar stratospheric clouds over Antarctica from the CALIPSO spaceborne lidar

Polar stratospheric clouds over Antarctica from the CALIPSO spaceborne lidar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd008616, 2008 Polar stratospheric clouds over Antarctica from the CALIPSO spaceborne lidar Vincent Noel, 1 Albert Hertzog, 2 Hélène Chepfer,

More information

Name Date Hour Table. Semester One Review #1-11 Directions: Mark the correct answer on each of the following questions.

Name Date Hour Table. Semester One Review #1-11 Directions: Mark the correct answer on each of the following questions. Semester One Review #1-11 Directions: Mark the correct answer on each of the following questions. 1. Which of the following are subatomic particles? A. negative Electrons, neutral nuclei, negative elements

More information

MOTIVATION. New view of Arctic cyclone activity from the Arctic System Reanalysis

MOTIVATION. New view of Arctic cyclone activity from the Arctic System Reanalysis New view of Arctic cyclone activity from the Arctic System Reanalysis Natalia Tilinina 1, Sergey Gulev 1 and David H.Bromwich 2 1) P.P. Shirshov Institute of Oceanology, Moscow 2) Byrd Polar Research Center,

More information

Projects in the Remote Sensing of Aerosols with focus on Air Quality

Projects in the Remote Sensing of Aerosols with focus on Air Quality Projects in the Remote Sensing of Aerosols with focus on Air Quality Faculty Leads Barry Gross (Satellite Remote Sensing), Fred Moshary (Lidar) Direct Supervision Post-Doc Yonghua Wu (Lidar) PhD Student

More information

Characteristics of the Atmosphere

Characteristics of the Atmosphere Characteristics of the Atmosphere * The atmosphere is a mixture of gases that surrounds the Earth. * It contains oxygen and protects us from the sun's ultraviolet rays. * The atmosphere has 78% Nitrogen,

More information

Ice clouds observed by passive remote sensing :

Ice clouds observed by passive remote sensing : Ice clouds observed by passive remote sensing : What did we learn from the GEWEX Cloud Assessment? Claudia Stubenrauch Laboratoire de Météorologie Dynamique, IPSL/CNRS, France Clouds are extended objects

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Microphysical Properties of Antarctic Polar Stratospheric Clouds and their Dependence on Tropospheric Cloud Systems

Microphysical Properties of Antarctic Polar Stratospheric Clouds and their Dependence on Tropospheric Cloud Systems University of Wyoming Wyoming Scholars Repository Atmospheric Science Faculty Publications Atmospheric Science 4-8-2010 Microphysical Properties of Antarctic Polar Stratospheric Clouds and their Dependence

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Simulated Radiances for OMI

Simulated Radiances for OMI Simulated Radiances for OMI document: KNMI-OMI-2000-004 version: 1.0 date: 11 February 2000 author: J.P. Veefkind approved: G.H.J. van den Oord checked: J. de Haan Index 0. Abstract 1. Introduction 2.

More information

On the accuracy of analysed low temperatures in the stratosphere

On the accuracy of analysed low temperatures in the stratosphere Atmospheric Chemistry and Physics On the accuracy of analysed low temperatures in the stratosphere B. M. Knudsen Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark Received: 20 June

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

Laura Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov and Thomas Peter

Laura Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov and Thomas Peter Impacts of Mt. Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data Laura Revell, Andrea Stenke, Beiping Luo, Stefanie

More information

NATS 101 Section 13: Lecture 31. Air Pollution Part II

NATS 101 Section 13: Lecture 31. Air Pollution Part II NATS 101 Section 13: Lecture 31 Air Pollution Part II Last time we talked mainly about two types of smog:. 1. London-type smog 2. L.A.-type smog or photochemical smog What are the necessary ingredients

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer Some perspective The British Antarctic Survey The Ozone Hole International Regulations Rowland (1974): The work is going very well, but it may mean the

More information

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( )

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( ) 10 th Anniversary Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project (2000-2010) 2010) Alex PAPAYANNIS (Coordinator) and the EARLINET Team Outline Role of aerosols

More information

New Insights into the January 2016 West Antarctic Melt Event from the AWARE Campaign and Climate Model Simulations

New Insights into the January 2016 West Antarctic Melt Event from the AWARE Campaign and Climate Model Simulations New Insights into the January 2016 West Antarctic Melt Event from the AWARE Campaign and Climate Model Simulations Julien P. Nicolas 1, Andrew M. Vogelmann 2, Ryan C. Scott 3, Aaron B. Wilson 1, Maria

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

Earth s Atmosphere About 10 km thick

Earth s Atmosphere About 10 km thick 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties vary with altitude? Earth s Atmosphere About 10 km thick

More information

CESM Tutorial: Stratospheric Aerosols and Chemistry

CESM Tutorial: Stratospheric Aerosols and Chemistry CESM Tutorial: Stratospheric Aerosols and Chemistry Mike Mills, CESM WACCM Liaison Doug Kinnison, NCAR ACOM August 15, 2017 Image taken from www.zmescience.com The Antarctic Ozone Hole From https://svs.gsfc.nasa.gov/30602

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Current Status of COMS AMV in NMSC/KMA

Current Status of COMS AMV in NMSC/KMA Current Status of COMS AMV in NMSC/KMA Eunha Sohn, Sung-Rae Chung, Jong-Seo Park Satellite Analysis Division, NMSC/KMA soneh0431@korea.kr COMS AMV of KMA/NMSC has been produced hourly since April 1, 2011.

