Clock Synchronization with Bounded Global and Local Skew

Size: px
Start display at page:

Download "Clock Synchronization with Bounded Global and Local Skew"

Transcription

1 Clock Synchronization with ounded Global and Local Skew Distributed Computing Christoph Lenzen, ETH Zurich Thomas Locher, ETH Zurich Roger Wattenhofer, ETH Zurich October 2008 Motivation: No Global Clock Many tasks in distributed systems require a common notion of time Sometimes not all devices can be connected to a "global" clock Equip each device with its own clock! Problem 1: Different clocks have different clock rates Even worse, these clock rates may vary over time! Communication is required to synchronize the clocks! Problem 2: What if the message delays vary? Clock drifts! Each message has a different delay 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS) How well can distributed clocks be synchronized? Group Philadelphia, PA, USA Thomas Locher, ETH FOCS Overview Model: Clocks Each device has a hardware clock H H(t):= 0t h(τ) dτ. The hardware clock rate h is bounded t: h(t) [1-²,1+²] Each device computes a logical clock value L based on: H(t) Its hardware clock H and its message history (the messages it received) Messages are required to correct clock skews! Minimize clock skew of logical clocks! A clock synchronization algorithm specifies how the logical clock value L is adapted! And triggers synch messages! L(t) Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS

2 Model: Graph & Communication Distributed system = Graph G of diameter D Node = Computational device Simple Edge = idirectional communication link normalization! Nodes communicate via reliable, but delayed messages Each message may be delayed by any value [0,1] D=3 Model: Optimization Criteria Good real time approximation: v V, t: L v (t)-t ²t t = 0 Minimum progress: v V, t 2 > t 1 : L v (t 2 )-L v (t 1 ) (1-²)(t 2 -t 1 ) Minimize the skew among all nodes: max v,w,t L v (t)-l w (t) L(t) (1+²)t t (1-²)t Minimize the global skew! L cannot go back in time! Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS Model: Optimization Criteria II Model: Importance of Local Skew More importantly: We want a small clock skew between v and w, if the distance between v and w is short! Allow more skew with increasing distance! For many applications, locally well synchronized clocks are more important! Monitoring applications (record <event, timestamp>) Minimize the skew among neighboring nodes: N(v) = Neighbors of v max v,w N(v),t L v (t)-l w (t) Minimize the local skew! Tracking applications Use <event,time> recordings to determine movement/speed etc. More fundamental: E.g., TDMA requires (locally) synchronized clocks! Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS

3 Model: Old Results Overview A well-known result is that the skew between two nodes at distance d is Ω(d) in the worst case! Ω(D) lower bound on global skew! Guaranteeing a global skew of Θ(D) is easy Always set L to largest clock value! ounding the local skew is hard(er): Many (reasonble) algorithms O(D) est known bound O( D) Lower bound Ω(log D / log log D) Diameter determines the local skew!!! True bound probably Ω(log D) Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS Algorithm: Simple Strategies Algorithm: etter Strategies Strategy I: Always set L to largest clock value! Problem: Ο(D) local skew! Strategy II: Take the average clock value! Problem: O(D 2 ) global skew! ( O(D) local skew) L= 2 Strategy III: Always increase the clock value L UNLESS a neighbor is behind. Problem: Tolerate skew! v w skew! skew! skew! Length of this chain O(D/) v can built up skew to w at rate O(²) for O(D/) time O(² D/) = O(D) skew!!! How can we fix this?!? Choose O( D) O( D) local skew!!! L= 3 = 2 L= 2 L= 5 Ok, but can we do better? Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS

4 Algorithm: Increase Tolerance Algorithm: Intuition Strategy III+: Tolerate skew, but if v experiences a skew of i Tolerate i skew! uild up 2 skew! 2 Tolerance increases! For any i {2,3,} Thomas Locher, ETH FOCS Skew moves away! If the adversary wants to build up 3 skew A chain with 2 skew between neighbors is needed! The longer the better! + skew at rate O(²) between l nodes! Only O(D/) time to build chain! If l is the length of the chain Ω( l/²) time is needed Ω( l/²) O(D/) l O(² D/ 2 ) O(D/ 2 ) Inductively: A skew of (i+1) requires a chain with i skew between nodes l i O(D/ i ) Lose a factor of! Local Skew O( log D)! Thomas Locher, ETH FOCS Algorithm: Why It Fails Algorithm: How bad is it? How can we fix it? That s it? Progress = x v thinks w is behind! We get the following picture: Unfortunately, no. The message delays cause problems: -x Skew < -x! v w i -x (i-1) -x (i-2) -x -x... Local skew O( D) Since global skew O(D)! -x -x -x uild up skew! 2+x Increase tolerance! -x! +x 2-x Sees < 2 -x -x skew!!! No increase! Thomas Locher, ETH FOCS How can we fix this?!? React earlier! If a neighbor w is > i -x behind, ask w to increase its clock value!!! That s it? Fortunately, yes. If i-x+r behind, increase by r! Thomas Locher, ETH FOCS

