A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

Size: px
Start display at page:

Download "A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy"

Transcription

1 A100 Exploring the Universe: How Stars Work Martin D. Weinberg UMass Astronomy October 07, 2014 Read: Chaps 14, 15 10/07/12 slide 1

2 Exam scores posted in Mastering Questions returned and keys posted after make-ups Read: Chaps 14, 15 10/07/12 slide 2

3 Exam scores posted in Mastering Questions returned and keys posted after make-ups Brief discussion of selected exam questions Today: More on stars Finish: How stars work? What is fusion? How is energy transported? How have we tested our theories? Read: Chaps 14, 15 10/07/12 slide 2

4 Exam scores posted in Mastering Questions returned and keys posted after make-ups Brief discussion of selected exam questions Today: More on stars Finish: How stars work? What is fusion? How is energy transported? How have we tested our theories? Questions? Read: Chaps 14, 15 10/07/12 slide 2

5 Maxwell distribution & exam grades What do they have in common?? Read: Chaps 14, 15 10/07/12 slide 3

6 Maxwell distribution & exam grades Distribution of scores Read: Chaps 14, 15 10/07/12 slide 3

7 Maxwell distribution & exam grades Fraction with given speed cold warm hot Speed Read: Chaps 14, 15 10/07/12 slide 3

8 Maxwell distribution & exam grades What do they have in common?? Fraction with given speed Speed cold warm Let s roll some dice! hot 1. Choose some number of dies (1,2,3,4... ) 2. Roll and add up faces 3. Repeat Step 2 and make a histogram Read: Chaps 14, 15 10/07/12 slide 3

9 Gravitational equilibrium Energy provided by fusion maintains the pressure Rate of fusion very sensitive to temperature Mass of protons and neutrons converted to energy as larger nuclei are built Mass less than sum of parts E = mc 2 Read: Chaps 14, 15 10/07/12 slide 4

10 P-P fusion reaction 3 steps in a fusion reaction Read: Chaps 14, 15 10/07/12 slide 5

11 P-P fusion reaction 3 steps in a fusion reaction Read: Chaps 14, 15 10/07/12 slide 5

12 P-P fusion reaction 3 steps in a fusion reaction Read: Chaps 14, 15 10/07/12 slide 5

13 Mass, energy and fusion P-P fusion reaction Certain combinations of protons and nuclei are less than their sum of parts Can liberate energy by assembling a more massive nucleus! m lost = u u 0.03 u E lost = m lost c 2 = ( m/s) 2 E lost J 28 MeV = 28,000,000 ev Read: Chaps 14, 15 10/07/12 slide 6

14 Mass, energy and fusion P-P fusion reaction Certain combinations of protons and nuclei are less than their sum of parts Can liberate energy by assembling a more massive nucleus! m lost = u u 0.03 u E lost = m lost c 2 = ( m/s) 2 E lost J 28 MeV = 28,000,000 ev Read: Chaps 14, 15 10/07/12 slide 6

15 Mass, energy and fusion P-P fusion reaction Certain combinations of protons and nuclei are less than their sum of parts Can liberate energy by assembling a more massive nucleus! m lost = u u 0.03 u E lost = m lost c 2 = ( m/s) 2 E lost J 28 MeV = 28,000,000 ev Read: Chaps 14, 15 10/07/12 slide 6

16 Mass, energy and fusion P-P fusion reaction Certain combinations of protons and nuclei are less than their sum of parts Can liberate energy by assembling a more massive nucleus! m lost = u u 0.03 u E lost = m lost c 2 = ( m/s) 2 E lost J 28 MeV = 28,000,000 ev Read: Chaps 14, 15 10/07/12 slide 6

17 Mass, energy and fusion P-P fusion reaction Elements below iron (Fe) can from by fusion Elements below iron (Fe) cannot (radioactive decay) Most elements heavier than helium are made in stars! Fusion elements made in stars Fission elements made when star explodes Read: Chaps 14, 15 10/07/12 slide 7

18 Fusion rate acts a theromstat If excess energy produced, star expands As star expands, core of star cools As core cools, fusion rate drops quickly As energy production drops, pressure drops Star contracts and heats by falling Equilibrium is maintained! Read: Chaps 14, 15 10/07/12 slide 8