More information

The Study of the Atmosphere

The Study of the Atmosphere 1 The Study of the Atmosphere Learning Goals After studying this chapter, students should be able to distinguish between weather and climate (pp. 2 5); describe how the various components of the climate

More information

What is a Sudden Stratospheric Warming?

What is a Sudden Stratospheric Warming? What is a Sudden Stratospheric Warming? rapid increase of T at h~32 km from Evelyn De Wachter (PhD thesis, IAP-Bern):!"#$%&'()*+,-*../0** DA /%:,'$,&?/.%0.$ 34$ N3&%8$ 9.%&$ 1.9:./%1/.$ 34$ 93/.$ 17%&$

More information

Condensation, Evaporation, Weather, and the Water Cycle

Condensation, Evaporation, Weather, and the Water Cycle Last name: First name: Date: Period: COM INC COM* Condensation, Evaporation, Weather, and the Water Cycle Evaporation and boiling are both types of vaporization, in which a liquid changes into a gas. The

More information

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) Science Overview and Approach

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) Science Overview and Approach The Deep Propagating Gravity Wave Experiment (DEEPWAVE) Science Overview and Approach U.S. PIs: Dave Fritts 1, Ron Smith 2, Mike Taylor 3, Jim Doyle 4, Steve Eckermann 5, and Steve Smith 6 1 GATS, Boulder,

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D04312, doi: /2003jd003846, 2004

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D04312, doi: /2003jd003846, 2004 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jd003846, 2004 Observational evidence against mountain-wave generation of ice nuclei as a prerequisite for the formation of three solid nitric

More information

CALIPSO measurements of clouds, aerosols, ocean surface mean square slopes, and phytoplankton backscatter

CALIPSO measurements of clouds, aerosols, ocean surface mean square slopes, and phytoplankton backscatter CALIPSO measurements of clouds, aerosols, ocean surface mean square slopes, and phytoplankton backscatter Yongxiang Hu, Chris Hostetler, Kuanman Xu,, and CALIPSO team NASA Langley Research Center Alain

More information

Atmosphere L AY E RS O F T H E AT MOSPHERE

Atmosphere L AY E RS O F T H E AT MOSPHERE Atmosphere L AY E RS O F T H E AT MOSPHERE Why is the atmosphere divided into 5 different layers? The atmosphere is divided into five different layers because the atmosphere is not uniform, its properties

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

6. State two factors and explain how each influences the weather in Ohio. Respond in the space provided in your Answer Document.

6. State two factors and explain how each influences the weather in Ohio. Respond in the space provided in your Answer Document. 6. State two factors and explain how each influences the weather in Ohio. Respond in the space provided in your Answer Document. (4 points) Sample Response for Item 6 (Extended Response): Other Correct

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate.

Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate. Course: 9 th Grade Earth Systems Science Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate. Instructions: In the space provided, write the letter

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

VAMP. Vertical Aeolus Measurement Positioning. Gert-Jan Marseille, Ad Stoffelen, Karim Houchi, Jos de Kloe (KNMI) Heiner Körnich (MISU)

VAMP. Vertical Aeolus Measurement Positioning. Gert-Jan Marseille, Ad Stoffelen, Karim Houchi, Jos de Kloe (KNMI) Heiner Körnich (MISU) VAMP Vertical Aeolus Measurement Positioning Gert-Jan Marseille, Ad Stoffelen, Karim Houchi, Jos de Kloe (KNMI) Heiner Körnich (MISU) (to optimize Harald its vertical Schyberg sampling) (MetNo) ADM vertical

More information

What is an Axis? An axis is an imaginary straight line that divides an object evenly. For a sphere (like a ball or a globe) the axis goes straight thr

What is an Axis? An axis is an imaginary straight line that divides an object evenly. For a sphere (like a ball or a globe) the axis goes straight thr All About Earth The only known planet with an environment to support life. What is an Axis? An axis is an imaginary straight line that divides an object evenly. For a sphere (like a ball or a globe) the

More information

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3 Seasonal & Diurnal Temp Variations ATS351 Lecture 3 Earth-Sun Distance Change in distance has only a minimal effect on seasonal temperature. Note that during the N. hemisphere winter, we are CLOSER to