5 Overview Conclusion: Results Probably Local skew O(log D) asymptotically optimal! L v L w O(d(v,w) log(d/d(v,w)) Global skew O(D) L v -L w (1+O(²))D it complexity O( log 2 D) In fact, only a factor 2 larger than the lower bound! = Maximum node degree Space complexity O( log log D + log 2 D) Thomas Locher, ETH FOCS Thomas Locher, ETH FOCS Conclusion: Outlook Questions and Comments? Open problems? ound the logical clock rate! Ideally: l(t) [1-O(²),1+O(²)] Reduce the bit complexity! Send less bits per message Reduce the message frequency Enable piggybacking! Prove tight bounds for global/local skew! Clocks should behave normally even when correcting clock skew! Clock skew is built up at a low rate! Thank you for your attention! Thomas Locher Distributed Computing Group ETH Zurich, Switzerland lochert@tik.ee.ethz.ch Thomas Locher, ETH FOCS

Gradient Clock Synchronization

Gradient Clock Synchronization Noname manuscript No. (will be inserted by the editor) Rui Fan Nancy Lynch Gradient Clock Synchronization the date of receipt and acceptance should be inserted later Abstract We introduce the distributed

More information

Gradient Clock Synchronization in Dynamic Networks Fabian Kuhn, Thomas Locher, and Rotem Oshman

Gradient Clock Synchronization in Dynamic Networks Fabian Kuhn, Thomas Locher, and Rotem Oshman Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2009-022 May 29, 2009 Gradient Clock Synchronization in Dynamic Networks Fabian Kuhn, Thomas Locher, and Rotem Oshman

More information

Oblivious Gradient Clock Synchronization

Oblivious Gradient Clock Synchronization Motivatio: Clock Sychroizatio Oblivious Gradiet Clock Sychroizatio Thomas Locher, ETH Zurich Roger Wattehofer, ETH Zurich Clock sychroizatio is a classic, importat problem! May results have bee published

More information

Time Synchronization

Time Synchronization Massachusetts Institute of Technology Lecture 7 6.895: Advanced Distributed Algorithms March 6, 2006 Professor Nancy Lynch Time Synchronization Readings: Fan, Lynch. Gradient clock synchronization Attiya,

More information

Locality Lower Bounds

Locality Lower Bounds Chapter 8 Locality Lower Bounds In Chapter 1, we looked at distributed algorithms for coloring. In particular, we saw that rings and rooted trees can be colored with 3 colors in log n + O(1) rounds. 8.1

More information

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017

416 Distributed Systems. Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 416 Distributed Systems Time Synchronization (Part 2: Lamport and vector clocks) Jan 27, 2017 1 Important Lessons (last lecture) Clocks on different systems will always behave differently Skew and drift

More information

Tight Bounds for Clock Synchronization

Tight Bounds for Clock Synchronization Tight Bounds for Clock Synchronization [Extended Abstract] Christoph Lenzen Computer Engineering and Networks Laboratory (TIK) ETH Zurich, 8092 Zurich, Switzerland lenzen@tik.ee.ethz.ch Thomas Locher Computer

More information

Dominating Set. Chapter 26

Dominating Set. Chapter 26 Chapter 26 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET 294 CHAPTER 26. DOMINATING SET 26.1 Sequential Greedy Algorithm Chapter 26 Dominating Set Intuitively, to end up with a small dominating set S, nodes in S need to cover as many neighbors as possible. It

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

Hardness of MST Construction

Hardness of MST Construction Lecture 7 Hardness of MST Construction In the previous lecture, we saw that an MST can be computed in O( n log n+ D) rounds using messages of size O(log n). Trivially, Ω(D) rounds are required, but what

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Time. Lakshmi Ganesh. (slides borrowed from Maya Haridasan, Michael George)

Time. Lakshmi Ganesh. (slides borrowed from Maya Haridasan, Michael George) Time Lakshmi Ganesh (slides borrowed from Maya Haridasan, Michael George) The Problem Given a collection of processes that can... only communicate with significant latency only measure time intervals approximately

More information

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich The Power of a Leader In the Stone Age - MIT Yuval Emek - Technion Roger Wattenhofer - ETH Zürich 2nd Workshop on Biological Distributed Algorithms, October 11-12, 2014 in Austin, Texas USA The Power of

