A Methodology for Clock Benchmarking

Size: px
Start display at page:

Download "A Methodology for Clock Benchmarking"

Transcription

1 A Methodology for Clock Benchmarking Julien Ridoux Darryl Veitch ARC Special Research Centre for Ultra-Broadband Information Networks THE UNIVERSITY OF MELBOURNE NICTA Victoria Research Laboratory Dept. of Electrical & Electronic Engineering THE UNIVERSITY OF MELBOURNE

2 Introduction Higher demand on the network, better clocks Network applications are more and more distributed Users/Providers need higher reactivity and more precision Essential for testbeds and performance evaluations Limitation: the quality of clock synchronisation Need for higher accuracy Need for higher reliability Difficult to benchmark timekeeping systems Against which reference? How to access clock instantaneously? 2

3 Clock and Timestamping errors Timestamps Clock Time Drifting Clock Perfect Clock t k t k Event occurring at true time True Time 3

4 Clock and Timestamping errors Timestamps Clock Time C(t k) Drifting Clock Perfect Clock t k t k Event occurring at true time t k True Time 3

5 Clock and Timestamping errors Timestamps Clock Time C(t k) E(t k ) θ(t k) ξ(t k ) Drifting Clock Perfect Clock Clock error or offset θ(t k ) = C(t k ) t k Timestamping error ξ(t k ) = t k t k t k Total error: t k Event occurring at true time t k True Time E(t k) = C(t k) t k = θ(t k) + ξ(t k ) 3

6 Clock and Timestamping errors In practice, no perfect clock for benchmarking Total relative error: E C1,C 2 (t k ) = C 1 (t k) C 2 (t k) = θ C1 (t k) θ C2 (t k) + ξ C1 (t k ) ξ C2 (t k ) The clock and timestamping errors combine Without a perfect clock; benchmarking a challenge Timestamping error: eliminate / estimate Clock error: relative / absolute Need a strong methodology 4

7 CubinLab Testbed 3 Clocks under study (Linux & FreeBSD) SW-GPS: ntpd + GPS sync. Absolute Clock SW-NTP: ntpd + Net. sync. Absolute Clock TSCclock: Net. sync, Absolute & Difference Clock Internal Monitor Host SW-GPS SW-NTP External Monitor DAG-GPS DAG Card Unix PC UDP Sender & Receiver GPS Receiver NTP Server Stratum 1 SW-GPS TSCclock Hub PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request 5

8 CubinLab Testbed Kernel timestamping of UDP packets Outgoing / Incoming directions External: DAG Card Internal: Multiple clocks simultaneously Internal Monitor Host SW-GPS SW-NTP External Monitor DAG-GPS DAG Card Unix PC UDP Sender & Receiver GPS Receiver NTP Server Stratum 1 SW-GPS TSCclock Hub PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request 6

9 Internal comparison Modified kernels: timestamps taken back to back Identical delay accessing the clocks Timestamping errors cancel t k = t k ξ C1 (t k ) = ξ C2 (t k ) Obtain a comparison of the two clocks offsets E C1,C 2 (t k ) θ C1 (t k ) θ C2 (t k ) Free of timestamping error No absolute performance with respect to true time 7

10 External comparison Use of the DAG card Considered best absolute time reference available E C,Dag (t k ) = θ C (t k ) + ξ C (t k ) ξ Dag (t k ) Provides absolute reference But suffers from timestamping error Additional kernel modifications to reduce noise Standard location in kernel for all clocks Improved locations for the TSCclock As close as possible to the last bit transmitted/received Interrupt bottom-half / driver implementation 8

11 Reducing kernel timestamping error Unix PC DAG [ms] Host t a t g a t g f t f d h d h time Standard IN (1) Improved IN (2) Improved OUT (3) Standard OUT (4) (1) Minutes Stand. OUT: med= 268 iqr= 36.1 Stand. IN: med= 177 iqr= (2) Impr. OUT: med= 84.5 iqr= 14.9 Impr. IN: med= 92.1 iqr= 8.1 (3) (4) Outgoing Incoming