19 How does energy get to surface? Fusion temperature: 10 million degrees Outer Sun: 5000 degrees Read: Chaps 14, 15 10/07/12 slide 9

20 Three mechanisms for energy transport 1. Conduction: heat flows from hot to cold Energy transferred from atom to atom E.g. handle of frying pan on stove Read: Chaps 14, 15 10/07/12 slide 10

21 Three mechanisms for energy transport 1. Conduction: heat flows from hot to cold Energy transferred from atom to atom E.g. handle of frying pan on stove 2. Radiative diffusion: high energy photons interact with matter give up some of their energy, replenishing local heat supply Random walk [movie] Takes 10 7 (10 million) years for photon generated to get out! Photons can also provide some of the pressure to support star against its own gravitational pull Read: Chaps 14, 15 10/07/12 slide 10

22 3. Convection: energy carried from hotter regions below to cooler regions above by bulk buoyant motions of the gas. Hot blobs of gas rise, release energy Cool blobs of gas fall Example: coffee cup with milk... Read: Chaps 14, 15 10/07/12 slide 11

23 3. Convection: energy carried from hotter regions below to cooler regions above by bulk buoyant motions of the gas. [movie] Read: Chaps 14, 15 10/07/12 slide 11

24 3. Convection: energy carried from hotter regions below to cooler regions above by bulk buoyant motions of the gas. [movie] Read: Chaps 14, 15 10/07/12 slide 11

25 3. Convection: energy carried from hotter regions below to cooler regions above by bulk buoyant motions of the gas. Instant coffee with soy milk [movie] Read: Chaps 14, 15 10/07/12 slide 11

26 Fusion: radii < 0.25R Radiative diffusion: 0.25R < radii < 0.71R Convection: 0.71R < radii < 1.00R Solar wind: R < radii Read: Chaps 14, 15 10/07/12 slide 12

27 Radius: m (109 Earth radii) Mass: kg (300,000 Earth masses) Luminosity: watts Read: Chaps 14, 15 10/07/12 slide 13

28 What would happen inside the Sun if a slight rise in core temperature led to a rapid rise in fusion energy? A. The core would expand and heat up slightly B. The core would expand and cool C. The Sun would blow up like a hydrogen bomb Read: Chaps 14, 15 10/07/12 slide 14

29 What would happen inside the Sun if a slight rise in core temperature led to a rapid rise in fusion energy? A. The core would expand and heat up slightly B. The core would expand and cool C. The Sun would blow up like a hydrogen bomb Read: Chaps 14, 15 10/07/12 slide 14

30 How do we know what is happening inside the Sun? Read: Chaps 14, 15 10/07/12 slide 15

31 How do we know what is happening inside the Sun? Making mathematical models Observing solar vibrations Observing solar neutrinos Read: Chaps 14, 15 10/07/12 slide 15

32 Patterns of vibration on surface tell us about what Sun is like inside Read: Chaps 14, 15 10/07/12 slide 16

33 Patterns of vibration on surface tell us about what Sun is like inside Data on solar vibrations agree very well with mathematical models of solar interior Read: Chaps 14, 15 10/07/12 slide 16

34 from fusion fly directly through the Sun Solar neutrinos can tell us whats happening in core Read: Chaps 14, 15 10/07/12 slide 17

35 Solar neutrino problem: Early searches for solar neutrinos failed to find the predicted number Read: Chaps 14, 15 10/07/12 slide 18

36 Solar neutrino problem: Early searches for solar neutrinos failed to find the predicted number More recent observations find the right number of neutrinos, but some have changed form Read: Chaps 14, 15 10/07/12 slide 18

37 Surface of the Sun Three regions: Photosphere most of Sun s luminosity Chromosphere Above the photosphere Superheated region above the Chromosphere Read: Chaps 14, 15 10/07/12 slide 19

38 Surface of the Sun Three regions: Photosphere most of Sun s luminosity Above: photons stream without interacting Below: photons interact with solar material Chromosphere Above the photosphere Superheated region above the Chromosphere Read: Chaps 14, 15 10/07/12 slide 19

