On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N)

Size: px
Start display at page:

Download "On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N)"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi: /2011gl049935, 2012 On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N) G. Baumgarten, 1 A. Chandran, 2 J. Fiedler, 1 P. Hoffmann, 1 N. Kaifler, 1 J. Lumpe, 3 A. Merkel, 2 C. E. Randall, 2,4 D. Rusch, 2 and G. Thomas 2 Received 10 October 2011; revised 22 November 2011; accepted 30 November 2011; published 5 January [1] Simultaneous and common volume observations of Noctilucent Clouds (NLC) and Polar Mesospheric Clouds (PMC) have been performed above the ALOMAR research station in Northern Norway (69 N, 16 E) from ground and space, respectively. A detailed case study on August 5, 2008 shows that the measured particle sizes and T-matrix simulations of the optical properties allow to combine the two observation techniques. From the ground, the observations were performed by lidar sounding of the temporal evolution of the cloud at two locations separated by about 40 km, before, during and after the coincidence. From space, the CIPS instrument onboard the AIM satellite observed the horizontal structure of the cloud. Using mesospheric radar wind measurements at ALOMAR the advection of the cloud particles is calculated and the temporal evolution of the cloud as seen from ground is compared with the horizontal structure observed from satellite. This comparison allows estimation of the timescales during which the clouds behave as passive tracers. We find that during this case study cloud structures larger than about 5 km 5 km and oscillations slower than about one minute behaved like a passive tracer for up to one hour corresponding to horizontal scales of about 300 km. However, if the cloud shows wave structures with brightness modulations of 20% microphysical changes might take place on scales of minutes and kilometers. Citation: Baumgarten, G., A. Chandran, J. Fiedler, P. Hoffmann, N. Kaifler, J. Lumpe, A. Merkel, C. E. Randall, D. Rusch, and G. Thomas (2012), On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N), Geophys. Res. Lett., 39,, doi: / 2011GL Introduction [2] Noctilucent clouds (NLC), also called Polar Mesospheric Clouds (PMC) when observed from space, have attracted attention for more than a century [Gadsden and Schröder, 1989]. These clouds have been well studied because of their appearance at unusually high altitudes in the atmosphere, enhancing the sky brightness after sunset. PMC/ NLC provide an excellent tracer to study processes in the 1 Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany. 2 Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado, USA. 3 Computational Physics, Inc., Boulder, Colorado, USA. 4 Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder, Boulder, Colorado, USA. Copyright 2012 by the American Geophysical Union /12/2011GL middle atmosphere, e.g., the wavy structure in the clouds directly reveals dynamical processes in the vicinity of the clouds that are otherwise difficult to study [Jesse, 1896; Witt, 1962; Dalin et al., 2010]. Although the main question about their nature (icy particles) seems to be solved, they still attract a wide community of researchers [Hervig et al., 2001; Rapp and Thomas, 2006]. The clouds seem to be an excellent indicator for multi decadal to short scale variations in the mesopause region where our knowledge about the processes are still limited [Thomas et al., 1991; Lübken et al., 2009; Chandran et al., 2010]. Different remote sensing methods are used to investigate the clouds, spanning a wide spectrum of resolution from a few hundred meters for ground based observations to several hundred kilometers for space based methods [Witt, 1962; Reimuller et al., 2011]. Previous studies using combined lidar and satellite based data usually had to introduce an extended coincidence criterion (2.5 hours, 500 km) [e.g., von Savigny et al., 2009]. Besides the aspect of comparing different observation methods it is unclear to what extent the temporal evolution of NLC at a single location is caused by advection or in-situ changes. While it was often assumed that advection plays a major role, it was observed that due to huge horizontal gradients in the background conditions fast in-situ changes can occur [Fritts et al., 1993; Baumgarten et al., 2009]. We report on the first coincident observation of NLC/PMC by lidar and satellite allowing to combine the information about the temporal evolution as observed by lidar with the horizontal information observed from space. 2. Method and Database [3] The ALOMAR RMR lidar is a twin system with two 1.8 m diameter steerable telescopes. It utilizes a combination of strong spatial and spectral filtering to obtain daylight capability [von Zahn et al., 2000]. As a result NLC can be detected during all local times of the Arctic summer [e.g., Fiedler et al., 2011]. The lidar was operated with a range resolution of 50 m and a temporal resolution of 30 seconds. For the data shown here both telescopes were tilted 20 degrees off zenith. One of the telescopes was pointed towards north, the other towards east. This setup was chosen for strato- and mesospheric wind measurements and results in a horizontal separation of the two measurement volumes at the height of the NLC layer of 39 km. We use the 532 nm backscatter coefficient to monitor the cloud evolution after smoothing the data with a FWHM = 475 m binomial filter in range and a one minute temporal averaging. The particle size is determined from spectral observations at 355 nm, 532 nm and 1064 nm [Baumgarten et al., 2010]. We have analyzed 431 hours of lidar observations acquired between June 1 and August 15, of5