12 Reducing kernel timestamping error Standard timestamping location with the TSCclock Outgoing direction noisier: IQR 1 µs larger Asymmetry of 1 µs between Outgoing / Incoming Improved location much better Outgoing Incoming [ms] Stand. OUT: med= 268 iqr= 36.1 Stand. IN: med= 177 iqr= Standard IN (1) Improved IN (2) Improved OUT (3) Standard OUT (4) (1) (2) Impr. OUT: med= 84.5 iqr= 14.9 Impr. IN: med= 92.1 iqr= Minutes (3) (4)

13 Reducing kernel timestamping error Standard timestamping location with the TSCclock Outgoing direction noisier: IQR 1 µs larger Asymmetry of 1 µs between Outgoing / Incoming Improved location much better The same clock in both directions!!! Which direction to trust? Outgoing Incoming [ms] Stand. OUT: med= 268 iqr= 36.1 Stand. IN: med= 177 iqr= Standard IN (1) Improved IN (2) Improved OUT (3) Standard OUT (4) (1) (2) Impr. OUT: med= 84.5 iqr= 14.9 Impr. IN: med= 92.1 iqr= Minutes (3) (4)

14 Host RTT measurement Unix PC DAG If we use both directions Minimum Host RTT: Available timestamps: r h = d h + d h R h = r h + ξ(t f ) ξ(t a ) Host RTT available since measured with the same clock Minimum can be filtered; noise is the width of histogram of R h Host t a t g a t g f t f d h d h time [ms] Standard Improved Standard noise: med= 443 iqr= 36.6 Improved noise: med= 177 iqr= Minutes

15 Recovering one-way measurements Ambiguity due to the asymmetry that we can t evaluate asym = d h d h asym [ r h, r h ] DAG DAG DAG Host time Host time Host time t a t g a t g f t f t a t g a t g f t f t a t g a t g f t f d h = d h d h d h d h d h = One way delays can t be recovered individually Host RTT impact of noise on one-way measurement 2 r h Median is ambiguous but bounded by Histograms are broadened because of IQR( R h ) 11

16 Beware of problematic drivers/nic Two hosts with same OS / hardware FreeBSD 6.1 Pentium-D architecture But different NIC / Driver Maxwell : Broadcom 5157 Gig-E (Brown) Tastiger : 3Com 1/1 Mbps (Black).2 Maxwell Tastiger.4 Tastiger: med= 77.5 iqr= Maxwell: med= 1 iqr= 69.2 [ms] Minutes Choose carefully! R h The quality of measurement drives the accuracy of the methodology! 12

17 Let s get started Now that we have an accurate testbed internal / external timestamping and validation improved kernel timestamping removed problematic hardware... we can start the detective work 13

18 SW-NTP vs. TSCclock Internal comparison large oscillations ± 1ms 1.5 SW NTP TSCclock ockdiff: SW TSC: med= 14.6 iqr= 546 [m.1 [ms] Days 5 5 External comparison SW-NTP responsible Noise: IQR( R h ) = 37µs r h = 1µs (ambiguity = 2µs) Accurate view for SW-NTP, difficult diagnosis for TSCclock [ms] SW NTP TSCclock Days 1 SW NTP: med= 58.6 iqr= TSCClock: med= 43.4 iqr= 22.2 [mus 545µs.8 22µs

19 SW-GPS vs. TSCclock [ms] Internal comparison similar behavior (IQR = 14µs) SW GPS TSCclock.1 5 Days 1 External Comparison ockdiff: SW TSC: med= 22.3 iqr= 14.2 [m Noise: IQR( R h ) = 23µs r h = 1µs (ambiguity = 2µs) One clock may have (IQR = + noise). But can t be verified! TSCclock slightly ahead but which clock is worse? µs [ms] SW GPS TSCclock.1 5 Days SW GPS: med= 13.7 iqr= µs TSCClock: med= 37.4 iqr= µs

20 SW-GPS vs. TSCclock (Zoom) Observe SW-GPS and TSCclock more closely Observe oscillations with a 2mn period.5 SW GPS TSCclock [ms] Hours Both clocks show oscillations Temperature effect (air-conditioning variations) SW GPS TSCclock.1 [ms] Hours