39 Surface of the Sun Three regions: Photosphere most of Sun s luminosity Above: photons stream without interacting Below: photons interact with solar material Chromosphere Above the photosphere Lower density, tenuous atmosphere. cooler. Slightly Superheated region above the Chromosphere Read: Chaps 14, 15 10/07/12 slide 19

40 Surface of the Sun Three regions: Photosphere most of Sun s luminosity Above: photons stream without interacting Below: photons interact with solar material Chromosphere Above the photosphere Lower density, tenuous atmosphere. cooler. Slightly Superheated region above the Chromosphere Origin of the solar wind, protons that have escaped the Sun. Read: Chaps 14, 15 10/07/12 slide 19

41 Photosphere Sun appears darker around the edge Photons from limb from greater height in atmosphere Upper photosphere/lower chromosphere is cool Read: Chaps 14, 15 10/07/12 slide 20

42 Photosphere Sun appears darker around the edge Photons from limb from greater height in atmosphere Upper photosphere/lower chromosphere is cool Read: Chaps 14, 15 10/07/12 slide 20

43 Image of Sun during total eclipse Material streams away from Sun Narrow transition between chromosphere and corona Read: Chaps 14, 15 10/07/12 slide 21

44 Read: Chaps 14, 15 10/07/12 slide 22

45 [movie] Read: Chaps 14, 15 10/07/12 slide 22

46 are regions of high magnetic field Zeeman splitting Read: Chaps 14, 15 10/07/12 slide 23

47 Consequences: magnetic fields! Generated by moving charges: electric currents Continuous loops of lines of force that have both tension and pressure (like rubber bands) Can be strengthened by stretching them, twisting them, and folding them back on themselves. This stretching, twisting, and folding is done by the fluid flows within the Sun! Read: Chaps 14, 15 10/07/12 slide 24

48 Magnetic field is trapped in ionized gas (plasma) Rotating Sun winds up the field lines Read: Chaps 14, 15 10/07/12 slide 25

49 TRACE solar mission (NASA) SOHO solar mission (ESA) UV image Read: Chaps 14, 15 10/07/12 slide 26

50 Solar Components Solar Wind: a flow of charged particles from the surface of the Sun Read: Chaps 14, 15 10/07/12 slide 27

51 Solar Components : outermost layer of the solar atmosphere, T 1 million K Read: Chaps 14, 15 10/07/12 slide 27

52 Solar Components Chromosphere: middle layer of the solar atmosphere, T K Read: Chaps 14, 15 10/07/12 slide 27

53 Solar Components Photosphere: visible surface of the Sun, T 6,000 K Read: Chaps 14, 15 10/07/12 slide 27

54 Solar Components Convection zone: energy transported upwards by rising gas Read: Chaps 14, 15 10/07/12 slide 27

55 Solar Components Radiation zone: energy tranported upward by photons Read: Chaps 14, 15 10/07/12 slide 27

56 Solar Components Core: energy generated by nuclear fusion, T 15 million K Read: Chaps 14, 15 10/07/12 slide 27

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: How Stars Work Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu October 11, 2012 Read: Chaps 14, 15 10/11/12 slide 1 Exam scores posted in Mastering Exam keys posted

More information

Astronomy 114. Lecture 13: Energy generation, magnetic fields. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 13: Energy generation, magnetic fields. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 13: Energy generation, magnetic fields Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 13 05 Mar 2007 Read: Ch. 19 Astronomy 114 1/17 Announcements

More information

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE? Chemical

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline 10/18/17 Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is 1 9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is produced by the proton-proton chain in which four hydrogen

More information

14.1 A Closer Look at the Sun

14.1 A Closer Look at the Sun 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE? NO! Chemical energy content Luminosity ~

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

A Closer Look at the Sun

A Closer Look at the Sun Our Star A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source a major mystery?

