Lecture 6: Our star, the Sun

Size: px
Start display at page:

Download "Lecture 6: Our star, the Sun"

Transcription

1 Lecture 6: Our star, the Sun 1

2 Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10 5 M = 1M Surface Temperature = 5,778K Rotation Period: (sidereal) at equator = days at poles = 34.4 days SOHO (ESA & NASA) 2

3 "EffectiveTemperature 300dpi e" by Sch - Drawn by myself. The solar spectrum is the WRC spectrum provided by M. Iqbal: An Introduction to Solar Radiation, Academic Press 1983, Table C1. The black body spectral irradiance has been computed from a black-body spectrum for T equal 5777 K and assuming a solid angle of 6.8e-5 steradian for the source (the solar disk).. Licensed under CC BY-SA 3.0 via Commons - File:EffectiveTemperature_300dpi_e.png 3

4 SOHO (ESA & NASA) 4

5 ! very center of sun! high temperature and pressure " temperature is about 15.7 million K (0 o C=273K)! 20 25% of solar radius! energy generated through fusion " H->He " Fusion = two atoms forced together to form a heavier atom! Proton-Proton chain fusion reaction "FusionintheSun" by Borb - Own work. Licensed under Creative Commons Attribution-Share Alike via Wikimedia Commons - File:FusionintheSun.svg#mediaviewer/File:FusionintheSun.svg 5

6 ! outside of core " of solar radius! energy transferred through radiation " H and He ions emit and reabsorb photons! radiation -> light of all wavelengths SOHO (ESA & NASA) 6

7 ! outside of radiative zone " 0.70 of solar radius to surface! energy transferred through convection " lower temperature and density! convection -> hot gas rises, cooler gas falls! similar to boiling pot of water SOHO (ESA & NASA) 7

8

9 ! Heat transfer through the motion of a hot material! When a material heats, it expands! The expanded material is less dense! The material then rises, carrying heat 9

10 ! visible surface of sun " in visible wavelengths " T~5800K! not solid surface " <500km deep " dense enough to emit light but not so dense that light can t escape! so bright it dominates view without filters SOHO (ESA & NASA) 10

11 ! the lower atmosphere of the sun! located above photosphere " much hotter and less dense than the photosphere! this is where most activity occurs " prominences " flares " magnetic loops "Solar eclipse NR" by Luc Viatour - Own work Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - File:Solar_eclipse_1999_4_NR.jpg#mediaviewer/File:Solar_eclipse_1999_4_NR.jpg 11

12 ! Between the chromosphere and the corona! Rapid rise in temperature " 2x10 4 K-1x10 6 K " Helium becomes fully ionized "Transition-region" by TRACE - TRACE spacecraft Picture of the Day web site POD/images/T195_020226_03_04_filamenteruption.jpg. Licensed under Public domain via Wikimedia Commons

13 ! the outer atmosphere of the sun! low density, high temperature! normally too faint to be seen " photosphere is too bright! can be seen during solar eclipse! SOHO sees by blocking out bright photosphere "Solar eclipse NR" by Luc Viatour - Own work Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - File:Solar_eclipse_1999_4_NR.jpg#mediaviewer/File:Solar_eclipse_1999_4_NR.jpg 13

14 ! What is the interior structure of the Sun?! Density " The density is highest at the center " Drops off rapidly toward surface! Temperature " The temperature is highest at the center " Drops off rapidly toward surface 14

15 15

16 ! Look at the following views of the sun and describe what you see! The following images and video come from the Solar and Heliospheric Observatory (SOHO) "NASA SOHO spacecraft" by Cgruda - SOHOLower2.htmlFile:SOHO nasa.tif. Licensed under Public domain via Wikimedia Commons - commons.wikimedia.org/wiki/file:nasa_soho_spacecraft.png#mediaviewer/ File:NASA_SOHO_spacecraft.png 16

17 ! Very bright visible surface! Need filter to take picture SOHO (ESA & NASA) 17

