The impact of space shuttle main engine exhaust on PMCs and implications to trend studies

Size: px
Start display at page:

Download "The impact of space shuttle main engine exhaust on PMCs and implications to trend studies"

Transcription

1 The impact of space shuttle main engine exhaust on PMCs and implications to trend studies Michael H. Stevens Naval Research Laboratory Washington, DC 2 nd CAWSES-II TG2 Workshop on Modeling Polar Mesospheric Cloud Trends, Boulder, CO, May

2 Outline 1. Background and Motivation 2. Bright PMCs from the Final Space Shuttle Launch 3. The SBUV long-term PMC variations 4. Relevance of Space Traffic to SBUV PMC Time Series 5. Summary

3 Background and Motivation Reported PMC albedo and frequency trends at 70 N now average less than 4%/decade since One shuttle main engine H 2 O exhaust plume can produce 10-20% of PMCs near 70 latitude for one Arctic or Antarctic season. Here we take inventory of all space traffic H 2 O exhaust since 1979 and compare against PMC mass observed by SBUV during that time. Can space traffic account for either a PMC trend or contribute to the interannual variability of PMCs?

4 PMCs from Shuttle Exhaust in the Arctic and Antarctic

5 Seven Cases of Shuttle Exhaust Forming PMCs Shuttle Launch Date Reference STS-66 3 Nov 1994 Stevens et al. (2002) STS-85 7 Aug 1997 Stevens et al. (2003) STS Jul 1999 Stevens et al. (2005a) STS Jan 2003 Stevens et al. (2005b) STS Jul 2005 Collins et al. (2009) STS Aug 2007 Kelley et al. (2009; 2010) STS Jul 2011 Stevens et al. (submitted)

6 PMCs from the Final Space Shuttle Launch

7 Ascent for Final Launch Similar to all Previous Shuttles 350 t of H2O injected between km

8 Odin Sub-Millimeter Radiometer: 99 km H2O Small symbols are scan locations, large symbols 3σ plume detections. Data are assembled in 12-hour increments. Expansion of the plume much faster than by molecular diffusion alone.

9 CIPS PMC Observations one day after STS-135 Launch CIPS Albedos: 9 July 2011 CIPS Bright Clouds NH 2011 A PMCs about ten times brighter than usual at 12:04 UT over Scandanvia 20 hrs and 29 min after launch. These PMCs are the brightest 0.01% of 2011 PMCs from N. Red arrows indicate launches worldwide

10 RMR Lidar Observations at 69 N one day after Launch 532 nm Volume Backscatter Coefficient (β) Climatology of β int 9 July 2011 Unusually bright cloud at 12:14 UT, 21 hrs after STS-135 launch Brighter than 99.98% of all NLCs observed since 1997 These observations suggest that the brightest PMCs are from shuttle exhaust but SBUV only measures the brightest PMCs what part of the SBUV record can be explained by space traffic?...

11 The SBUV long-term PMC variations

12 SBUV PMC Observations are Over Many Local Times and SSAs DeLand et al. [2007] Between 0930 and 1400 LT there is an uninterrupted time series of PMC data Limiting analysis to these data avoids adjustments for LT and the variation of sensitivity due to the solar scattering angle, which is higher near the terminator.

13 Local Times and SSA Nearly Constant for These Selected Data Expands analysis of Stevens et al. [2007] from 2005 through When more than one satellite available, data averaged together for that year.

14 Long Term Variation of SBUV Albedo and Ice Water Content Small albedo trend is not statistically significant (-10 to 20 DRS). Shaded area represents uncertainty in the prescribed size distribution.

15 Long Term Variation of SBUV Frequency and PMC Mass Neither small frequency trend or small PMC mass trend is statistically significant. Large interannual variability exists in both time series.

16 Relevance of Space Traffic to SBUV PMC Time Series

17 Approach Inventory all space traffic exhaust injected into the upper atmosphere since SBUV PMC time series began in Compare total mass injected to total mass observed by SBUV during each PMC season (70 ± 2.5 N). Can space traffic exhaust help explain the interannual variability of PMCs? Can space traffic exhaust account for an inferred PMC trend since 1979?