More information

Weight of upper layers compresses lower layers

Weight of upper layers compresses lower layers Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains the pressure Gravitational contraction: Provided energy that heated core as Sun was forming

More information

Chapter 10 Our Star. X-ray. visible

Chapter 10 Our Star. X-ray. visible Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Today The Sun. Events

Today The Sun. Events Today The Sun Events Last class! Homework due now - will count best 5 of 6 Final exam Dec. 20 @ 12:00 noon here Review this Course! www.case.edu/utech/course-evaluations/ The Sun the main show in the solar

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

The Sun. The Chromosphere of the Sun. The Surface of the Sun

The Sun. The Chromosphere of the Sun. The Surface of the Sun Key Concepts: Lecture 22: The Sun Basic properties of the Sun The outer layers of the Sun: Chromosphere, Corona Sun spots and solar activity: impact on the Earth Nuclear Fusion: the source of the Sun s

More information

Correction to Homework

Correction to Homework Today: Chapter 10 Reading Next Week: Homework Due March 12 Midterm Exam: March 19 Correction to Homework #1: Diameter of eye: 2.5 cm #10: See Ch. 11 Office Hours Monday. 11AM -2 PM Help Sessions Available:

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K. Name: Date: 1. What is the Sun's photosphere? A) envelope of convective mass motion in the outer interior of the Sun B) lowest layer of the Sun's atmosphere C) middle layer of the Sun's atmosphere D) upper

More information

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source Announcements Homework due today. Put your homework in the box NOW. Please STAPLE them if you have not done yet. Quiz#3 on Tuesday (Oct 5) Announcement at the end of this lecture. If you could not pick

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark The interior of the Sun Space Physics - Project by Christopher Keil October 17, 2006 Supervisor: Prof. Kjell Rnnemark Umeå University Institute of Physics Contents 1 Introduction 2 2 The Structure of the

More information

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE.

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. Messenger also contains instruments that can do some solar studies. http://www.stereo.gsfc.nasa.gov

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination The Sun Nearest Star Contains most of the mass of the solar system Source of heat and illumination Outline Properties Structure Solar Cycle Energetics Equation of Stellar Structure TBC Properties of Sun

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun.

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun. Chapter 12 The Sun, Our Star 1 With a radius 100 and a mass of 300,000 that of Earth, the Sun must expend a large amount of energy to withstand its own gravitational desire to collapse To understand this

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS What can we learn from light? Hydrogen Lines Temperature Energy Chemical Composition Speed towards or away from us All from the! Lower E, Lower f, λ Visible! Higher E, Higher f, λ Visible Hydrogen Spectrum

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

Astronomy Exam 3 - Sun and Stars

Astronomy Exam 3 - Sun and Stars Astronomy Exam 3 - Sun and Stars Study online at quizlet.com/_4zgp6 1. `what are the smallest group of stars in the H-R diagram 2. A star has a parallax of 0.05". what is the distance from the earth? white

More information

The Sun. October 21, ) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots

The Sun. October 21, ) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots The Sun October 21, 2002 1) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots Review Blackbody radiation Measuring stars distance luminosity brightness and distance

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.

More information

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star Why is the Sun hot and bright? Surface Temperature of the Sun: T =

More information

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text 1 Astr 102 Lec 7: Classification of Stars, the Sun What prevents stars from collapsing under the weight of their own gravity? Text Why is the center of the Sun hot? What is the source of the Sun s energy?

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains

More information

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun.

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Goals: Our Star: The Sun Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Components of the Sun Solar Interior: Core: where energy

More information

Facts About The Sun. The Sun is a star found at the of the Solar System. It makes up around % of the Solar System s mass.

Facts About The Sun. The Sun is a star found at the of the Solar System. It makes up around % of the Solar System s mass. Facts About is a star found at the of the Solar System. It makes up around % of the Solar System s mass. At around 1,392,000 kilometres (865,000 miles) wide, the Sun s is about 110 times wider than Earth

More information

PTYS/ASTR 206. The Sun 3/1/07

PTYS/ASTR 206. The Sun 3/1/07 The Announcements Reading Assignment Review and finish reading Chapter 18 Optional reading March 2006 Scientific American: article by Gene Parker titled Shielding Space Travelers http://en.wikipedia.org/wiki/solar_variability

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 MULTIPLE CHOICE 1. Granulation is caused by a. sunspots. * b. rising gas below the photosphere. c. shock waves in the corona. d. the

More information

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars For nearby stars - measure distances with parallax 1 AU d p 8-2 Parallax A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

ASTR Midterm 1 Phil Armitage, Bruce Ferguson

ASTR Midterm 1 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 1 Phil Armitage, Bruce Ferguson FIRST MID-TERM EXAM FEBRUARY 16 th 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 16 The Sun MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The light we see from the Sun comes from which layer?