21 SW-GPS and (TSCclock) Difference Clock Measure UDP packets inter-arrivals Compare SW-GPS IAT and TSCclock Difference Clock IAT Final error in a ±1µs band Resolution of SW-GPS is 1µs (struct timeval) Can t interpret errors within this band 1mus Spikes of up to 1µs magnitude By construction, can t be due to the difference clock Small time scale stability of the oscillator Due to the SW-GPS clock!! SW GPS C d (t) W GPS C x 1 3 d (t): med=.298 iqr=.71 [m 5mus 1mus 1mus 5mus 1mus Days

22 Conclusion Clock benchmarking is a challenge requires good quality hardware a strong methodology requires rigour and attention to details Our methodology and testbed highlights the need for kernel modifications presents Internal / External complementary comparisons provides comparison down to the system clock resolution allows to track causes of observed strange behaviors j.ridoux@ee.unimelb.edu.au 18

TSCCLOCK: A LOW COST, ROBUST, ACCURATE SOFTWARE CLOCK FOR NETWORKED COMPUTERS

TSCCLOCK: A LOW COST, ROBUST, ACCURATE SOFTWARE CLOCK FOR NETWORKED COMPUTERS TSCCLOCK: A LOW COST, ROBUST, ACCURATE SOFTWARE CLOCK FOR NETWORKED COMPUTERS Darryl Veitch d.veitch@ee.unimelb.edu.au http://www.cubinlab.ee.unimelb.edu.au/ darryl Collaboration with Julien Ridoux CUBIN,

More information

Robust Synchronization of Absolute and Difference Clocks over Networks

Robust Synchronization of Absolute and Difference Clocks over Networks 1 Robust Synchronization of Absolute and Difference Clocks over Networks Darryl Veitch, Senior Member, IEEE, Julien Ridoux, Member, IEEE, and Satish Babu Korada Abstract We present a detailed re-examination

More information

PC Based Precision Timing Without GPS

PC Based Precision Timing Without GPS PC Based Precision Timing Without GPS Attila Pásztor EMULab at the Department of Electrical & Electronic Engineering The University of Melbourne, Victoria 31, Australia and Ericsson Hungary R&D a.pasztor@ee.mu.oz.au

More information

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson Distributed systems Lecture 4: Clock synchronisation; logical clocks Dr Robert N. M. Watson 1 Last time Started to look at time in distributed systems Coordinating actions between processes Physical clocks

More information

Distributed Systems. Time, Clocks, and Ordering of Events

Distributed Systems. Time, Clocks, and Ordering of Events Distributed Systems Time, Clocks, and Ordering of Events Björn Franke University of Edinburgh 2016/2017 Today Last lecture: Basic Algorithms Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical

More information

Chapter 11 Time and Global States

Chapter 11 Time and Global States CSD511 Distributed Systems 分散式系統 Chapter 11 Time and Global States 吳俊興 國立高雄大學資訊工程學系 Chapter 11 Time and Global States 11.1 Introduction 11.2 Clocks, events and process states 11.3 Synchronizing physical

More information

Measuring Software Based IEEE 1588/PTP Slave Accuracy WHITE PAPER

Measuring Software Based IEEE 1588/PTP Slave Accuracy WHITE PAPER Measuring Software Based IEEE 1588/PTP Slave Accuracy WHITE PAPER Measuring Software Based IEEE 1588/PTP Slave Accuracy Abstract This paper describes how to enable a computer to accurately measure the

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

Distributed Systems 8L for Part IB

Distributed Systems 8L for Part IB Distributed Systems 8L for Part IB Handout 2 Dr. Steven Hand 1 Clocks Distributed systems need to be able to: order events produced by concurrent processes; synchronize senders and receivers of messages;

More information

CS505: Distributed Systems

CS505: Distributed Systems Cristina Nita-Rotaru CS505: Distributed Systems Ordering events. Lamport and vector clocks. Global states. Detecting failures. Required reading for this topic } Leslie Lamport,"Time, Clocks, and the Ordering

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Topics Clock Synchronization Physical Clocks Clock Synchronization Algorithms

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Time. To do. q Physical clocks q Logical clocks

Time. To do. q Physical clocks q Logical clocks Time To do q Physical clocks q Logical clocks Events, process states and clocks A distributed system A collection P of N single-threaded processes (p i, i = 1,, N) without shared memory The processes in