18 H 2 O Exhaust from Orbital Launch Vehicles: Launch Vehicle Total Fuel* (t) Total H 2 O Exhaust km (t) Total Launches** Total H 2 O* (t) Space Shuttle Soyuz/Molniya Ariane Proton Delta II *Not including boosters **Between -18 and 28 DRS Sources: American Institute of Aeronautics and Astronautics (AIAA), Atmospheric Effects of Chemical Rocket Propulsion, 52 pp., New York, Isakowitz, S.J., J.P. Hopkins, Jr. and J.B. Hopkins (1999), International Reference Guide to 664 Space Launch Systems (3rd ed.), AIAA, Reston, VA.

19 Example: Ariane 5 Launch Trajectory 102 t H2O km Source: Ariane 5 Users Manual

20 Annual Mass of Space Traffic Exhaust Shuttles dominate the H 2 O inventory, w/ minima in mid 80 s and mid 00 s CO 2 and CO are other major species released into upper atmosphere

21 Interannual Variability of PMCs vs. Space Traffic H2O Avg. PMC mass: 80 t/yr Avg H2O exhaust: 230 t/yr (90 t/yr w/out shuttle) Note: Loss by photodissociation is 30-60% after 3-4 days [Stevens et al., 2003; Stevens et al., 2005]. Still plenty of H 2 O available to drive interannual variability of PMCs.

22 Summary There are now 7 documented cases of space shuttle main engine exhaust forming PMCs: 6 in the Arctic and 1 in the Antarctic. Evidence from the final launch of the shuttle in July, 2011 indicates that the brightest PMCs are formed from space shuttle exhaust. The amount of H 2 O deposited into the upper atmosphere ( km) by shuttle and other space traffic from is about four times larger than reported SBUV PMC mass at 70±2.5 N (-12 to 18 DRS). There is enough space traffic H 2 O to account for interannual variability and decadal-scale trends in PMCs at 70 N.

23 Compelling Needs Amplitudes and phases of tides and planetary waves at all northern latitudes between km near solstice. Comparison with launch latitudes and local times. Better estimates of horizontal diffusion of plume, which is faster than predicted by molecular diffusion alone. Better estimates of vertical diffusion of plume, which is suggested as a means to bring the plume water vapor from the lower thermosphere ( km) to the upper mesosphere (85-90 km).

Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch

Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd017638, 2012 Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch Michael H. Stevens, 1 Stefan

More information

Simulations of Shuttle Main Engine Plume Effects on Lower Thermosphere Energetics and Chemistry

Simulations of Shuttle Main Engine Plume Effects on Lower Thermosphere Energetics and Chemistry Simulations of Shuttle Main Engine Plume Effects on Lower Thermosphere Energetics and Chemistry Irfan Azeem, Geoff Crowley ASTRA LLC., Boulder, CO M.H. Stevens Naval Research Laboratory, Washington D.C.

More information

Antarctic mesospheric clouds formed from space shuttle exhaust

Antarctic mesospheric clouds formed from space shuttle exhaust GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L13810, doi:10.1029/2005gl023054, 2005 Antarctic mesospheric clouds formed from space shuttle exhaust Michael H. Stevens E.O. Hulburt Center for Space Research, Naval

More information

Some Historical Notes on Noctilucent Cloud Studies. John Olivero Embry Riddle Aeronautical University

Some Historical Notes on Noctilucent Cloud Studies. John Olivero Embry Riddle Aeronautical University Some Historical Notes on Noctilucent Cloud Studies John Olivero Embry Riddle Aeronautical University ABSTRACT A brief history of noctilucent cloud studies both from an objective point of view, along with

More information

A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form

A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form Brentha Thurairajah Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,

More information

Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds

Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds q Motivations to study aerosols and clouds q Lidar detection of aerosols and clouds q Polar mesospheric clouds (PMC) detection

More information

Trends in the middle atmosphere from ground based sensors at mid and high latitudes

Trends in the middle atmosphere from ground based sensors at mid and high latitudes Trends in the middle atmosphere from ground based sensors at mid and high latitudes Gunter Stober 1,2, F-J Lübken 1, U. Berger 1, P. Brown 2,, J. Fiedler 1, G. Baumgarten 1, R. Latteck 1, J.L. Chau 1 1

More information

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc.