More information

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion Our Star, the Sun The Sun: Our Star A glowing ball of gas held together by its own gravity and powered by nuclear fusion Radius: 700,000 km (435,000 miles) Diameter: 1.392 million km (865,000 miles) Circumference:

More information

2/6/18. Topics for Today and Thur. ASTR 1040: Stars & Galaxies. EUV and Visible Images

2/6/18. Topics for Today and Thur. ASTR 1040: Stars & Galaxies. EUV and Visible Images 2/6/18 ASTR 1040: Stars & Galaxies Topics for Today and Thur Consider Sun s energy source (fusion H--He) Solar granulation Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 7 Tues 6 Feb 2018 What

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

Astronomy 1 Fall Reminder: When/where does your observing session meet? [See from your TA.]

Astronomy 1 Fall Reminder: When/where does your observing session meet? [See  from your TA.] Astronomy 1 Fall 2016 Reminder: When/where does your observing session meet? [See email from your TA.] Lecture 9, October 25, 2016 Previously on Astro-1 What is the Moon made of? How did the Moon form?

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017 Lecture 13: The Sun, and how stars work Astronomy 111 Wednesday October 11, 2017 Reminders Star party tomorrow night! Homework #6 due Monday How do stars work? What is a star? What is a star composed of?

More information

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that generates energy through nuclear fusion in its core. The

More information

The Sun 11/27/2017. Phys1411 Introductory Astronomy. Exam 3. Topics we have covered. Sun Spots. Topics for Today class

The Sun 11/27/2017. Phys1411 Introductory Astronomy. Exam 3. Topics we have covered. Sun Spots. Topics for Today class Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Exam 3 Wednesday November 29 th Homework for Chapter 7 and 8 are online on MindTap: Due Wednesday

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

The Sun 11/6/2018. Phys1411 Introductory Astronomy. Topics we have covered. Topics for Today class. Sun Spots

The Sun 11/6/2018. Phys1411 Introductory Astronomy. Topics we have covered. Topics for Today class. Sun Spots Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Topics we have covered I. Introduction A. Viewing the Sun B. General Definition C. General Properties

More information

The Sun is the nearest star to Earth, and provides the energy that makes life possible.

The Sun is the nearest star to Earth, and provides the energy that makes life possible. 1 Chapter 8: The Sun The Sun is the nearest star to Earth, and provides the energy that makes life possible. PRIMARY SOURCE OF INFORMATION about the nature of the Universe NEVER look at the Sun directly!!

More information

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled.

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled. 1 Announcements The Midterm is one week away! Bring: Calculator, scantron (big red form), pencil No notes, cellphones, or books allowed. Homework #4 is due this thursday There is no homework next week.

More information

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Star Party This Friday November 9 weather permitting. See the flyer for updates in case of cancellations

More information

4 Layers of the Sun. CORE : center, where fusion occurs

4 Layers of the Sun. CORE : center, where fusion occurs 4 Layers of the Sun CORE : center, where fusion occurs RADIATION LAYER: energy transfer by radiation (like energy coming from a light bulb or heat lamp which you can feel across the room) CONVECTION LAYER:

More information

The Project. National Schools Observatory

The Project. National Schools Observatory Sunspots The Project This project is devised to give students a good understanding of the structure and magnetic field of the Sun and how this effects solar activity. Students will work with sunspot data

More information

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Solar granulation Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 7 Tues 7 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Consider Sun s energy

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: The interaction of light and matter Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu February 11, 2016 Read: Chap 5 02/11/16 slide 1 Exam #1: Thu 18 Feb

More information

Lecture 14: The Sun and energy transport in stars. Astronomy 111

Lecture 14: The Sun and energy transport in stars. Astronomy 111 Lecture 14: The Sun and energy transport in stars Astronomy 111 Energy transport in stars What is a star? What is a star composed of? Why does a star shine? What is the source of a star s energy? Laws