More information

Estimation of clock offset from one-way delay measurement on asymmetric paths

Estimation of clock offset from one-way delay measurement on asymmetric paths Estimation of clock offset from one-way delay measurement on asymmetric paths Masato TSURU 1, Tetsuya TAKINE 2 and Yuji OIE 3 1 Telecommunications Advancement Organization of Japan. 2 Graduate School of

More information

7680: Distributed Systems

7680: Distributed Systems Cristina Nita-Rotaru 7680: Distributed Systems Physical and logical clocks. Global states. Failure detection. Ordering events in distributed systems } Time is essential for ordering events in a distributed

More information

Simulation of the IEEE 1588 Precision Time Protocol in OMNeT++

Simulation of the IEEE 1588 Precision Time Protocol in OMNeT++ Simulation of the IEEE 1588 Precision Time Protocol in OMNeT++ Wolfgang Wallner wolfgang-wallner@gmx.at September 15, 2016 Presentation Outline Introduction Motivation Problem statement Presentation Outline

More information

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018

Distributed Systems. Time, clocks, and Ordering of events. Rik Sarkar. University of Edinburgh Spring 2018 Distributed Systems Time, clocks, and Ordering of events Rik Sarkar University of Edinburgh Spring 2018 Notes Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical clocks: Ref: VG, CDK Time Ordering

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Time is an important issue in DS

Time is an important issue in DS Chapter 0: Time and Global States Introduction Clocks,events and process states Synchronizing physical clocks Logical time and logical clocks Global states Distributed debugging Summary Time is an important

More information

Distributed Computing. Synchronization. Dr. Yingwu Zhu

Distributed Computing. Synchronization. Dr. Yingwu Zhu Distributed Computing Synchronization Dr. Yingwu Zhu Topics to Discuss Physical Clocks Logical Clocks: Lamport Clocks Classic paper: Time, Clocks, and the Ordering of Events in a Distributed System Lamport

More information

Time Synchronization between SOKUIKI Sensor and Host Computer using Timestamps

Time Synchronization between SOKUIKI Sensor and Host Computer using Timestamps Time Synchronization between SOKUIKI Sensor and Host Computer using Timestamps Alexander Carballo, Yoshitaka Hara, Hirohiko Kawata, Tomoaki Yoshida, Akihisa Ohya and Shin ichi Yuta Abstract Time is crucial

More information

Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos

Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos i Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos Undergraduate Research Thesis Presented in partial fulfillment

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Real-World Testing of On-Path Support

Real-World Testing of On-Path Support Real-World Testing of On-Path Support Kishan Shenoi, Chip Webb, Josh Karnes Ixia This material is for informational purposes only and subject to change without notice. It describes Ixia s present plans

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University Socket Programming Daniel Zappala CS 360 Internet Programming Brigham Young University Sockets, Addresses, Ports Clients and Servers 3/33 clients request a service from a server using a protocol need an

More information

Slides for Chapter 14: Time and Global States

Slides for Chapter 14: Time and Global States Slides for Chapter 14: Time and Global States From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Clocks,

More information

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking Real-Time Course Clock synchronization 1 Clocks Processor p has monotonically increasing clock function C p (t) Clock has drift rate For t1 and t2, with t2 > t1 (1-ρ)(t2-t1)

More information

These are special traffic patterns that create more stress on a switch

These are special traffic patterns that create more stress on a switch Myths about Microbursts What are Microbursts? Microbursts are traffic patterns where traffic arrives in small bursts. While almost all network traffic is bursty to some extent, storage traffic usually

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

CS 425 / ECE 428 Distributed Systems Fall Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG

CS 425 / ECE 428 Distributed Systems Fall Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG CS 425 / ECE 428 Distributed Systems Fall 2017 Indranil Gupta (Indy) Oct. 5, 2017 Lecture 12: Time and Ordering All slides IG Why Synchronization? You want to catch a bus at 6.05 pm, but your watch is

More information

The Analysis of Microburst (Burstiness) on Virtual Switch

The Analysis of Microburst (Burstiness) on Virtual Switch The Analysis of Microburst (Burstiness) on Virtual Switch Chunghan Lee Fujitsu Laboratories 09.19.2016 Copyright 2016 FUJITSU LABORATORIES LIMITED Background What is Network Function Virtualization (NFV)?