More information

The Complexity of a Reliable Distributed System

The Complexity of a Reliable Distributed System The Complexity of a Reliable Distributed System Rachid Guerraoui EPFL Alexandre Maurer EPFL Abstract Studying the complexity of distributed algorithms typically boils down to evaluating how the number

More information

Time. Today. l Physical clocks l Logical clocks

Time. Today. l Physical clocks l Logical clocks Time Today l Physical clocks l Logical clocks Events, process states and clocks " A distributed system a collection P of N singlethreaded processes without shared memory Each process p i has a state s

More information

Lecture 6: September 22

Lecture 6: September 22 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 6: September 22 Lecturer: Prof. Alistair Sinclair Scribes: Alistair Sinclair Disclaimer: These notes have not been subjected

More information

Gradient Clock Synchronization

Gradient Clock Synchronization Gradient Clock Synchronization Rui Fan Nancy Lynch Computer Science and Articial Intelligence Laboratory Massachusetts Institute of Technology {rfan, lynch}@theory.csail.mit.edu ABSTRACT We introduce the

More information

A Lower Bound for the Distributed Lovász Local Lemma

A Lower Bound for the Distributed Lovász Local Lemma A Lower Bound for the Distributed Lovász Local Lemma Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, Jara Uitto Aalto University, Comerge AG,

More information

Minimizing Interference in Wireless Networks. Yves Brise, ETH Zürich, Joint work with Marek, Michael, and Tobias.

Minimizing Interference in Wireless Networks. Yves Brise, ETH Zürich, Joint work with Marek, Michael, and Tobias. Minimizing Interference in Wireless Networks Yves Brise, ETH Zürich, 20100302 Joint work with Marek, Michael, and Tobias. The Problem The Problem Formal Description Input: Output: Set V of n vertices in

More information

Absence of Global Clock

Absence of Global Clock Absence of Global Clock Problem: synchronizing the activities of different part of the system (e.g. process scheduling) What about using a single shared clock? two different processes can see the clock

More information

Time. To do. q Physical clocks q Logical clocks

Time. To do. q Physical clocks q Logical clocks Time To do q Physical clocks q Logical clocks Events, process states and clocks A distributed system A collection P of N single-threaded processes (p i, i = 1,, N) without shared memory The processes in

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

Faster Johnson-Lindenstrauss style reductions

Faster Johnson-Lindenstrauss style reductions Faster Johnson-Lindenstrauss style reductions Aditya Menon August 23, 2007 Outline 1 Introduction Dimensionality reduction The Johnson-Lindenstrauss Lemma Speeding up computation 2 The Fast Johnson-Lindenstrauss

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Causal Broadcast Seif Haridi

Causal Broadcast Seif Haridi Causal Broadcast Seif Haridi haridi@kth.se Motivation Assume we have a chat application Whatever written is reliably broadcast to group If you get the following output, is it ok? [Paris] Are you sure,

More information

Networks Cannot Compute Their Diameter in Sublinear Time

Networks Cannot Compute Their Diameter in Sublinear Time Networks Cannot Compute Their Diameter in Sublinear Time Preliminary version, please check for updates Silvio Frischknecht Stephan Holzer Roger Wattenhofer {fsilvio, stholzer, wattenhofer}@ethzch Computer

More information

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1>

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1> Chapter 3 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 3 Chapter 3 :: Topics Introduction Latches and Flip-Flops Synchronous Logic Design Finite

More information

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation Logical Time Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation 2013 ACM Turing Award:

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Topics Clock Synchronization Physical Clocks Clock Synchronization Algorithms

More information

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Agreement Protocols. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Agreement Protocols CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Classification of Faults Based on components that failed Program

More information

Counters. We ll look at different kinds of counters and discuss how to build them

Counters. We ll look at different kinds of counters and discuss how to build them Counters We ll look at different kinds of counters and discuss how to build them These are not only examples of sequential analysis and design, but also real devices used in larger circuits 1 Introducing

More information

On Asynchronous Node Coloring in the SINR Model

On Asynchronous Node Coloring in the SINR Model On Asynchronous Node Coloring in the SINR Model Fabian Fuchs Institute of Theoretical Informatics Karlsruhe Institute of Technology Karlsruhe, Germany fabian.fuchs@kit.edu Abstract In this work we extend

More information

CORRECTNESS OF A GOSSIP BASED MEMBERSHIP PROTOCOL BY (ANDRÉ ALLAVENA, ALAN DEMERS, JOHN E. HOPCROFT ) PRATIK TIMALSENA UNIVERSITY OF OSLO