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing ASTRONOMY 0089: EXAM 2 Class Meets M,W,F, 1:00 PM Mar 22, 1996 INSTRUCTIONS: First ll in your name and social security number (both by printing and by darkening the correct circles). Sign your answer sheet

More information

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from:

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from: Astronomy 154 Lab 3: The Sun NASA Image comparing the Earth with the Sun. Image from: http://www.universetoday.com/16338/the-sun/ The Sun at the center of our Solar System is a massive ball of Hydrogen,

More information

Lecture 6: Our star, the Sun

Lecture 6: Our star, the Sun Lecture 6: Our star, the Sun 1 Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10 5 M = 1M Surface Temperature = 5,778K

More information

Agenda. 15. Our Star I say Live, Live, because of the Sun, The dream, the excitable gift. The Sun s Energy Source Why Does the Sun Shine?

Agenda. 15. Our Star I say Live, Live, because of the Sun, The dream, the excitable gift. The Sun s Energy Source Why Does the Sun Shine? 15. Our Star I say Live, Live, because of the Sun, The dream, the excitable gift. Anne Sexton (1928 1974) American poet Goodbye my friend it s hard to die When all the birds are singing in the sky Now

More information

The Sun = Typical Star

The Sun = Typical Star The Sun = Typical Star Some Properties Diameter - 109 times Earth s Volume - about 1,000,000 times Earth s Mass - about 300,000 times Earth s 99.8% of Solar System Density = Mass/Volume = 1.4 g/cm 3 The

More information

ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

Astr 1050 Mon. March 30, 2015 This week s Topics

Astr 1050 Mon. March 30, 2015 This week s Topics Astr 1050 Mon. March 30, 2015 This week s Topics Chapter 14: The Sun, Our Star Structure of the Sun Physical Properties & Stability Photosphere Opacity Spectral Line Formation Temperature Profile The Chromosphere

More information

Summer 2013 Astronomy - Test 3 Test form A. Name

Summer 2013 Astronomy - Test 3 Test form A. Name Summer 2013 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes Today Stars Properties (Recap) Nuclear Reactions proton-proton chain CNO cycle Stellar Lifetimes Homework Due Stellar Properties Luminosity Surface Temperature Size Mass Composition Stellar Properties

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure Reading: Chapter 16 (next week: Chapter 17) Exam 1: This Thursday, February 8 - bring a #2 pencil! ESSAY, Review Sheet and Practice Exam Posted Astro 150 Spring 2018: Lecture 9 page 1 Last time: Our Sun

More information

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram? Fall 2016 Astronomy - Test 3 Test form B Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form B on the answer sheet. Write your name above as well.

More information

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere Fall 2016 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

The Sun. SESAME Astronomy Week 4. Thursday, February 10, 2011

The Sun. SESAME Astronomy Week 4. Thursday, February 10, 2011 The Sun SESAME Astronomy Week 4 1 1 Our star Not special: typical mass, typical temperature, typical size, typical planetary system about halfway through its 10 billion year lifespan 2 2 Vital statistics

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

How does the Sun shine? What is the Sun s structure? Lifetime of the Sun. Luminosity of the Sun. Radiation Zone. Core 3/30/17

How does the Sun shine? What is the Sun s structure? Lifetime of the Sun. Luminosity of the Sun. Radiation Zone. Core 3/30/17 What is the Sun s structure? From inside out, the layers are: Core Radiation Zone Convection Zone Photosphere Chromosphere Corona How does the Sun shine? The Sun has its own energy source Main difference

More information

N = R *! f p! n e! f l! f i! f c! L

N = R *! f p! n e! f l! f i! f c! L Astronomy 330 Drake Equation The class s first estimate is Frank Drake This class (Lecture 6): Stars Next Class: Star Formation Music: We are all made of Stars Moby Feb 5, 2009 Astronomy 330 N = R *! f

More information

Helios in Greek and Sol in Roman

Helios in Greek and Sol in Roman Helios in Greek and Sol in Roman Drove his chariot across the sky to provide daylight Returned each night in a huge golden cup on the river Oceanus His son Phaeton drove the chariot one day but lost control

More information