More information

Figure 10.1 Skew between computer clocks in a distributed system

Figure 10.1 Skew between computer clocks in a distributed system Figure 10.1 Skew between computer clocks in a distributed system Network Instructor s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 Pearson Education 2001

More information

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Thomas Emter, Arda Saltoğlu and Janko Petereit Introduction AMROS Mobile platform equipped with multiple sensors for navigation

More information

Time. Today. l Physical clocks l Logical clocks

Time. Today. l Physical clocks l Logical clocks Time Today l Physical clocks l Logical clocks Events, process states and clocks " A distributed system a collection P of N singlethreaded processes without shared memory Each process p i has a state s

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 5: Time in Distributed Systems Overview Time and Synchronization Logical Clocks Vector Clocks Distributed Systems Asynchronous systems:

More information

Bias Estimation in Asymmetric Packet-based Networks

Bias Estimation in Asymmetric Packet-based Networks Bias Estimation in Asymmetric Packet-based Networks by MohammadJavad Hajikhani A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree

More information

Interferometer Circuits. Professor David H. Staelin

Interferometer Circuits. Professor David H. Staelin Interferometer Circuits Professor David H. Staelin Massachusetts Institute of Technology Lec18.5-1 Basic Aperture Synthesis Equation Recall: E( ) E r,t,t E E λ = λ { } Ι ( Ψ ) E R E τ φ τ Ψ,t,T E A Ψ 2

More information

Clocks in Asynchronous Systems

Clocks in Asynchronous Systems Clocks in Asynchronous Systems The Internet Network Time Protocol (NTP) 8 Goals provide the ability to externally synchronize clients across internet to UTC provide reliable service tolerating lengthy

More information

A visualization tool for geographic information of NTP servers

A visualization tool for geographic information of NTP servers A visualization tool for geographic information of NTP servers Jonatan Schroeder University of British Columbia ABSTRACT Clock synchronization is an important and complex task in distributed systems. Understanding

More information

Homework 1 - SOLUTION

Homework 1 - SOLUTION Homework - SOLUTION Problem M/M/ Queue ) Use the fact above to express π k, k > 0, as a function of π 0. π k = ( ) k λ π 0 µ 2) Using λ < µ and the fact that all π k s sum to, compute π 0 (as a function

More information

CHAPTER 7. Trace Resampling and Load Scaling

CHAPTER 7. Trace Resampling and Load Scaling CHAPTER 7 Trace Resampling and Load Scaling That which is static and repetitive is boring. That which is dynamic and random is confusing. In between lies art. John A. Locke ( 70) Everything that can be

More information

Modelling Packet Delay in Ethernet and IP Networks

Modelling Packet Delay in Ethernet and IP Networks Modelling Packet Delay in Ethernet and IP Networks Dominik Schneuwly Dr. André Vallat Slide 1.1 Introduction Is it possible to transfer time and frequency over packet switched networks with accuracies

More information

Time and Frequency Activities at the JHU Applied Physics Laboratory

Time and Frequency Activities at the JHU Applied Physics Laboratory Time and Frequency Activities at the JHU Applied Physics Laboratory Mihran Miranian, Gregory L. Weaver, Jeffrey F. Garstecki, and Richard A. Dragonette Johns Hopkins University Applied Physics Laboratory,

More information

SAMPLING AND INVERSION

SAMPLING AND INVERSION SAMPLING AND INVERSION Darryl Veitch dveitch@unimelb.edu.au CUBIN, Department of Electrical & Electronic Engineering University of Melbourne Workshop on Sampling the Internet, Paris 2005 A TALK WITH TWO

More information

The Effect of Stale Ranging Data on Indoor 2-D Passive Localization

The Effect of Stale Ranging Data on Indoor 2-D Passive Localization The Effect of Stale Ranging Data on Indoor 2-D Passive Localization Chen Xia and Lance C. Pérez Department of Electrical Engineering University of Nebraska-Lincoln, USA chenxia@mariner.unl.edu lperez@unl.edu