2 CIPS overpasses are covered with lidar operation. So although the lidar operation is limited by the weather conditions, the combination of the two instruments leads to a number of coincident observations at ALOMAR. To compare the temporal and horizontal structures observed by the different methods we calculate two simple back and forward trajectories under the assumption that an air parcel is advected by the local mean wind. At the time of the coincident observation the trajectories go through the two lidar beams. We use the hourly mean wind as measured with the ALOMAR MF-radar at the altitude of the NLC [Singer et al., 1997]. During the coincident observation we measured horizontal wind vectors of (u = 54.4 m/s, v = 4.0 m/s) and (u = 48.1 m/s, v = 4.5 m/s) at 82 km and 84 km respectively. Figure 1. CIPS observation of PMC albedo observed during Orbit on August 5, 2008 between about 12:10 and 12:20 UT above northern Scandinavia. The color scale is linear from 0 to /sr. The data is plotted from CIPS Version 4.20R4. [4] The Cloud Imaging and Particle Size experiment (CIPS) on board the Aeronomy of Ice in the Mesosphere (AIM) satellite is a downward looking panoramic imager with a field of view of 120 (along-track) by 80 (acrosstrack) or about km [Russell et al., 2009; McClintock et al., 2009]. The CIPS observations of Orbit between 66 N and 72 N are shown in Figure 1. CIPS has an unprecedented spatial resolution. In order to derive the PMC morphology and cloud particle size, CIPS measures scattered sunlight at 265 nm. The observed signals include Rayleigh scattering by molecules as well as Mie-scattering by the PMC particles. The Rayleigh scattering signal is removed from the observed signal to infer PMC albedo. We show Level 2 data from the most recent V4.20R4 data available with a horizontal resolution of 25 km 2 accessible through We have compared the lidar observations at ALOMAR with CIPS observations around ALOMAR (0.5 Latitude, 1 Longitude) for the summer We found 122 orbits with observations above ALOMAR between June 1 and August of those orbits show albedo enhancements above /sr. The threshold was chosen by the non-pmc albedo fluctuations outside the season. We selected the case of August 5, :13 UT because (1) the CIPS image in the nadir showed the best overlap with the two lidar measurement volumes and (2) the lidar observed a strong NLC [Fiedler et al., 2003]. CIPS data V4.20R4 includes a particle size determined by albedo measurements at different scattering angles. The particle size retrievals make use of a phase function based on mean and width observations of the particle size ensemble [Baumgarten et al., 2010]. To estimate the amount of lidar operation that can be compared to CIPS observations we assume that one CIPS overpass is comparable to 1 h of lidar data (cf. discussion and conclusions). We find that about 4.2 % of lidar data in 2008 have simultaneous CIPS observations at ALOMAR. On the other hand about 15% of the 3. Observation and Results [5] The lidar observations around the time of the satellite pass over ALOMAR are shown in Figure 2. Both lidar systems observed a strong NLC with a centroid altitude of 83 km. We observed modulation of the centroid altitude by about 1 km. These modulations occurred on scales smaller than the separation of the lidar measurement volumes of about 40 km so that the NLC was observed, e.g., 1 km lower in the northward pointing system than in the eastward pointing system, indicating a tilt of the cloud layer. However the maximum tilt we observed was less than 1.3. There were periodic instances of a double layer structure as well as periodic enhancements in brightness in the cloud, however these small scale modulations were embedded in a wider layer most of the time. [6] Simultaneous observations of particle properties were performed with the northward pointing lidar system. The standard analysis based on 14 minute mean profiles at the peak of the layer gave mean volume equivalent particle radii of 29 nm to 74 nm. Distribution widths range from 7 nm to 18 nm and the number densities fall between 100 and 300/cm 3 during the lidar operation on August 5, These are in the range of typical values for strong NLC [Baumgarten et al., 2008]. [7] In Figure 3 we show the CIPS observations localized around ALOMAR. We observe a small patch of an enhanced Figure 2. Temporal evolution of NLC as observed by the two systems of the RMR-Lidar. The line of sight is tilted 20 off zenith towards the East and the North. The time of the AIM overpass is indicated by the vertical line at 12:13 UT. 2of5

3 Figure 3. CIPS observation of PMC albedo observed around ALOMAR. Black dotted lines indicate the trajectories of air parcels at the altitude of NLC as derived from MF-radar wind observations at ALOMAR. The air parcels move from the east to the west. The measurement volumes are indicated by black/white circles. The color scale is linear from 0 to /sr. chosen to match CR (r, s) for particles of volume equivalent radius r = 45 nm and a corresponding distribution width of s = 15.5 nm [Baumgarten et al., 2010]. The range of the blue lines spans the range of particle sizes between r =40nm and r = 50 nm with corresponding distribution widths. We observe that A l=265nm and b int (lidar) agree at the time of the coincident observations (t 0 = 0) better than 10% for the north volume, while they agree in the east volume only by about 25%. The agreement is improved when taking into account the actual particle size as observed by CIPS. In the north and east measurement volumes CIPS observed a particle size of 41 nm and 49 nm respectively. The lidar observed a mean particle size of nm in the north volume at the time of the overpass 15 minutes. The value of the lidar is calculated from the vertically integrated signals under the assumption of a Gaussian particle size distribution, similar to the method used by CIPS. In both systems we find an agreement of b int (lidar) and b int (CIPS) of better than 5% where b int (CIPS) shows the lower value in both systems. [8] For the north volume we observe an agreement of the NLC brightness from about t h to t 0. Even after the coincidence to about t min lidar and CIPS agree PMC with a peak albedo of /sr just between the two lidar volumes, and about 50 km to the south-east of ALOMAR. The albedo shows wave structures with northeast oriented wave fronts. The horizontal wavelength of the PMC structures is about 50 km with an albedo modulation of about /sr peak to valley. To compare the temporal and horizontal scales of the different instruments we extract the CIPS albedo along a linear trajectory of air parcels that were moving with the mean wind between 82 km and 84 km of 51.4 m/s (u = 51.3 m/s, v = 4.3 m/s). These are indicated by dashed lines in Figure 3. For an actual comparison of the cloud brightness as observed by CIPS and lidar we calculate the vertical integrated backscatter coefficient (b int ) and compare those with the cloud albedo along the trajectories going through the two measurement volumes of the lidar. In Figure 4 we show b int for the two time series observed by the lidars to the north and to the east of ALOMAR. Here t 0 = 0 corresponds to the time of the coincidence. Negative distances correspond to locations west of ALOMAR while positive values are found to the east. In each panel we also show the CIPS albedo at a scattering angle of q = 90 (A l=265nm ) and the equivalent b int (CIPS) as calculated from albedo and particle size retrieval. To calculate A l=265nm b int ðcipsþ :¼ CR ðr; s Þ Aq¼90 l¼265nm ð1þ we take the particle size (r: mean of a Gaussian size distribution) as measured by CIPS and calculate color ratios (CR) as: CR ðr; s ds Þ :¼ j q¼180 l¼532nm ðr; sþ= ds j q¼90 ðr; sþ ð2þ l¼265nm using differential scattering cross sections ds from T-matrix calculations. The distribution width s comes from parametrized dependency of s on r as observed by Baumgarten et al. [2010]. The ratio of the left and right scale in Figure 4 was Figure 4. Vertically integrated lidar backscatter coefficient (green line, left scale) compared to the CIPS 90 albedo (blue line, right scale) extracted along the trajectories for the (top) northward and (bottom) eastward pointing lidar system. The red line (left scale) shows the backscatter coefficient calculated from the CIPS 90 albedo and CIPS particle size retrieved using the width over size ratio as measured by the lidar [Baumgarten et al., 2010]. 3of5