18 ! Darker cooler spots on the photosphere! Still very hot! Need filter to see them! Features? SOHO (ESA & NASA) 18

19 ! As we look in other wavelengths, we see other features besides just the photosphere! Wavelength related to temperature SOHO (ESA & NASA) 19

20 ! light and dark speckling of the photosphere! caused by convection underneath! very small scale and short time 20

21 ! Looking in UV! Features? SOHO (ESA & NASA) 21

22 ! Outer edges of atmosphere! Overwhelmed by photosphere! Seen in eclipses! Features? SOHO (ESA & NASA) 22

23 ! The sun doesn t stay the same! The changes are referred to as activity 23

24 ! Photosphere! Chromosphere! soho_movie_theater! Notice rotation and active regions 24

25 ! activity increases and decreases in 11 year cycle! Called solar cycle "Sunspot Numbers". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - File:Sunspot_Numbers.png 25

26 ! Are we in high or low part of the cycle "Solar Cycle Prediction" by David Hathaway, NASA, Marshall Space Flight Center - Licensed under Public domain via Wikimedia Commons - File:Solar_Cycle_Prediction.gif#mediaviewer/File:Solar_Cycle_Prediction.gif 26

27 ! the activity on the sun is caused by the magnetic field! the sun's magnetic field gets twisted and knotted SOHO (ESA & NASA) 27

28 SOHO (ESA & NASA) 28

29 ! temporary cooler, darker spots on the surface! caused by magnetic field lines bunching together! last from hours to months 29

30 SOHO (ESA & NASA) 30

31 ! Gas extends above the photosphere! Most visible on the edges! Features? "Sun earth jupiter whole 600" by NASA Goddard Space Flight Center - Solar Dynamics Observatory. Licensed under Public Domain via Commons - File:Sun_earth_jupiter_whole_600.jpg#/media/ File:Sun_earth_jupiter_whole_600.jpg 31

32 SOHO (ESA & NASA) 32

33 ! Gas flows along the magnetic field of the prominences 33

34 ! outbursts of activity on the sun's surface " due to magnetic reconnection! resulting in temporary brightening SOHO (ESA & NASA) 34

35 ! Coronal Mass Ejections " large amounts of gas thrown out into space " caused by magnetic field breaking and reforming SOHO (ESA & NASA) 35

36 ! High energy particles are ejected by the Sun! Particles interact with the Earth s magnetic field, flowing down toward the atmosphere at the poles! Produces colored light through collisions with atoms in the atmosphere " atomic excitation "Aurora Borealis and Australis Poster". Licensed under Creative Commons Attribution-ShareAlike 1.0 via Wikipedia - File:Aurora_Borealis_and_Australis_Poster.jpg 36

37 SOHO (ESA & NASA) 37

38 ! What happens if a large Solar Storm impacts the Earth?! Geomagnetic Storms interact with the Earth s magnetic field " Coronal Mass Ejection " Solar Flare! Solar Storm Video 38

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that generates energy through nuclear fusion in its core. The

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

Earth/Space/Physics Kristy Halteman.

Earth/Space/Physics Kristy Halteman. Earth/Space/Physics Kristy Halteman http://www.lesia.obspm.fr/~bonnin/fichiers/images/sun-soho011905-1919z.jpg A. Properties 1. 330,000 times more massive than the Earth. http://www.37signals.com/svn/images/sun_v_planets.jpg

More information

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K. Name: Date: 1. What is the Sun's photosphere? A) envelope of convective mass motion in the outer interior of the Sun B) lowest layer of the Sun's atmosphere C) middle layer of the Sun's atmosphere D) upper

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent?

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent? Our Beacon: The Sun Learning Objectives! What are the outer layers of the Sun, in order? What wavelengths of light do we use to see each of them?! Why does limb darkening tell us the inner Sun is hotter?!