More information

TICSync: Knowing When Things Happened

TICSync: Knowing When Things Happened TICSync: Knowing When Things Happened Alastair Harrison and Paul Newman Abstract Modern robotic systems are composed of many distributed processes sharing a common communications infrastructure. High bandwidth

More information

MegaMIMO: Scaling Wireless Throughput with the Number of Users. Hariharan Rahul, Swarun Kumar and Dina Katabi

MegaMIMO: Scaling Wireless Throughput with the Number of Users. Hariharan Rahul, Swarun Kumar and Dina Katabi MegaMIMO: Scaling Wireless Throughput with the Number of Users Hariharan Rahul, Swarun Kumar and Dina Katabi There is a Looming Wireless Capacity Crunch Given the trends in the growth of wireless demand,

More information

Synchronizers, Arbiters, GALS and Metastability

Synchronizers, Arbiters, GALS and Metastability Synchronizers, Arbiters, GALS and Metastability David Kinniment University of Newcastle, UK Based on contributions from: Alex Bystrov, Keith Heron, Nikolaos Minas, Gordon Russell, Alex Yakovlev, and Jun

More information

Clock Synchronization

Clock Synchronization What s it or? Temporal ordering o events produced by concurrent processes Clock Synchronization Synchronization between senders and receivers o messages Coordination o joint activity Serialization o concurrent

More information

Robust Network Codes for Unicast Connections: A Case Study

Robust Network Codes for Unicast Connections: A Case Study Robust Network Codes for Unicast Connections: A Case Study Salim Y. El Rouayheb, Alex Sprintson, and Costas Georghiades Department of Electrical and Computer Engineering Texas A&M University College Station,

More information

A NEW SYSTEM FOR THE GENERATION OF UTC(CH)

A NEW SYSTEM FOR THE GENERATION OF UTC(CH) A NEW SYSTEM FOR THE GENERATION OF UTC(CH) L.G. Bernier and G. Schaller METAS Swiss Federal Office of Metrology Lindenweg 50, Bern-Wabern, CH-3003, Switzerland laurent-guy.bernier@metas.ch Abstract A new

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters. Project Update: 7/20/2011

Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters. Project Update: 7/20/2011 Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters Project Update: 7/20/2011 Networking Team: Rahul Amin, Jim Martin School of Computing HCI Team: Dr Juan

More information

Temporal Reachability Graphs

Temporal Reachability Graphs Temporal Reachability Graphs John Whitbeck, Marcelo Dias de Amorim, Vania Conan and Jean-Loup Guillaume August 25th, 212 Intro : Contact Traces 2/16 Intro : Contact Traces 2/16 Intro : Contact Traces Time

More information

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA)

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Christian Mueller November 25, 2005 1 Contents 1 Clock synchronization in general 3 1.1 Introduction............................

More information

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 416 Distributed Systems Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 1 Important Lessons (last lecture) Clocks on different systems will always behave differently Skew and drift

More information

Computer Networks ( Classroom Practice Booklet Solutions)

Computer Networks ( Classroom Practice Booklet Solutions) Computer Networks ( Classroom Practice Booklet Solutions). Concept Of Layering 0. Ans: (b) Sol: Data Link Layer is responsible for decoding bit stream into frames. 0. Ans: (c) Sol: Network Layer has the

More information

Amateur Weather Stations

Amateur Weather Stations Amateur Weather Stations Part 2 Baro Sensor / GPS Receiver / Anemometer Kurt Kochendarfer, KE7KUS Sacramento Mountains Radio Club Overview Review Barometric Pressure Sensors Temperature / Pressure / Humidity

More information

A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware

A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware Julien Schmaltz Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands

More information

Case Studies of Logical Computation on Stochastic Bit Streams

Case Studies of Logical Computation on Stochastic Bit Streams Case Studies of Logical Computation on Stochastic Bit Streams Peng Li 1, Weikang Qian 2, David J. Lilja 1, Kia Bazargan 1, and Marc D. Riedel 1 1 Electrical and Computer Engineering, University of Minnesota,

More information

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1>

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1> Chapter 3 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 3 Chapter 3 :: Topics Introduction Latches and Flip-Flops Synchronous Logic Design Finite