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 RHMS of Serbia 1 Summary of major highlights ECMWF forecast products became the backbone in operational work during last several years. Starting from

More information

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System Lecture 1: Introduction to the Climate System T mass (& radiation) T & mass relation in vertical mass (& energy, weather..) Energy T vertical stability vertical motion thunderstorm What are included in

More information

Winter. Here s what a weak La Nina usually brings to the nation with tempseraures:

Winter. Here s what a weak La Nina usually brings to the nation with tempseraures: 2017-2018 Winter Time again for my annual Winter Weather Outlook. Here's just a small part of the items I considered this year and how I think they will play out with our winter of 2017-2018. El Nino /

More information

Unit 6 Lesson 2 What Are Moon Phases? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 6 Lesson 2 What Are Moon Phases? Copyright Houghton Mifflin Harcourt Publishing Company Our Moon The moon is Earth s satellite. A satellite is an object that moves around another larger object in space. The moon is the largest, brightest object in the night sky. It looks large, because it

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

Advanced Hydrology. (Web course)

Advanced Hydrology. (Web course) Advanced Hydrology (Web course) Subhankar Karmakar Assistant Professor Centre for Environmental Science and Engineering (CESE) Indian Institute of Technology Bombay Powai, Mumbai 400 076 Email: skarmakar@iitb.ac.in

More information

J. Alfred, M. Fromm, R. Bevilacqua, G. Nedoluha, A. Strawa, L. Poole, J. Wickert. To cite this version:

J. Alfred, M. Fromm, R. Bevilacqua, G. Nedoluha, A. Strawa, L. Poole, J. Wickert. To cite this version: Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 22/23 Northern Hemisphere winter J. Alfred, M. Fromm, R. Bevilacqua,

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

The 2009/2010 Arctic Stratospheric Winter General Evolution, Mountain Waves and Predictability of an Operational Weather Forecast Model

The 2009/2010 Arctic Stratospheric Winter General Evolution, Mountain Waves and Predictability of an Operational Weather Forecast Model The 00/00 Arctic Stratospheric Winter General Evolution, Mountain Waves and Predictability of an Operational Weather Forecast Model Andreas Dörnbrack Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen,

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

A note on the derivation of precipitation reduction inland in the linear model

A note on the derivation of precipitation reduction inland in the linear model A note on the derivation of precipitation reduction inland in the linear model By Idar Barstad 13 August 2014 Uni Research Computing A Note on the derivation of precipitation reduction inland in the linear

More information

Studying Earth and Space

Studying Earth and Space Studying Earth and Space The Sun Stars are made of hot, glowing gases. The Sun is a star. It is made of hot, glowing gases. The Sun is the closest star to Earth. This is why it looks bigger and brighter

More information

Total ozone (Dobson units) Total ozone (Dobson units) 500

Total ozone (Dobson units) Total ozone (Dobson units) 500 Representation of ozone in the ECMWF model A. Dethof and E. Hólm European Centre for Medium-Range Weather Forecasts 1 Introduction Ozone is fully integrated into the ECMWF forecast model and analysis system

More information

Microphysical modeling of the Arctic winter: 3. Impact of homogeneous freezing on polar stratospheric clouds

Microphysical modeling of the Arctic winter: 3. Impact of homogeneous freezing on polar stratospheric clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jd004352, 2004 Microphysical modeling of the 1999--2000 Arctic winter: 3. Impact of homogeneous freezing on polar stratospheric clouds K. Drdla

More information

Atmospheric Composition and Structure

Atmospheric Composition and Structure Atmospheric Composition and Structure Weather and Climate What is weather? The state of the atmosphere at a specific time and place. Defined by: Humidity, temperature, wind speed, clouds, precipitation,

More information

The water vapour channels of SEVIRI (Meteosat). An introduction

The water vapour channels of SEVIRI (Meteosat). An introduction The water vapour channels of SEVIRI (Meteosat). An introduction jose.prieto@eumetsat.int Cachoeira P. July 2006 Formats 1.5 1 Objectives 2 Describe the characteristics of WV channels on board of SEVIRI

More information

Condensation: Dew, Fog, & Clouds. Chapter 5

Condensation: Dew, Fog, & Clouds. Chapter 5 Condensation: Dew, Fog, & Clouds Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased

More information

Radiative Control of Deep Tropical Convection

Radiative Control of Deep Tropical Convection Radiative Control of Deep Tropical Convection Dennis L. Hartmann with collaboration of Mark Zelinka and Bryce Harrop Department of Atmospheric Sciences University of Washington Outline Review Tropical

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 RHMS of Serbia 1. Summary of major highlights ECMWF products are operationally used in Hydrometeorological Service of Serbia from the beginning of 2003.

More information