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Correction to Homework

Correction to Homework Today: Chapter 10 Reading Next Week: Homework Due March 12 Midterm Exam: March 19 Correction to Homework #1: Diameter of eye: 2.5 cm #10: See Ch. 11 Office Hours Monday. 11AM -2 PM Help Sessions Available:

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion Our Star, the Sun The Sun: Our Star A glowing ball of gas held together by its own gravity and powered by nuclear fusion Radius: 700,000 km (435,000 miles) Diameter: 1.392 million km (865,000 miles) Circumference:

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from:

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from: Astronomy 154 Lab 3: The Sun NASA Image comparing the Earth with the Sun. Image from: http://www.universetoday.com/16338/the-sun/ The Sun at the center of our Solar System is a massive ball of Hydrogen,

More information

The Project. National Schools Observatory

The Project. National Schools Observatory Sunspots The Project This project is devised to give students a good understanding of the structure and magnetic field of the Sun and how this effects solar activity. Students will work with sunspot data

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 MULTIPLE CHOICE 1. Granulation is caused by a. sunspots. * b. rising gas below the photosphere. c. shock waves in the corona. d. the

More information

Weight of upper layers compresses lower layers

Weight of upper layers compresses lower layers Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains the pressure Gravitational contraction: Provided energy that heated core as Sun was forming

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes The Sun, the largest body in the Solar System, is a giant ball of gas held together by gravity. The Sun is constantly undergoing the nuclear process of fusion and creating a tremendous amount of light

More information

ASTRONOMY. Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow

ASTRONOMY. Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow ASTRONOMY Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow FIGURE 15.1 Our Star. The Sun our local star is quite average in many ways. However, that does not stop it from being a fascinating

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun.

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun. Chapter 12 The Sun, Our Star 1 With a radius 100 and a mass of 300,000 that of Earth, the Sun must expend a large amount of energy to withstand its own gravitational desire to collapse To understand this

More information

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light. 8.2 The Sun pg. 309 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System have unique properties. 3. Some

More information

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE? Chemical

More information

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is 1 9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is produced by the proton-proton chain in which four hydrogen

More information

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS What can we learn from light? Hydrogen Lines Temperature Energy Chemical Composition Speed towards or away from us All from the! Lower E, Lower f, λ Visible! Higher E, Higher f, λ Visible Hydrogen Spectrum

More information

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.

More information

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source Announcements Homework due today. Put your homework in the box NOW. Please STAPLE them if you have not done yet. Quiz#3 on Tuesday (Oct 5) Announcement at the end of this lecture. If you could not pick

More information

Astronomy 210. Outline. Nuclear Reactions in the Sun. Neutrinos. Solar Observing due April 15 th HW 8 due on Friday.

Astronomy 210. Outline. Nuclear Reactions in the Sun. Neutrinos. Solar Observing due April 15 th HW 8 due on Friday. Astronomy 210 Outline This Class (Lecture 30): Solar Neutrinos Next Class: Stars: Physical Properties Solar Observing due April 15 th HW 8 due on Friday. The Sun Our closest star The Outer Layers of the

More information

Lecture 17 The Sun October 31, 2018

Lecture 17 The Sun October 31, 2018 Lecture 17 The Sun October 31, 2018 1 2 Exam 2 Information Bring a #2 pencil! Bring a calculator. No cell phones or tablets allowed! Contents: Free response problems (2 questions, 10 points) True/False

More information

19 The Sun Introduction. Name: Date:

19 The Sun Introduction. Name: Date: Name: Date: 19 The Sun 19.1 Introduction The Sun is a very important object for all life on Earth. The nuclear reactions that occur in its core produce the energy required by plants and animals for survival.

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: How Stars Work Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu October 07, 2014 Read: Chaps 14, 15 10/07/12 slide 1 Exam scores posted in Mastering Questions

More information

B B E D B E D A C A D D C

B B E D B E D A C A D D C B B A C E E E E C E D E B B A D B E E A E E B C C A B B E D B E D A C A D D C E D Assigned Reading Read Chapters 8.1 and 8.2 Colonel Cady Coleman, Astronaut: Lessons from Space Lead Straight Back to Earth,

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 16 The Sun MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The light we see from the Sun comes from which layer?