4 reasonably well. The time-frame for a good agreement is less for the east volume and is only from about t 0 30 min to t 0. [9] There are several reasons for a difference of b int (CIPS) and b int (lidar) at times other than t 0 : 1) different sampling areas of the two systems, 2) the optical model to calculate CR (r, s) is not appropriate, 3) the air parcels do not follow the wind as observed by the radar, 4) the NLC is not inert during the time-frame investigated. For CIPS the footprint is about 5 5 km while it is only about km for the lidar [Baumgarten and Fiedler, 2008]. Since we find a good agreement between CIPS and lidar at t 0 we consider the different size of the sounding volumes to play only a minor role. Similarly the optical model appears to be valid and allows to calculate b int (CIPS) from A l=265nm and vice versa. This conversion seems to work at least for b int (CIPS) in the range of /sr to /sr. It is noteworthy that the NLC layer showed an unusual large vertical extent of about 4 km including a double (triple) layer structure in the east (north) volume at t 0. Multiple layers, introduced by small-scale gravity waves, could be an indication of different populations of particles in the layer. Nevertheless the optical model using a mono-modal Gaussian size distribution leads to a good agreement of lidar and CIPS. For times other than t 0 we do not expect a perfect agreement. But still between t h and t h, when the most intense patch of NLC/PMC is observed by the lidar and CIPS in the north volume, a modulation of 20% in NLC (PMC) brightness is observed with a duration of about 30 minutes (150 km) from peak to peak. For the east volume the lidar shows a brightness modulation with a period of 30 minutes between t h and t h. Around the east volume CIPS observes a brightness modulation with a separation of the brightness bands of 150 km and a relative amplitude comparable to the amplitude seen by the lidar. At t h and t h a strong brightness increase and decrease is found respectively. Again the relative brightness changes agree for both instruments. This qualitative agreement of the brightness modulation indicates that the temporal variation of the cloud brightness as seen by the lidar is partly an advected horizontal structure. [10] After t h CIPS and lidar disagree where the brightness of the lidar appears to be enhanced compared to the CIPS observations. Furthermore the CIPS albedo shows no structures similar to those observed by the lidar. While this could be caused by actual microphysical changes of the cloud, it could also be caused by the too simple trajectory calculation used. As the horizontal structure of the cloud (Figure 3) shows stronger albedo enhancements only south and slightly east of ALOMAR a hypothetical trajectory would have to be oriented roughly 90 off the actual wind measurements to find a better agreement between CIPS and lidar. Following this idea, we exemplarily applied different trajectories. However the resulting CIPS albedo timeseries compare worse to the lidar as the one shown in Figure 4. So there are strong indications that the differences are actually caused by microphysical changes in the cloud. [11] As the maximum b int (CIPS) at +50 km in the north volume arrives about 10 minutes later at the lidar than expected from the simple advection model we speculate that the structure arises from a wave traveling against the mean wind, with a component of the intrinsic phase speed of about 20 m/s along the direction of the mean wind. To improve the agreement of the triple structure of b int (lidar) in the east volume with CIPS we would require the PMC structures to move northwards instead of southwards. For example microphysical changes of the cloud properties induced by a wave in the background temperature with u wave,intrinsic +20 m/s and v wave,intrinsic +10 m/s could generate cloud structures similar to the ones observed in CIPS. Including the advection (Doppler-shift) such cloud structures would be traveling towards the north-west when observed from space. The fact that the separation of the two brightness peaks is smaller in the lidar observations as compared to CIPS could be an indication that the wave is bent by the wind field in a way that its propagation direction is stronger against the wind. 4. Discussion and Conclusions [12] We have performed for the first time a coincident observation of NLC/PMC by lidar and satellite where the temporal and horizontal overlap is better than 1 minute and 5 km. This coincidence was possible due to the extensive lidar observations regularly performed at ALOMAR combined with the big field of view and a high resolution of the cameras of the CIPS instrument on board the AIM satellite. We observe unexpected good agreement between the two instruments, where the brightness of the cloud observed by both instruments in the two sounding volumes agrees to better than 5 % when taking the particle size properties into account. Furthermore we find a qualitatively good agreement between the temporal variations observed by the lidar and the horizontal structure as observed by CIPS. The structures can be compared using a simple advection model, indicating that the periodic structures in the PMC are embedded in the PMC layer and being advected by the horizontal wind. As the structures agree pretty well from about t h to t 0 = +20 min for the north volume this means that the vertical column of the cloud can be treated as passive tracer for 0.5 h corresponding to about 150 km during this observation. On the other hand the agreement is less good for the east volume showing a much lower correlation length. So the clouds can remain more or less passive and are advected sometimes, but this is not necessarily always the case. During the observation in the north volume we find a modulation of the cloud brightness with two consecutive brightness maxima after about 30 minutes. These structures can be traced to horizontal variations along the trajectory with horizontal scales of about 150 km. In fact these bands seem to be traces of waves with a wavelength of about 50 km, where the normal to these bands is inclined by to the trajectory of the air. We find the combination of the two instruments together with wind information from radar a valuable tool to investigate the noctilucent cloud evolution on scales of minutes to hours and 5 km to 100 km. Taking the particle size properties into account when comparing even the brightness observations of different instruments is essential. [13] Acknowledgments. We gratefully acknowledge the support of the ALOMAR staff in running the instrument and maintaining the infrastructure. The AIM mission is supported by NASA s Small Explorer s Office. [14] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper. References Baumgarten, G., and J. Fiedler (2008), Vertical structure of particle properties and water content in noctilucent clouds, Geophys. Res. Lett., 35, L10811, doi: /2007gl of5