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. (SSAI) Solar Spectral Irradiance Variations Workshop NIST, Gaithersburg,

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system

Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013225, 2010 Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system Michael

More information

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Michael E. Summers George Mason University Mesosphere-Lower Thermosphere (MLT) Next-Gen Reusable Suborbital

More information

Polar mesospheric clouds formed from space shuttle exhaust

Polar mesospheric clouds formed from space shuttle exhaust GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 10, 1546, doi:10.1029/2003gl017249, 2003 Polar mesospheric clouds formed from space shuttle exhaust Michael H. Stevens, 1 Jörg Gumbel, 2 Christoph R. Englert,

More information

Variability in PMCs and their environment from SOFIE observations, Potential implications for PMC trends

Variability in PMCs and their environment from SOFIE observations, Potential implications for PMC trends Variability in PMCs and their environment from SOFIE observations, Potential implications for PMC trends, Inc. 1 Introduction to SOFIE SOFIE uses solar occultation to measure Temperature Water vapor (and

More information

LAUNCH OPTIONS FOR MARS NETWORK MISSIONS USING SMALL SPACECRAFT. Walter K Daniel'

LAUNCH OPTIONS FOR MARS NETWORK MISSIONS USING SMALL SPACECRAFT. Walter K Daniel' LAUNCH OPTIONS FOR MARS NETWORK MISSIONS USING SMALL SPACECRAFT Walter K Daniel' The currentlyplanned Mars Global Network Mission calls for a Delta II launch to deploy spacecraft that will place small

More information

A study of space shuttle plumes in the lower thermosphere

A study of space shuttle plumes in the lower thermosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016987, 2011 A study of space shuttle plumes in the lower thermosphere R. R. Meier, 1 Michael H. Stevens, 2 John M. C. Plane, 3 J. T. Emmert,

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison

Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison Utah State University DigitalCommons@USU Undergraduate Honors Theses Honors Program 5-2009 Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison Jodie Barker-Tvedtnes Utah State University

More information

SBUV Observations of PMCs Over Two Solar Cycles

SBUV Observations of PMCs Over Two Solar Cycles 1 Accepted for publication in Journal of Geophysical Research. Copyright 2002 AGU. Further reproduction or electronic distribution is not permitted. SBUV Observations of PMCs Over Two Solar Cycles Matthew

More information

NSRC Atmosphere - Ionosphere Coupling Science Opportunities:

NSRC Atmosphere - Ionosphere Coupling Science Opportunities: NSRC Atmosphere - Ionosphere Coupling Science Opportunities: Sub-Orbital Studies of Gravity Wave Dynamics in the Mesosphere, Thermosphere, and Ionosphere Dave Fritts NorthWest Research Associates/CoRA

More information

The solar cycle effect in the MLT region. Simulations with HAMMONIA

The solar cycle effect in the MLT region. Simulations with HAMMONIA The solar cycle effect in the MLT region Simulations with HAMMONIA Hauke Schmidt Max Planck Institute for Meteorology, Hamburg, Germany Variability of solar UV irradiance as given by UARS / SOLSTICE (Maximum:

More information

Thermospheric Temperature Trends: Modeling and Observations!

Thermospheric Temperature Trends: Modeling and Observations! Thermospheric Temperature Trends: Modeling and Observations! Stan Solomon and Liying Qian! High Altitude Observatory! National Center for Atmospheric Research! Boulder, Colorado, USA! PMC Trends Workshop

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #1 Tidal Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Introduction 2. Brief description of tides 3. Observations of tides 4. Simulating tides using a general

More information

Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds

Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds Brentha Thurairajah 1 David Siskind 2 Scott Bailey 1 Justin Carstens 1 1 Space@VT,

More information

WACCM: The High-Top Model

WACCM: The High-Top Model WACCM: The High-Top Model WACCM top Michael Mills CAM top WACCM Liaison mmills@ucar.edu (303) 497-1425 http://bb.cgd.ucar.edu/ 40 km Ozone Layer Jarvis, Bridging the Atmospheric Divide, Science, 293, 2218,