More information

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun.

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Goals: Our Star: The Sun Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Components of the Sun Solar Interior: Core: where energy

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline 10/18/17 Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

A Closer Look at the Sun

A Closer Look at the Sun Our Star A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source a major mystery?

More information

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle 1 Table of contents Introduction to planetary magnetospheres and the interplanetary medium... 3 A short introduction

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark The interior of the Sun Space Physics - Project by Christopher Keil October 17, 2006 Supervisor: Prof. Kjell Rnnemark Umeå University Institute of Physics Contents 1 Introduction 2 2 The Structure of the

More information

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages Chapter 24: Studying the Sun 24.3: The Sun Textbook pages 684-690 The sun is one of the 100 billion stars of the Milky Way galaxy. The sun has no characteristics to make it unique to the universe. It is

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: How Stars Work Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu October 11, 2012 Read: Chaps 14, 15 10/11/12 slide 1 Exam scores posted in Mastering Exam keys posted

More information

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE.

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. Messenger also contains instruments that can do some solar studies. http://www.stereo.gsfc.nasa.gov

More information

Helios in Greek and Sol in Roman

Helios in Greek and Sol in Roman Helios in Greek and Sol in Roman Drove his chariot across the sky to provide daylight Returned each night in a huge golden cup on the river Oceanus His son Phaeton drove the chariot one day but lost control

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

4 Layers of the Sun. CORE : center, where fusion occurs

4 Layers of the Sun. CORE : center, where fusion occurs 4 Layers of the Sun CORE : center, where fusion occurs RADIATION LAYER: energy transfer by radiation (like energy coming from a light bulb or heat lamp which you can feel across the room) CONVECTION LAYER:

More information

The Sun. The Chromosphere of the Sun. The Surface of the Sun

The Sun. The Chromosphere of the Sun. The Surface of the Sun Key Concepts: Lecture 22: The Sun Basic properties of the Sun The outer layers of the Sun: Chromosphere, Corona Sun spots and solar activity: impact on the Earth Nuclear Fusion: the source of the Sun s

More information

The Sun s Dynamic Atmosphere

The Sun s Dynamic Atmosphere Lecture 16 The Sun s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun s atmosphere? Does the atmosphere cool off farther

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

Next quiz: Monday, October 24

Next quiz: Monday, October 24 No homework for Wednesday Read Chapter 8! Next quiz: Monday, October 24 1 Chapter 7 Atoms and Starlight Types of Spectra: Pictorial Some light sources are comprised of all colors (white light). Other light

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Star Party This Friday November 9 weather permitting. See the flyer for updates in case of cancellations

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2014Feb08 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind & earthly

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2006Sep18 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind 3 1a. The

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Exploring the Solar Wind with Ultraviolet Light

Exploring the Solar Wind with Ultraviolet Light Timbuktu Academy Seminar, Southern University and A&M College, November 19, 2003 Exploring the Solar Wind with Ultraviolet Light Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough...

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... 1 Chapter 7 Atoms and Starlight Kirchhoff s Laws of Radiation

More information

Chapter 10 Our Star. X-ray. visible

Chapter 10 Our Star. X-ray. visible Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Astronomy 114. Lecture 13: Energy generation, magnetic fields. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 13: Energy generation, magnetic fields. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 13: Energy generation, magnetic fields Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 13 05 Mar 2007 Read: Ch. 19 Astronomy 114 1/17 Announcements

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 9 Tues 14 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Helioseismology:

More information

Astronomy Exam 3 - Sun and Stars

Astronomy Exam 3 - Sun and Stars Astronomy Exam 3 - Sun and Stars Study online at quizlet.com/_4zgp6 1. `what are the smallest group of stars in the H-R diagram 2. A star has a parallax of 0.05". what is the distance from the earth? white

More information

The Sun is the nearest star to Earth, and provides the energy that makes life possible.