5 Baumgarten, G., J. Fiedler, F.-J. Lübken, and G. von Cossart (2008), Particle properties and water content of noctilucent clouds and their interannual variation, J. Geophys. Res., 113, D06203, doi: /2007jd Baumgarten, G., J. et al. (2009), The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales, Ann. Geophys., 27, Baumgarten, G., J. Fiedler, and M. Rapp (2010), On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10(14), , doi: /acp Chandran, A., D. W. Rusch, A. W. Merkel, S. E. Palo, G. E. Thomas, M. J. Taylor, S. M. Bailey, and J. M. Russell III (2010), Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft: Atmospheric gravity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence, J. Geophys. Res., 115, D13102, doi: / 2009JD Dalin, P., N. Pertsev, S. Frandsen, O. Hansen, H. Andersen, A. Dubietis, and R. Balciunas (2010), A case study of the evolution of a Kelvin- Helmholtz wave and turbulence in noctilucent clouds, J. Atmos. Sol. Terr. Phys., 72, , doi: /j.jastp Fiedler, J., G. Baumgarten, and G. von Cossart (2003), Noctilucent clouds above ALOMAR between 1997 and 2001: Occurrence and properties, J. Geophys. Res., 108(D8), 8453, doi: /2002jd Fiedler, J., G. Baumgarten, U. Berger, P. Hoffmann, N. Kaifler, and F.-J. Lübken (2011), NLC and the background atmosphere above ALOMAR, Atmos. Chem. Phys., 11(2), , doi: /acpd Fritts, D. C., J. R. Isler, G. E. Thomas, and Ø. Andreassen (1993), Wave breaking signatures in noctilucent clouds, Geophys. Res. Lett., 20, , doi: /93gl Gadsden, M., and W. Schröder (1989), Noctilucent Clouds, Springer, New York. Hervig, M., R. E. Thompson, M. McHugh, L. L. Gordley, J. M. Russell III, and M. E. Summers (2001), First confirmation that water ice is the primary component of polar mesospheric clouds, Geophys. Res. Lett., 28(6), , doi: /2000gl Jesse, O. (1896), Die Höhe der leuchtenden Nachtwolken, Astron. Nachr., 140(3347), Lübken, F.-J., U. Berger, and G. Baumgarten (2009), Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds, J. Geophys. Res., 114, D00I06, doi: /2009jd McClintock, W. E., D. W. Rusch, G. E. Thomas, A. W. Merkel, M. R. Lankton, V. A. Drake, S. M. Bailey, and J. M. Russell III (2009), The cloud imaging and particle size experiment on the Aeronomy of Ice in the mesosphere mission: Instrument concept, design, calibration, and on-orbit performance, J. Atmos. Sol. Terr. Phys., 71, , doi: /j.jastp Rapp, M., and G. E. Thomas (2006), Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities, J. Atmos. Sol. Terr. Phys., 68(7), , doi: /j. jastp Reimuller, J. D., J. P. Thayer, G. Baumgarten, A. Chandran, B. Hulley, D. Rusch, K. Nielsen, and J. Lumpe (2011), Synchronized imagery of noctilucent clouds at the day-night terminator using airborne and spaceborne platforms, J. Atmos. Sol. Terr. Phys., 73, , doi: /j.jastp Russell, J. M., III, et al. (2009), The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results, J. Atmos. Sol. Terr. Phys., 71, , doi: /j.jastp Singer, W., D. Keuer, and W. Eriksen (1997), The ALOMAR MF radar: Technical design and first results, in Proceedings of the 13th ESA Symposium on European Rocket Programmes and Related Research, Eur. Space Agency Spec. Publ., ESA SP-397, Thomas, G. E., R. D. McPeters, and E. J. Jensen (1991), Satellite observations of polar mesospheric clouds by the solar backscattered ultraviolet spectral radiometer: Evidence of a solar cycle dependence, J. Geophys. Res., 96(D1), , doi: /90jd von Savigny, C., C. E. Robert, G. Baumgarten, H. Bovensmann, and J. P. Burrows (2009), Comparison of NLC particle sizes derived from SCIAMACHY/Envisat observations with ground-based LIDAR measurements at ALOMAR (69 N), Atmos. Meas. Tech., 2, von Zahn, U., G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen (2000), The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance, Ann. Geophys., 18, Witt, G. (1962), Height, structure and displacements of noctilucent clouds, Tellus, 14(1), G. Baumgarten, J. Fiedler, P. Hoffmann, and N. Kaifler, Leibniz-Institute of Atmospheric Physics at the Rostock University, Schloss-Str. 6, D Kühlungsborn, Germany. (baumgarten@iap-kborn.de) A. Chandran, A. Merkel, C. E. Randall, D. Rusch, and G. Thomas, Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Dr., Boulder, CO 80303, USA. J. Lumpe, Computational Physics, Inc., th St., Ste. 105W, Boulder, CO 80301, USA. 5of5

On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution

On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution doi:10.5194/acp-10-6661-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and

More information

SOFIE PMC observations during the northern summer of 2007

SOFIE PMC observations during the northern summer of 2007 1 SOFIE PMC observations during the northern summer of 2007 2 3 4 5 6 Mark Hervig a, *, Larry Gordley a, James Russell III b, and Scott Bailey c a GATS, Inc., Driggs, Idaho, 83422, USA. b Hampton University,

More information

Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR

Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR Annales Geophysicae, 23, 1175 1181, 25 SRef-ID: 1432-576/ag/25-23-1175 European Geosciences Union 25 Annales Geophysicae Mean diurnal variations of noctilucent clouds during 7 years of lidar observations

More information

NLC and the background atmosphere above ALOMAR

NLC and the background atmosphere above ALOMAR Atmos. Chem. Phys., 11, 71 717, 211 www.atmos-chem-phys.net/11/71/211/ doi:1.194/acp-11-71-211 Author(s) 211. CC Attribution 3. License. Atmospheric Chemistry and Physics NLC and the background atmosphere

More information

The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales

The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales Utah State University DigitalCommons@USU Publications Atmospheric Imaging Laboratory 3-2-29 The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 27: morphology

More information

Characteristics and sources of gravity waves observed in noctilucent cloud over Norway

Characteristics and sources of gravity waves observed in noctilucent cloud over Norway Atmos. Chem. Phys., 14, 12133 12142, 2014 doi:10.5194/acp-14-12133-2014 Author(s) 2014. CC Attribution 3.0 License. Characteristics and sources of gravity waves observed in noctilucent cloud over Norway

More information

A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form

A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form A Study of Polar Mesospheric Cloud Structures and the Environment in Which These Structures Form Brentha Thurairajah Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,

More information

Trends in the middle atmosphere from ground based sensors at mid and high latitudes