More information

2 Preliminary Results Achieved by the Meridian Project

2 Preliminary Results Achieved by the Meridian Project Space Science Activities in China cycle peak year ( ), magnetic storm activities increased significantly, the Meridian Project has repeatedly observed the responses of the space environment to solar storms

More information

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications A presentation for the 2016 meeting of the Committee on Earth Observation Satellites (COES) Atmospheric

More information

NLC and the background atmosphere above ALOMAR

NLC and the background atmosphere above ALOMAR Atmos. Chem. Phys., 11, 71 717, 211 www.atmos-chem-phys.net/11/71/211/ doi:1.194/acp-11-71-211 Author(s) 211. CC Attribution 3. License. Atmospheric Chemistry and Physics NLC and the background atmosphere

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole

Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D8, 8447, doi:10.1029/2002jd002524, 2003 Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole Xinzhao

More information

Sudden stratospheric warming and O3 depletion

Sudden stratospheric warming and O3 depletion Sudden Stratospheric Warming (SSW) and O3 T. Flury, K. Hocke, N. Kämpfer, A. Haefele Institute of Applied Physics, University of Bern ISSI workshop Outline 1) GROMOS measures O3 depletion during SSW 2)

More information

CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014

CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014 CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014 1. Introduction Version 4.20 CIPS Level 2 data files consist of measurements of cloud parameters on an orbitby-orbit basis.

More information

An Overview of Atmospheric Analyses and Reanalyses for Climate

An Overview of Atmospheric Analyses and Reanalyses for Climate An Overview of Atmospheric Analyses and Reanalyses for Climate Kevin E. Trenberth NCAR Boulder CO Analysis Data Assimilation merges observations & model predictions to provide a superior state estimate.

More information

The Odin/OSIRIS time series from 2001 to now

The Odin/OSIRIS time series from 2001 to now The Odin/OSIRIS time series from 21 to now SPARC/IOC/WMO-IGACO workshop on Past Changes in the Vertical Distribution of Ozone Geneva, January 25-27 211 The Atmosphere as Seen from Odin Bright Dim.5 º The

More information

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements SOFIE = the Solar Occultation For Ice Experiment, aboard AIM, NASA s Aeronomy of Ice in the Mesosphere mission Marty McHugh,

More information

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden Challenges for Climate Science in the Arctic Ralf Döscher Rossby Centre, SMHI, Sweden The Arctic is changing 1) Why is Arctic sea ice disappearing so rapidly? 2) What are the local and remote consequences?

More information

Heating the Atmosphere (Chapter 14, with material from Chapter 2)

Heating the Atmosphere (Chapter 14, with material from Chapter 2) Heating the Atmosphere (Chapter 14, with material from Chapter 2) 1. Reflection on Prior Knowledge: What process in Earth s early history resulted in the formation of an atmosphere? What gases characterized

More information

An Overview of the Impact. on the Stratosphere and Mesosphere

An Overview of the Impact. on the Stratosphere and Mesosphere An Overview of the Impact of Energetic Particle Precipitation it ti on the Stratosphere and Mesosphere Charles Jackman NASA Goddard Space Flight Center, Greenbelt, MD Aspen GCI Workshop 2010 Colorado June

More information

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT Climate Dynamics manuscript No. (will be inserted by the editor) 1 2 The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. 3 Aaron Donohoe Dargan Frierson 4 5 Manuscript

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

GEOL/ENVS 3520 Spring 2009 Hour Exam #2

GEOL/ENVS 3520 Spring 2009 Hour Exam #2 GEOL/ENVS 3520 Spring 2009 Hour Exam #2 Enter your name, the date, your ID number, and a made-up 4-digit code (for later recall and identification of your test results) on the separate test sheet. Carefully

More information

On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N)

On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N) GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl049935, 2012 On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N) G. Baumgarten, 1

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Odin-OSIRIS: A Summary of the Results from the Past Eleven Years