More information

The Future of the USAP Antarctic Internet Data Distribution System

The Future of the USAP Antarctic Internet Data Distribution System The Future of the USAP Antarctic Internet Data Distribution System A discussion on LDM Efforts at ASC with Satellite Ground Stations update Andrew B. Archer Antarctic Support Contract Matthew A. Lazzara

More information

Accelerometers for GNSS Orbit Determination

Accelerometers for GNSS Orbit Determination Accelerometers for GNSS Orbit Determination Urs Hugentobler, Anja Schlicht Technische Universität München 5th International Colloquium on Scientific and Fundamental Aspects of the Galileo Programme October

More information

A study of entropy transfers

A study of entropy transfers A study of entropy transfers in the Linux Random Number Generator Th. Vuillemin, F. Goichon, G. Salagnac, C. Lauradoux The need for random numbers Computers are built to be fully deterministic......but

More information

Say Kids, What Time Is It?

Say Kids, What Time Is It? Say Kids, What Time Is It? David Malone Thu Apr 19 19:30:00 BST 2001 1 Time What is time all about? second: In the International System of Units (SI), the time interval equal to 9,192,631,770 periods of

More information

Internet Congestion Control: Equilibrium and Dynamics

Internet Congestion Control: Equilibrium and Dynamics Internet Congestion Control: Equilibrium and Dynamics A. Kevin Tang Cornell University ISS Seminar, Princeton University, February 21, 2008 Networks and Corresponding Theories Power networks (Maxwell Theory)

More information

Angle estimation using gyros and accelerometers

Angle estimation using gyros and accelerometers Angle estimation using gyros and accelerometers This version: January 23, 2018 Name: LERTEKNIK REG P-number: Date: AU T O MA RO TI C C O N T L Passed: LINKÖPING Chapter 1 Introduction The purpose of this

More information

Clock Models, Metrics, and Testing. Reid McGaughey Hardware Engineer Cisco

Clock Models, Metrics, and Testing. Reid McGaughey Hardware Engineer Cisco Clock Models, Metrics, and Testing Reid McGaughey Hardware Engineer Cisco Presented at the ODVA 2014 Industry Conference & 16 th Annual Meeting March 11-13, 2014 Phoenix, Arizona, USA Abstract: An introduction

More information

3.8 Combining Spatial Enhancement Methods 137

3.8 Combining Spatial Enhancement Methods 137 3.8 Combining Spatial Enhancement Methods 137 a b FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites,

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

Random Number Generation Is Getting Harder It s Time to Pay Attention

Random Number Generation Is Getting Harder It s Time to Pay Attention SESSION ID: PDAC-F03 Random Number Generation Is Getting Harder It s Time to Pay Attention Richard Moulds General Manager Whitewood Richard Hughes Laboratory Fellow (Retired) Los Alamos National Laboratory

More information

Environment-Aware Clock Skew Estimation and Synchronization for Wireless Sensor Networks

Environment-Aware Clock Skew Estimation and Synchronization for Wireless Sensor Networks Environment-Aware Clock Skew Estimation and Synchronization for Wireless Sensor Networks Zhe Yang, Lin Cai, Yu Liu +, and Jianping Pan University of Victoria, BC, Canada, + University of New Orleans, LA,

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

Fairness comparison of FAST TCP and TCP Vegas

Fairness comparison of FAST TCP and TCP Vegas Fairness comparison of FAST TCP and TCP Vegas Lachlan L. H. Andrew, Liansheng Tan, Tony Cui, and Moshe Zukerman ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), an affiliated

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Agenda Internetworking n Routing across LANs, layer2-layer3 n DHCP n NAT Transport layer

More information

Angle estimation using gyros and accelerometers

Angle estimation using gyros and accelerometers Lab in Dynamical systems and control TSRT21 Angle estimation using gyros and accelerometers This version: January 25, 2017 Name: LERTEKNIK REG P-number: Date: AU T O MA R TI C C O N T OL Passed: LINKÖPING

More information

Clock Synchronization with Bounded Global and Local Skew

Clock Synchronization with Bounded Global and Local Skew Clock Synchronization with ounded Global and Local Skew Distributed Computing Christoph Lenzen, ETH Zurich Thomas Locher, ETH Zurich Roger Wattenhofer, ETH Zurich October 2008 Motivation: No Global Clock