Trends in the middle atmosphere from ground based sensors at mid and high latitudes Trends in the middle atmosphere from ground based sensors at mid and high latitudes Gunter Stober 1,2, F-J Lübken 1, U. Berger 1, P. Brown 2,, J. Fiedler 1, G. Baumgarten 1, R. Latteck 1, J.L. Chau 1 1

More information

All Physics Faculty Publications

All Physics Faculty Publications Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 7-2010 Polar Mesospheric Cloud Structures Observed From the Cloud Imaging and Particle Size Experiment on the Aeronomy

More information

Intra and inter hemispheric coupling effects on the polar summer mesosphere

Intra and inter hemispheric coupling effects on the polar summer mesosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047968, 2011 Intra and inter hemispheric coupling effects on the polar summer mesosphere J. Gumbel 1 and B. Karlsson 2,3 Received 28 April 2011;

More information

Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds

Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds Lecture 32. Aerosol & Cloud Lidar (1) Overview & Polar Mesospheric Clouds q Motivations to study aerosols and clouds q Lidar detection of aerosols and clouds q Polar mesospheric clouds (PMC) detection

More information

Temperature, shape, and phase of mesospheric ice from Solar Occultation for Ice Experiment observations

Temperature, shape, and phase of mesospheric ice from Solar Occultation for Ice Experiment observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jd013918, 2010 Temperature, shape, and phase of mesospheric ice from Solar Occultation for Ice Experiment observations Mark E. Hervig 1 and Larry

More information

Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery Utah State University DigitalCommons@USU Publications Atmospheric Imaging Laboratory 1-2018 Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

More information

First detection of wave interactions in the middle atmosphere of Mars

First detection of wave interactions in the middle atmosphere of Mars GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2010gl045592, 2011 First detection of wave interactions in the middle atmosphere of Mars Y. Moudden 1 and J. M. Forbes 1 Received 22 September 2010;

More information

On the relationship between atomic oxygen and vertical shifts between OH Meinel bands originating from different vibrational levels

On the relationship between atomic oxygen and vertical shifts between OH Meinel bands originating from different vibrational levels GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 5821 5825, doi:10.1002/2013gl058017, 2013 On the relationship between atomic oxygen and vertical shifts between OH Meinel bands originating from different vibrational

More information

USA. Logan, UT, USA. University, Blacksburg, VA 24061, USA. * Corresponding Author. Tel:

USA. Logan, UT, USA. University, Blacksburg, VA 24061, USA. * Corresponding Author. Tel: Polar Mesospheric Cloud structures observed from the CIPS experiment on the AIM spacecraft: Atmospheric gravity waves as drivers for longitudinal variability in PMC occurrence A. Chandran 1, 2,*, D. W.

More information

Simultaneous observation of noctilucent clouds, mesospheric summer echoes, and temperature at a midlatitude station (54 N)

Simultaneous observation of noctilucent clouds, mesospheric summer echoes, and temperature at a midlatitude station (54 N) Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd008135, 2007 Simultaneous observation of noctilucent clouds, mesospheric summer echoes, and temperature at a midlatitude

More information

Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds

Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds Non-vertical propagation of gravity waves generated over the monsoon region and its effect on polar mesospheric clouds Brentha Thurairajah 1 David Siskind 2 Scott Bailey 1 Justin Carstens 1 1 Space@VT,

More information

VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 2003

VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 2003 VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 03 U. Blum and K. H. Fricke Physikalisches Institut der Universität Bonn, D-53115

More information

Atmospheric Chemistry and Physics. Atmos. Chem. Phys., 4, , SRef-ID: /acp/

Atmospheric Chemistry and Physics. Atmos. Chem. Phys., 4, , SRef-ID: /acp/ Atmos. Chem. Phys., 4, 89 816, 24 www.atmos-chem-phys.org/acp/4/89/ SRef-ID: 168-7324/acp/24-4-89 Atmospheric Chemistry and Physics Simultaneous lidar observations of temperatures and waves in the polar

More information

Ground-based Validation of spaceborne lidar measurements

Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements to make something officially acceptable or approved, to prove that something is correct

More information

Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole

Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D8, 8447, doi:10.1029/2002jd002524, 2003 Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole Xinzhao

More information

A Novel Joint Space-Wavenumber Analysis of an Unusual Antarctic Gravity Wave Event

A Novel Joint Space-Wavenumber Analysis of an Unusual Antarctic Gravity Wave Event Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 4-2006 A Novel Joint Space-Wavenumber Analysis of an Unusual Antarctic Gravity Wave Event R. G. Stockwell Michael J. Taylor

More information

VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002

VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002 VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002 U. Blum and K. H. Fricke Physikalisches Institut der Universität Bonn, D-53115 Bonn, Germany blum@physik.uni-bonn.de

More information

NLC detection and particle size determination: first results from SCIAMACHY on ENVISAT

NLC detection and particle size determination: first results from SCIAMACHY on ENVISAT Advances in Space Research 34 (2004) 851 856 www.elsevier.com/locate/asr NLC detection and particle size determination: first results from SCIAMACHY on ENVISAT C. von Savigny a, *, A. Kokhanovsky a,b,

More information

Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway

Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D8, 8438, doi:10.1029/2002jd002369, 2003 Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway J. Bremer, P. Hoffmann,

More information

Some Historical Notes on Noctilucent Cloud Studies. John Olivero Embry Riddle Aeronautical University

Some Historical Notes on Noctilucent Cloud Studies. John Olivero Embry Riddle Aeronautical University Some Historical Notes on Noctilucent Cloud Studies John Olivero Embry Riddle Aeronautical University ABSTRACT A brief history of noctilucent cloud studies both from an objective point of view, along with

More information

Joule heating and nitric oxide in the thermosphere, 2

Joule heating and nitric oxide in the thermosphere, 2 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015565, 2010 Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth 1 Received 14 April 2010; revised 24 June 2010; accepted

More information

2014 Utah NASA Space Grant Consortium Symposium 1

2014 Utah NASA Space Grant Consortium Symposium 1 2014 Utah NASA Space Grant Consortium Symposium 1 Rayleigh Scatter Lidar Observations of the Midlatitude Mesosphere's Response to Sudden Stratospheric Warmings Leda Sox 1, Vincent B. Wickwar 1, Chad Fish

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

Seasonal and long-term variations of PMSE from VHF radar observations at Andenes,

Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway J. Bremer, P. Hoffmann, R. Latteck, and W. Singer Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany

More information

Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch

Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd017638, 2012 Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle s final launch Michael H. Stevens, 1 Stefan

More information

Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming

Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl042351, 2010 Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric

More information

The Aeronomy of Ice in the Mesosphere (AIM) Mission: Overview and early science results

The Aeronomy of Ice in the Mesosphere (AIM) Mission: Overview and early science results 1 2 3 4 5 6 The Aeronomy of Ice in the Mesosphere (AIM) Mission: Overview and early science results Corresponding author: James M. Russell III* a Co-authors: Scott M. Bailey b, Larry L. Gordley c, David

More information

Overturning instability in the mesosphere and lower thermosphere: analysis of instability conditions in lidar data

Overturning instability in the mesosphere and lower thermosphere: analysis of instability conditions in lidar data Embry-Riddle Aeronautical University From the SelectedWorks of Alan Z Liu 2009 Overturning instability in the mesosphere and lower thermosphere: analysis of instability conditions in lidar data Lucas Hurd,

More information

Maps of polar mesospheric clouds

Maps of polar mesospheric clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D8, 8446, doi:10.1029/2002jd002255, 2003 Maps of polar mesospheric clouds J. F. Carbary, D. Morrison, and G. J. Romick 1 Applied Physics Laboratory, Johns

More information

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER L. G. Tilstra (1), P. Stammes (1) (1) Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE de Bilt, The Netherlands

More information

CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014

CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014 CIPS Level 2 Data: Orbit-by-Orbit Cloud Parameters Last Updated 23 July 2014 1. Introduction Version 4.20 CIPS Level 2 data files consist of measurements of cloud parameters on an orbitby-orbit basis.

More information

Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison

Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison Utah State University DigitalCommons@USU Undergraduate Honors Theses Honors Program 5-2009 Polar Mesospheric Clouds: A Satellite and Ground- Based Comparison Jodie Barker-Tvedtnes Utah State University

More information

Horizontal winds in the mesosphere at high latitudes

Horizontal winds in the mesosphere at high latitudes Advances in Space Research xxx (2004) xxx xxx www.elsevier.com/locate/asr Horizontal winds in the mesosphere at high latitudes Arno Müllemann, Franz-Josef Lübken * Leibniz Institute of Atmospheric Physics,

More information

Noctilucent clouds: modern ground-based photographic observations by a digital camera network

Noctilucent clouds: modern ground-based photographic observations by a digital camera network Noctilucent clouds: modern ground-based photographic observations by a digital camera network A. Dubietis, 1, P. Dalin 2, R. Balčiūnas 1, K. Černis 3, N. Pertsev 4, V. Sukhodoev 4, V. Perminov 4, M. Zalcik

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Antarctic mesospheric clouds formed from space shuttle exhaust

Antarctic mesospheric clouds formed from space shuttle exhaust GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L13810, doi:10.1029/2005gl023054, 2005 Antarctic mesospheric clouds formed from space shuttle exhaust Michael H. Stevens E.O. Hulburt Center for Space Research, Naval

More information

A case study of gravity waves in noctilucent clouds

A case study of gravity waves in noctilucent clouds Annales Geophysicae (2004) 22: 1875 1884 SRef-ID: 1432-0576/ag/2004-22-1875 European Geosciences Union 2004 Annales Geophysicae A case study of gravity waves in noctilucent clouds P. Dalin 1, S. Kirkwood

More information

Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km doi:10.5194/amt-3-1509-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Measurement Techniques Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere

More information

First in-situ temperature measurements in the summer mesosphere at very high latitudes (78 ffi N)

First in-situ temperature measurements in the summer mesosphere at very high latitudes (78 ffi N) JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, NO., PAGES 1 18, Submitted for publication to J. Geophys. Res., April 3, 2002. Revised July 3, 2002 First in-situ temperature measurements in the summer mesosphere

More information

Stratospheric aerosol profile retrieval from SCIAMACHY limb observations

Stratospheric aerosol profile retrieval from SCIAMACHY limb observations Stratospheric aerosol profile retrieval from SCIAMACHY limb observations Yang Jingmei Zong Xuemei Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric

More information

Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere

Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L05808, doi:10.1029/2007gl032620, 2008 Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere

More information

ARTICLE IN PRESS. Journal of Atmospheric and Solar-Terrestrial Physics

ARTICLE IN PRESS. Journal of Atmospheric and Solar-Terrestrial Physics Journal of Atmospheric and Solar-Terrestrial Physics 71 (9) 434 445 Contents lists available at ScienceDirect Journal of Atmospheric and Solar-Terrestrial Physics journal homepage: www.elsevier.com/locate/jastp

More information

An Earlier Lidar Observation of a Noctilucent Cloud above Logan, Utah (41.7º N, 111.8º W)

An Earlier Lidar Observation of a Noctilucent Cloud above Logan, Utah (41.7º N, 111.8º W) An Earlier Lidar Observation of a Noctilucent Cloud above Logan, Utah (41.7º N, 111.8º W) Joshua P. Herron 1 and Vincent B. Wickwar 1, Patrick J. Espy 2, and John W. Meriwether 3 1 Center for Atmospheric

More information

The Odin/OSIRIS time series from 2001 to now

The Odin/OSIRIS time series from 2001 to now The Odin/OSIRIS time series from 21 to now SPARC/IOC/WMO-IGACO workshop on Past Changes in the Vertical Distribution of Ozone Geneva, January 25-27 211 The Atmosphere as Seen from Odin Bright Dim.5 º The

More information

Wave-driven equatorial annual oscillation induced and modulated by the solar cycle

Wave-driven equatorial annual oscillation induced and modulated by the solar cycle GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L20811, doi:10.1029/2005gl023090, 2005 Wave-driven equatorial annual oscillation induced and modulated by the solar cycle Hans G. Mayr, 1 John G. Mengel, 2 and Charles

More information

The Mid-Latitude Mesosphere s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures

The Mid-Latitude Mesosphere s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures Utah State University From the SelectedWorks of Leda Sox August 26, 2013 The Mid-Latitude Mesosphere s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures Leda Sox,