Odin-OSIRIS: A Summary of the Results from the Past Eleven Years Odin-OSIRIS: A Summary of the Results from the Past Eleven Years ESA ATMOS 12 June 18, 12 Bruges, Brussels : Year Eleven of a Two Year Mission ESA ATMOS 12 June 18, 12 Bruges, Brussels OSIRIS Designed

More information

Contribution from GOME on the linkage between solar activity and climate

Contribution from GOME on the linkage between solar activity and climate Contribution from GOME on the linkage between solar activity and climate Mark Weber Institute of Environmental Physics (IUP), University Bremen (UB) www.iup.physik.uni-bremen.de/gome weber@uni-bremen.de

More information

2014 Utah NASA Space Grant Consortium Symposium 1

2014 Utah NASA Space Grant Consortium Symposium 1 2014 Utah NASA Space Grant Consortium Symposium 1 Rayleigh Scatter Lidar Observations of the Midlatitude Mesosphere's Response to Sudden Stratospheric Warmings Leda Sox 1, Vincent B. Wickwar 1, Chad Fish

More information

Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds

Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds GEOPHYSICAL RESEARCH LETfERS, VOL. 28, NO. 18, PAGES 361-364, SEPTEMBER 15, 21 Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds Michael E. Summers

More information

Lecture 7: Natural Climate Change. Instructor: Prof. Johnny Luo.

Lecture 7: Natural Climate Change. Instructor: Prof. Johnny Luo. Lecture 7: Natural Climate Change Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Final Exam: May 23 1-3:15pm at MR O44 Outlines (Chapter 11, Edition 1) 1. Variation in solar luminosity

More information

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun Insolation and Temperature variation Atmosphere: blanket of air surrounding earth Without our atmosphere: cold, quiet, cratered place Dynamic: currents and circulation cells June 23, 2008 Atmosphere important

More information

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere 23.5 tilts away from sun) 2 Solar radiation

More information

Signatures of Monsoon Overshooting Convection in MLS Water Vapor

Signatures of Monsoon Overshooting Convection in MLS Water Vapor Jet Propulsion Laboratory California Institute of Technology Signatures of Monsoon Overshooting Convection in MLS Water Vapor Michael J. Schwartz, Nathaniel J. Livesey, Michelle L. Santee, Tao Wang Workshop

More information

Meteorology Practice Test

Meteorology Practice Test Meteorology Practice Test 1. Transition zones between two air masses of different densities are called what? 2. A front occurs when a cold air mass replaces a warmer one. 3. A front occurs when a warm

More information

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car. Q1.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of 12 m/s. (a) The driver then accelerates the car to 23 m/s in 4 seconds. Use

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Bruce Jakosky Laboratory for Atmospheric and Space Physics University of Colorado at Boulder USA MAVEN

More information

HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS

HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS 15 th International Planetary Probe Workshop (IPPW-15) Boulder, Colorado, June 2018 Athul Pradeepkumar Girija A. Arora, and S. J. Saikia

More information

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck Chapter 2: Heating Earth s Surface and Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! Earth s two principal

More information

Section 8: Getting Things into Space: Rockets and Launch Requirements

Section 8: Getting Things into Space: Rockets and Launch Requirements Section 8: Getting Things into Space: Rockets and Launch Requirements To place an object in orbit, a rocket must be able to do two things: carry the object to the proper altitude and give it the correct

More information

SOFIE PMC observations during the northern summer of 2007

SOFIE PMC observations during the northern summer of 2007 1 SOFIE PMC observations during the northern summer of 2007 2 3 4 5 6 Mark Hervig a, *, Larry Gordley a, James Russell III b, and Scott Bailey c a GATS, Inc., Driggs, Idaho, 83422, USA. b Hampton University,

More information

IMPACTS OF A WARMING ARCTIC

IMPACTS OF A WARMING ARCTIC The Earth s Greenhouse Effect Most of the heat energy emitted from the surface is absorbed by greenhouse gases which radiate heat back down to warm the lower atmosphere and the surface. Increasing the

More information

Understanding formation and maintenance of mixed-phase Arctic stratus through longterm observation at two Arctic locations