The Sun is the nearest star to Earth, and provides the energy that makes life possible. 1 Chapter 8: The Sun The Sun is the nearest star to Earth, and provides the energy that makes life possible. PRIMARY SOURCE OF INFORMATION about the nature of the Universe NEVER look at the Sun directly!!

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

How the Sun Works. Presented by the

How the Sun Works. Presented by the How the Sun Works Presented by the The Sun warms our planet every day, provides the light by which we see and is absolutely necessary for life on Earth. In this presentation, we will examine the fascinating

More information

Proton-proton cycle 3 steps PHYS 162 1

Proton-proton cycle 3 steps PHYS 162 1 Proton-proton cycle 3 steps PHYS 162 1 4 Layers of the Sun CORE : center, where fusion occurs RADIATION: energy transfer by radiation CONVECTION: energy transfer by convection PHOTOSPHERE: what we see

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

The Sun. October 21, ) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots

The Sun. October 21, ) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots The Sun October 21, 2002 1) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots Review Blackbody radiation Measuring stars distance luminosity brightness and distance

More information

Our Sun Our Star. Image credit: JAXA. OU-L P SC 100 Spring, /81

Our Sun Our Star. Image credit: JAXA. OU-L P SC 100 Spring, /81 Our Sun Our Star Image credit: JAXA OU-L P SC 100 Spring, 2009 1/81 1 Diameter: 1,400,000 km = 864,000 miles = 4.5 light-seconds 1,300,000 Earths could fit inside! 109 Earths would fit across the diameter

More information

Directed Reading. Section: Solar Activity SUNSPOTS. Skills Worksheet. 1. How do the gases that make up the sun s interior and atmosphere behave?

Directed Reading. Section: Solar Activity SUNSPOTS. Skills Worksheet. 1. How do the gases that make up the sun s interior and atmosphere behave? Skills Worksheet Directed Reading Section: Solar Activity 1. How do the gases that make up the sun s interior and atmosphere behave? 2. What causes the continuous rising and sinking of the sun s gases?

More information

SOLAR SYSTEM NOTES. Surface of the Sun appears granulated: 10/2/2015 ENERGY TRANSFERS RADIATION FROM THE SUN

SOLAR SYSTEM NOTES. Surface of the Sun appears granulated: 10/2/2015 ENERGY TRANSFERS RADIATION FROM THE SUN SOLAR SYSTEM NOTES 10.7.15 ENERGY TRANSFERS Radiation - a process in which energy travels through vacuum (without a medium) Conduction a process in which energy travels through a medium Convection - The

More information

Astr 1050 Mon. March 30, 2015 This week s Topics

Astr 1050 Mon. March 30, 2015 This week s Topics Astr 1050 Mon. March 30, 2015 This week s Topics Chapter 14: The Sun, Our Star Structure of the Sun Physical Properties & Stability Photosphere Opacity Spectral Line Formation Temperature Profile The Chromosphere

More information

Using This Flip Chart

Using This Flip Chart Using This Flip Chart Sunspots are the first indicators that a storm from the Sun is a possibility. However, not all sunspots cause problems for Earth. By following the steps in this flip chart you will

More information

Supporting Calculations for NASA s IRIS Mission. I. Overview

Supporting Calculations for NASA s IRIS Mission. I. Overview Supporting Calculations for NASA s IRIS Mission. I. Overview Eugene Avrett Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Understanding the solar chromosphere continues

More information

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Wrap-Up What makes up the universe and how does

More information

Summer 2013 Astronomy - Test 3 Test form A. Name

Summer 2013 Astronomy - Test 3 Test form A. Name Summer 2013 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Chapter 23. Our Solar System

Chapter 23. Our Solar System Chapter 23 Our Solar System Our Solar System 1 Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths

More information

PTYS/ASTR 206. The Sun 3/1/07

PTYS/ASTR 206. The Sun 3/1/07 The Announcements Reading Assignment Review and finish reading Chapter 18 Optional reading March 2006 Scientific American: article by Gene Parker titled Shielding Space Travelers http://en.wikipedia.org/wiki/solar_variability

More information