More information

Journal of Atmospheric and Solar-Terrestrial Physics

Journal of Atmospheric and Solar-Terrestrial Physics Journal of Atmospheric and Solar-Terrestrial Physics ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Journal of Atmospheric and Solar-Terrestrial Physics journal homepage: www.elsevier.com/locate/jastp

More information

On atmospheric lidar performance comparison: from power aperture product to power aperture mixing ratio scattering cross-section product

On atmospheric lidar performance comparison: from power aperture product to power aperture mixing ratio scattering cross-section product Journal of Modern Optics Vol. 52, No. 18, 15 December 2005, 2723 2729 On atmospheric lidar performance comparison: from power aperture product to power aperture mixing ratio scattering cross-section product

More information

Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes

Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D15, 4273, 10.1029/2001JD000915, 2002 Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes Franz-Josef Lübken, Markus

More information

The impact of space shuttle main engine exhaust on PMCs and implications to trend studies

The impact of space shuttle main engine exhaust on PMCs and implications to trend studies The impact of space shuttle main engine exhaust on PMCs and implications to trend studies Michael H. Stevens Naval Research Laboratory Washington, DC 2 nd CAWSES-II TG2 Workshop on Modeling Polar Mesospheric

More information

Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system

Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013225, 2010 Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system Michael

More information

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005421, 2005 Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in

More information

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Michael E. Summers George Mason University Mesosphere-Lower Thermosphere (MLT) Next-Gen Reusable Suborbital

More information

Limb Sensing, on the Path to Better Weather Forecasting

Limb Sensing, on the Path to Better Weather Forecasting Limb Sensing, on the Path to Better Weather Forecasting ABSTRACT Earth limb observation from orbiting sensors has a rich history. The cold space background, long optical paths, and limb geometry provide

More information

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L13606, doi:10.1029/2005gl022917, 2005 Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

More information

THE EFFECTS OF THERMAL AND WIND FIELDS IN THE PROPAGATION OF INFRASONIC WAVES IN THE ATMOSPHERE

THE EFFECTS OF THERMAL AND WIND FIELDS IN THE PROPAGATION OF INFRASONIC WAVES IN THE ATMOSPHERE THE EFFECTS OF THERMAL AND WIND FIELDS IN THE PROPAGATION OF INFRASONIC WAVES IN THE ATMOSPHERE Omar Marcillo Sound waves traveling at frequencies between 0.05 and 20 Hertz are called infrasound waves.

More information

Three-satellite comparison of polar mesospheric clouds: Evidence for long-term change

Three-satellite comparison of polar mesospheric clouds: Evidence for long-term change JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D12, 4134, 10.1029/2001JD000668, 2002 Three-satellite comparison of polar mesospheric clouds: Evidence for long-term change E. P. Shettle, 1 G. E. Thomas,

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002 Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 22 N. Engler, R. Latteck, B. Strelnikov, W. Singer, M. Rapp To cite this

More information

Short period gravity waves and ripples in the South Pole mesosphere

Short period gravity waves and ripples in the South Pole mesosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jd015882, 2011 Short period gravity waves and ripples in the South Pole mesosphere S. Suzuki, 1,2 M. Tsutsumi, 1 S. E. Palo, 3 Y. Ebihara, 4,5

More information

Characteristics of the storm-induced big bubbles (SIBBs)

Characteristics of the storm-induced big bubbles (SIBBs) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011743, 2006 Characteristics of the storm-induced big bubbles (SIBBs) Hyosub Kil, 1 Larry J. Paxton, 1 Shin-Yi Su, 2 Yongliang Zhang, 1 and

More information

Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle

Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053563, 2012 Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle C. von Savigny, 1 K.-U. Eichmann, 2 C. E. Robert, 3 J.

More information

Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7 N

Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7 N JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D7, 4054, 10.1029/2001JD001180, 2002 Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7 N Vincent B. Wickwar, Michael J. Taylor,

More information

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L09806, doi:10.1029/2004gl022328, 2005 Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data Mark P. Baldwin Northwest

More information

Spectral surface albedo derived from GOME-2/Metop measurements

Spectral surface albedo derived from GOME-2/Metop measurements Spectral surface albedo derived from GOME-2/Metop measurements Bringfried Pflug* a, Diego Loyola b a DLR, Remote Sensing Technology Institute, Rutherfordstr. 2, 12489 Berlin, Germany; b DLR, Remote Sensing

More information

Polar mesospheric clouds formed from space shuttle exhaust

Polar mesospheric clouds formed from space shuttle exhaust GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 10, 1546, doi:10.1029/2003gl017249, 2003 Polar mesospheric clouds formed from space shuttle exhaust Michael H. Stevens, 1 Jörg Gumbel, 2 Christoph R. Englert,

More information

VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES

VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES VALIDATION OF ENVISAT PRODUCTS USING POAM III O 3, NO 2, H 2 O AND O 2 PROFILES A. Bazureau, F. Goutail Service d Aéronomie / CNRS, BP 3, Réduit de Verrières, 91371 Verrières-le-Buisson, France Email :

More information

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses Timothy L. Miller 1, R. Atlas 2, P. G. Black 3, J. L. Case 4, S. S. Chen 5, R. E. Hood

More information

High-Latitude Short-Period Mesospheric Gravity Wave Dynamics and Winter Climatology

High-Latitude Short-Period Mesospheric Gravity Wave Dynamics and Winter Climatology Utah State University DigitalCommons@USU Physics Student Research Physics Student Research 2013 High-Latitude Short-Period Mesospheric Gravity Wave Dynamics and Winter Climatology Michael Negale Utah State

More information

Noctilucent clouds: modern ground-based photographic observations by a digital camera network

Noctilucent clouds: modern ground-based photographic observations by a digital camera network Noctilucent clouds: modern ground-based photographic observations by a digital camera network Audrius Dubietis, 1, * Peter Dalin, 2 Ričardas Balčiūnas, 1 Kazimieras Černis, 3 Nikolay Pertsev, 4 Vladimir

More information

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044119, 2010 High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming Yuhji Kuroda 1 Received 27 May

More information

Statistical characteristics of gravity waves observed by an all-sky imager at Darwin, Australia

Statistical characteristics of gravity waves observed by an all-sky imager at Darwin, Australia JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jd004336, 2004 Statistical characteristics of gravity waves observed by an all-sky imager at Darwin, Australia S. Suzuki, K. Shiokawa, Y. Otsuka,

More information

2 Preliminary Results Achieved by the Meridian Project

2 Preliminary Results Achieved by the Meridian Project Space Science Activities in China cycle peak year ( ), magnetic storm activities increased significantly, the Meridian Project has repeatedly observed the responses of the space environment to solar storms

More information

Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes Atmos. Chem. Phys., 3, 1399 1407, 2003 Atmospheric Chemistry and Physics Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes M. Rapp 1, F.-J.