Understanding formation and maintenance of mixed-phase Arctic stratus through longterm observation at two Arctic locations Understanding formation and maintenance of mixed-phase Arctic stratus through longterm observation at two Arctic locations Gijs de Boer E.W. Eloranta, G.J. Tripoli The University of Wisconsin - Madison

More information

Toward Venus orbit insertion of Akatsuki

Toward Venus orbit insertion of Akatsuki Toward Venus orbit insertion of Akatsuki Takeshi Imamura (JAXA, Japan) Lightning and Airglow Camera Mid-IR Camera UV Imager Ultra-Stable Oscillator 1µm Camera 2µm Camera Development and launch Objective:

More information

A model study of global variability in mesospheric cloudiness

A model study of global variability in mesospheric cloudiness Journal of Atmospheric and Solar-Terrestrial Physics 67 (2005) 501 513 www.elsevier.com/locate/jastp A model study of global variability in mesospheric cloudiness David E. Siskind, M.H. Stevens, C.R. Englert

More information

Arctic climate simulations by coupled models - an overview -

Arctic climate simulations by coupled models - an overview - Arctic climate simulations by coupled models - an overview - Annette Rinke and Klaus Dethloff Alfred Wegener Institute for Polar and Marine Research, Research Department Potsdam, Germany Surface temperature

More information

VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES

VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES A. Bazureau, F. Goutail Service d Aéronomie / CNRS, BP 3, Réduit de Verrières, 91371 Verrières-le-Buisson, France Email :

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

Tidal Coupling in the Earth s Atmosphere. Maura Hagan NCAR High Altitude Observatory

Tidal Coupling in the Earth s Atmosphere. Maura Hagan NCAR High Altitude Observatory Tidal Coupling in the Earth s Atmosphere Maura Hagan NCAR High Altitude Observatory OUTLINE Motivation - Observations Tidal Nomenclature/Characteristics/Sources Results from the Global-Scale Wave Model

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Chapter 02 Energy and Matter in the Atmosphere

Chapter 02 Energy and Matter in the Atmosphere Chapter 02 Energy and Matter in the Atmosphere Multiple Choice Questions 1. The most common gas in the atmosphere is. A. oxygen (O2). B. carbon dioxide (CO2). C. nitrogen (N2). D. methane (CH4). Section:

More information

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Propulsion and Energy Systems Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Schedule Space propulsion with non-chemical technologies 10/5 1) Space Propulsion Fundamentals

More information

Topic # 12 Natural Climate Processes

Topic # 12 Natural Climate Processes Topic # 12 Natural Climate Processes A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes RADIATION / ENERGY BALANCE Radiation

More information

WACCM simulations of the mean circulation linking the mesosphere and thermosphere. Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD

WACCM simulations of the mean circulation linking the mesosphere and thermosphere. Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD WACCM simulations of the mean circulation linking the mesosphere and thermosphere Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD trace species transport in the middle atmosphere wave driven mean circulation

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA

P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA K. Lee Burns* Raytheon, Huntsville, Alabama Ryan K. Decker NASA, Marshall Space Flight

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Overview and quality of global observations of middle atmospheric water vapour by the Odin satellite

Overview and quality of global observations of middle atmospheric water vapour by the Odin satellite Overview and quality of global observations of middle atmospheric water vapour by the Odin satellite J. Urban*, D.P. Murtagh*, M. Ekström,, P. Eriksson*, C. Sanchez*, A. Jones,* S. Lossow **, Y. Kasai

More information

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves Skills Worksheet Directed Reading Section: Solar Energy and the Atmosphere 1. How is Earth s atmosphere heated? 2. Name the two primary sources of heat in the atmosphere. RADIATION In the space provided,

More information

Status of Atmospheric Winds in Relation to Infrasound. Douglas P. Drob Space Science Division Naval Research Laboratory Washington, DC 20375

Status of Atmospheric Winds in Relation to Infrasound. Douglas P. Drob Space Science Division Naval Research Laboratory Washington, DC 20375 Status of Atmospheric Winds in Relation to Infrasound Douglas P. Drob Space Science Division Naval Research Laboratory Washington, DC 20375 GOT WINDS? Douglas P. Drob Space Science Division Naval Research

More information

Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB

Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB Introduction Goals: In this lab we explore effects of atmospheric drag on motion of satellites that are in low enough orbits to be affected by the Earth

More information

Can anyone think of an example of an action-reaction pair? [jumping, rowing...]