More information

Climate Monitoring with Radio Occultation Data

Climate Monitoring with Radio Occultation Data Climate Monitoring with Radio Occultation Data Systematic Error Sources C. Rocken, S. Sokolovskiy, B. Schreiner, D. Hunt, B. Ho, B. Kuo, U. Foelsche Radio Occultation Claims Most stable Global Thermometer

More information

Location Determination Technologies for Sensor Networks

Location Determination Technologies for Sensor Networks Location Determination Technologies for Sensor Networks Moustafa Youssef University of Maryland at College Park UMBC Talk March, 2007 Motivation Location is important: Determining the location of an event

More information

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

A Mathematical Model of the Skype VoIP Congestion Control Algorithm A Mathematical Model of the Skype VoIP Congestion Control Algorithm Luca De Cicco, S. Mascolo, V. Palmisano Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 47th IEEE Conference on Decision

More information

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase EESC 9945 Geodesy with the Global Positioning System Class 7: Relative Positioning using Carrier-Beat Phase GPS Carrier Phase The model for the carrier-beat phase observable for receiver p and satellite

More information

SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING

SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING Nicolas Hohn 1 Darryl Veitch 1 Tao Ye 2 1 CUBIN, Department of Electrical & Electronic Engineering University of Melbourne, Vic 3010 Australia

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Investigation of an Automated Approach to Threshold Selection for Generalized Pareto

Investigation of an Automated Approach to Threshold Selection for Generalized Pareto Investigation of an Automated Approach to Threshold Selection for Generalized Pareto Kate R. Saunders Supervisors: Peter Taylor & David Karoly University of Melbourne April 8, 2015 Outline 1 Extreme Value

More information

Correlation of cosmicrays flux and pressure

Correlation of cosmicrays flux and pressure MASTERCLASS Correlation of cosmicrays flux and pressure F. Noferini INFN Bologna A Cosmic Ray shower Cosmic rays are high-energy particles originating outside the Solar system. They are mainly composed

More information

CSE 123: Computer Networks

CSE 123: Computer Networks CSE 123: Computer Networks Total points: 40 Homework 1 - Solutions Out: 10/4, Due: 10/11 Solutions 1. Two-dimensional parity Given below is a series of 7 7-bit items of data, with an additional bit each

More information

GPS cycle slips detection and repair through various signal combinations

GPS cycle slips detection and repair through various signal combinations International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) GPS cycle slips detection and repair through various signal combinations M. E. El-Tokhey 1, T. F. Sorour 2, A. E. Ragheb 3, M. O.

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

On the Quality of Service of Failure Detectors. Sam Toueg Wei Chen, Marcos K. Aguilera (part of Wei ChenÕs PhD Thesis)

On the Quality of Service of Failure Detectors. Sam Toueg Wei Chen, Marcos K. Aguilera (part of Wei ChenÕs PhD Thesis) On the Quality of Service of Failure etectors Sam oueg Wei Chen, Marcos K. Aguilera part of Wei ChenÕs Ph hesis Abstract We study the quality of service QoS of failure detectors. By QoS, we mean a specification

More information

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No!

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No! A subtle problem An obvious problem when LC = t do S doesn t make sense for Lamport clocks! there is no guarantee that LC will ever be S is anyway executed after LC = t Fixes: if e is internal/send and

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it?

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it? Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Reduction and analysis of one-way laser ranging data from ILRS ground stations to LRO

Reduction and analysis of one-way laser ranging data from ILRS ground stations to LRO Reduction and analysis of one-way laser ranging data from ILRS ground stations to LRO S. Bauer 1, J. Oberst 1,2, H. Hussmann 1, P. Gläser 2, U. Schreiber 3, D. Mao 4, G.A. Neumann 5, E. Mazarico 5, M.H.

More information

Stop Watch (System Controller Approach)

Stop Watch (System Controller Approach) Stop Watch (System Controller Approach) Problem Design a stop watch that can measure times taken for two events Inputs CLK = 6 Hz RESET: Asynchronously reset everything X: comes from push button First

More information