More information

Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54 N observed by lidar

Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54 N observed by lidar Atmos. Chem. Phys., 8, 7465 7482, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Seasonal variation of nocturnal temperatures

More information

Noctilucent clouds getting brighter

Noctilucent clouds getting brighter JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D14, 4195, 10.1029/2001JD001345, 2002 Noctilucent clouds getting brighter J. Klostermeyer Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany Received

More information

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements SOFIE = the Solar Occultation For Ice Experiment, aboard AIM, NASA s Aeronomy of Ice in the Mesosphere mission Marty McHugh,

More information

Mesospheric temperature trends at mid latitudes in summer

Mesospheric temperature trends at mid latitudes in summer GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049528, 2011 Mesospheric temperature trends at mid latitudes in summer U. Berger 1 and F. J. Lübken 1 Received 2 September 2011; revised 13 October

More information

POLAR MESOSPHERE WINTER ECHOES DURING MaCWAVE

POLAR MESOSPHERE WINTER ECHOES DURING MaCWAVE , ESA-SP530, 357-362, 2003 POLAR MESOSPHERE WINTER ECHOES DURING MaCWAVE S. Kirkwood (1), E. Belova (1), P. Dalin (1), K.-H. Fricke (2), U. Blum (2), F. Schmidlin (3), R.A. Goldberg (4) (1) Swedish Institute

More information

Observational investigations of gravity wave momentum flux with spectroscopic imaging

Observational investigations of gravity wave momentum flux with spectroscopic imaging JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd004778, 2005 Observational investigations of gravity wave momentum flux with spectroscopic imaging J. Tang, G. R. Swenson, A. Z. Liu, and F.

More information

Climatic trends in E-region critical frequency and virtual height above Tromsø (70 N, 10 E)

Climatic trends in E-region critical frequency and virtual height above Tromsø (70 N, 10 E) Ann. Geophys., 25, 2351 2357, 2007 European Geosciences Union 2007 Annales Geophysicae Climatic trends in E-region critical frequency and virtual height above Tromsø (70 N, 10 E) C. M. Hall 1, A. Brekke

More information

Alan Z. Liu Embry Riddle Aeronautical University - Daytona Beach, Chester S. Gardner

Alan Z. Liu Embry Riddle Aeronautical University - Daytona Beach, Chester S. Gardner Department of Physical Sciences - Daytona Beach College of Arts & Sciences 1-29-2005 Vertical Heat and Constituent Transport in the Mesopause Region by Dissipating Gravity Waves at Maui, Hawaii (20.7ºN),

More information

Validation of GOMOS High Resolution Temperature Profiles using Wavelet Analysis - Comparison with Thule Lidar Observations

Validation of GOMOS High Resolution Temperature Profiles using Wavelet Analysis - Comparison with Thule Lidar Observations Validation of GOMOS High Resolution Temperature Profiles using Wavelet Analysis - Comparison with Thule Lidar Observations R. Q. Iannone 1, S. Casadio 1, A. di Sarra 2, G. Pace 2, T. Di Iorio 2, D. Meloni

More information

Characteristics of Wave Induced Oscillations in Mesospheric O2 Emission Intensity and Temperature

Characteristics of Wave Induced Oscillations in Mesospheric O2 Emission Intensity and Temperature Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1-2006 Characteristics of Wave Induced Oscillations in Mesospheric O2 Emission Intensity and Temperature A. Taori Michael

More information

The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign

The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign Ann. Geophys., 24, 1189 1197, 2006 European Geosciences Union 2006 Annales Geophysicae The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE

More information

The Indian summer monsoon during peaks in the 11 year sunspot cycle

The Indian summer monsoon during peaks in the 11 year sunspot cycle GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051977, 2012 The Indian summer monsoon during peaks in the 11 year sunspot cycle Harry van Loon 1,2 and Gerald A. Meehl 1 Received 9 April 2012;

More information

Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds

Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds GEOPHYSICAL RESEARCH LETfERS, VOL. 28, NO. 18, PAGES 361-364, SEPTEMBER 15, 21 Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds Michael E. Summers

More information

- satellite orbits. Further Reading: Chapter 04 of the text book. Outline. - satellite sensor measurements

- satellite orbits. Further Reading: Chapter 04 of the text book. Outline. - satellite sensor measurements (1 of 12) Further Reading: Chapter 04 of the text book Outline - satellite orbits - satellite sensor measurements - remote sensing of land, atmosphere and oceans (2 of 12) Introduction Remote Sensing:

More information

Atmospheric Measurements from Space

Atmospheric Measurements from Space Atmospheric Measurements from Space MPI Mainz Germany Thomas Wagner Satellite Group MPI Mainz Part 1: Basics Break Part 2: Applications Part 1: Basics of satellite remote sensing Why atmospheric satellite

More information

Simultaneous observations of Polar Mesosphere Summer/Winter Echoes with EISCAT and MST radars

Simultaneous observations of Polar Mesosphere Summer/Winter Echoes with EISCAT and MST radars Simultaneous observations of Polar Mesosphere Summer/Winter Echoes with EISCAT and MST radars Evgenia Belova Swedish Institute of Space Physics, Kiruna, Sweden PMSE / PMWE PMSE: 80-90 km, summer time,

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

SCIENCE CHINA Technological Sciences

SCIENCE CHINA Technological Sciences SCIENCE CHINA Technological Sciences RESEARCH PAPER May 2012 Vol.55 No.5: 1258 1263 doi: 10.1007/s11431-012-4802-0 Longitudinal distribution of O 2 nightglow brightness observed by TIEMD/SABER satellite

More information

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Yvan J. Orsolini 1,V. Limpasuvan 2, J. Richter 3, O. K. Kvissel 4, F. Stordal 4,D. Marsh 3 1 Norwegian Institute

More information