Can anyone think of an example of an action-reaction pair? [jumping, rowing...] Newton s Laws of Motion (cont d) Astronomy Lesson 17 Newton proposed that whenever one object exerts a force on a second object, the second object exerts a force back on the first. The force exerted by

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

The atmospheric response to solar irradiance variations: Simulations with HAMMONIA

The atmospheric response to solar irradiance variations: Simulations with HAMMONIA The atmospheric response to solar irradiance variations: Simulations with HAMMONIA Hauke Schmidt, Marco A. Giorgetta Max Planck Institute for Meteorology, Hamburg, Germany Guy P. Brasseur National Center

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

Modeling Optical Properties of Martian Dust Using Mie Theory

Modeling Optical Properties of Martian Dust Using Mie Theory Modeling Optical Properties of Martian Dust Using Mie Theory Attila Elteto ATOC 5235: Remote Sensing of the Atmosphere and Oceans Spring, 2003 1. Introduction The Mie-Debye theory is a simple method for

More information

Joule heating and nitric oxide in the thermosphere, 2

Joule heating and nitric oxide in the thermosphere, 2 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015565, 2010 Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth 1 Received 14 April 2010; revised 24 June 2010; accepted

More information

Engineering Sciences and Technology. Trip to Mars

Engineering Sciences and Technology. Trip to Mars PART 2: Launch vehicle 1) Introduction : A) Open this file and save it in your directory, follow the instructions below. B) Watch this video (0 to 1min03s) and answer to questions. Give the words for each

More information

Chihoko Yamashita 1,2, Han-Li Liu 1

Chihoko Yamashita 1,2, Han-Li Liu 1 1 1 Gravity Waves and the High-Resolution Modeling (Using ECMWF-T799) Chihoko Yamashita 1,2, Han-Li Liu 1 1. NCAR/HAO 2. University of Colorado at Boulder AWMG/WAWG Workshop 2012-02-01 Motivations Gravity

More information

The MODIS Cloud Data Record

The MODIS Cloud Data Record The MODIS Cloud Data Record Brent C. Maddux 1,2 Steve Platnick 3, Steven A. Ackerman 1 Paul Menzel 1, Kathy Strabala 1, Richard Frey 1, 1 Cooperative Institute for Meteorological Satellite Studies, 2 Department

More information

COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction

COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction COE CST Fourth Annual Technical Meeting: Mitigating threats through space environment modeling/prediction PI: Tim Fuller-Rowell Student: Catalin Negrea Washington, DC Overview Team Members Motivation Task

More information

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences.

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences. The Climatology of Clouds using surface observations S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences Gill-Ran Jeong Cloud Climatology The time-averaged geographical distribution of cloud

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

Monday 7 October 2013, Class #15

Monday 7 October 2013, Class #15 Monday 7 October 2013, Class #15 Concepts for Today (Basics for Thermodynamics) Weather versus climate Lapse Rate (Adiabatic Lapse Rate) Ideal Gas Law Adiabatic Processes Potential Temperature Hydrostatic

More information

Extreme Weather and Climate Change: the big picture Alan K. Betts Atmospheric Research Pittsford, VT NESC, Saratoga, NY

Extreme Weather and Climate Change: the big picture Alan K. Betts Atmospheric Research Pittsford, VT   NESC, Saratoga, NY Extreme Weather and Climate Change: the big picture Alan K. Betts Atmospheric Research Pittsford, VT http://alanbetts.com NESC, Saratoga, NY March 10, 2018 Increases in Extreme Weather Last decade: lack

More information

The Atmosphere: Structure and Temperature

The Atmosphere: Structure and Temperature Chapter The Atmosphere: Structure and Temperature Geologists have uncovered evidence of when Earth was first able to support oxygenrich atmosphere similar to what we experience today and more so, take

More information

On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution

On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution doi:10.5194/acp-10-6661-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information