CORRECTNESS OF A GOSSIP BASED MEMBERSHIP PROTOCOL BY (ANDRÉ ALLAVENA, ALAN DEMERS, JOHN E. HOPCROFT ) PRATIK TIMALSENA UNIVERSITY OF OSLO CORRECTNESS OF A GOSSIP BASED MEMBERSHIP PROTOCOL BY (ANDRÉ ALLAVENA, ALAN DEMERS, JOHN E. HOPCROFT ) PRATIK TIMALSENA UNIVERSITY OF OSLO OUTLINE q Contribution of the paper q Gossip algorithm q The corrected

More information

Outline. The Leader Election Protocol (IEEE 1394) IEEE 1394 High Performance Serial Bus (FireWire) Motivation. Background. Protocol Descriptions

Outline. The Leader Election Protocol (IEEE 1394) IEEE 1394 High Performance Serial Bus (FireWire) Motivation. Background. Protocol Descriptions Outline The Leader Election Protocol (IEEE 1394) Thai Son Hoang (inspired by the slides of Jean-Raymond Abrial) Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

More information

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA)

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Christian Mueller November 25, 2005 1 Contents 1 Clock synchronization in general 3 1.1 Introduction............................

More information

Admissible Strategies for Synthesizing Systems

Admissible Strategies for Synthesizing Systems Admissible Strategies for Synthesizing Systems Ocan Sankur Univ Rennes, Inria, CNRS, IRISA, Rennes Joint with Romain Brenguier (DiffBlue), Guillermo Pérez (Antwerp), and Jean-François Raskin (ULB) (Multiplayer)

More information

Unconditionally secure deviceindependent

Unconditionally secure deviceindependent Unconditionally secure deviceindependent quantum key distribution with only two devices Roger Colbeck (ETH Zurich) Based on joint work with Jon Barrett and Adrian Kent Physical Review A 86, 062326 (2012)

More information

(Riemann) Integration Sucks!!!

(Riemann) Integration Sucks!!! (Riemann) Integration Sucks!!! Peyam Ryan Tabrizian Friday, November 8th, 2 Are all functions integrable? Unfortunately not! Look at the handout Solutions to 5.2.67, 5.2.68, we get two examples of functions

More information

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking

Real-Time Course. Clock synchronization. June Peter van der TU/e Computer Science, System Architecture and Networking Real-Time Course Clock synchronization 1 Clocks Processor p has monotonically increasing clock function C p (t) Clock has drift rate For t1 and t2, with t2 > t1 (1-ρ)(t2-t1)

More information

Efficient Metastability-Containing Gray Code 2-sort

Efficient Metastability-Containing Gray Code 2-sort Efficient Metastability-Containing Gray Code 2-sort Moti Medina Joint work with Christoph Lenzen Max Planck Institute For Informatics, Saarbrucken, Germany ASYNC 206 In The Beginning there was Metastability

More information

How to beat a random walk with a clock?

How to beat a random walk with a clock? Introduction Moody walk analysis R/A Conclusion How to beat a random walk with a clock? Locating a Target With an Agent Guided by Unreliable Local Advice Nicolas Hanusse 1 David Ilcinkas 1 Adrian Kosowski

More information

Radio Network Clustering from Scratch

Radio Network Clustering from Scratch Radio Network Clustering from Scratch Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer {kuhn,moscitho,wattenhofer}@inf.ethz.ch Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland Abstract.

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

Structuring Unreliable Radio Networks

Structuring Unreliable Radio Networks Structuring Unreliable Radio Networks Keren Censor-Hillel Seth Gilbert Fabian Kuhn Nancy Lynch Calvin Newport August 25, 2013 Abstract In this paper we study the problem of building a constant-degree connected

More information

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson

Distributed systems Lecture 4: Clock synchronisation; logical clocks. Dr Robert N. M. Watson Distributed systems Lecture 4: Clock synchronisation; logical clocks Dr Robert N. M. Watson 1 Last time Started to look at time in distributed systems Coordinating actions between processes Physical clocks

More information

Byzantine behavior also includes collusion, i.e., all byzantine nodes are being controlled by the same adversary.

Byzantine behavior also includes collusion, i.e., all byzantine nodes are being controlled by the same adversary. Chapter 17 Byzantine Agreement In order to make flying safer, researchers studied possible failures of various sensors and machines used in airplanes. While trying to model the failures, they were confronted

More information

Byzantine Agreement. Chapter Validity 190 CHAPTER 17. BYZANTINE AGREEMENT

Byzantine Agreement. Chapter Validity 190 CHAPTER 17. BYZANTINE AGREEMENT 190 CHAPTER 17. BYZANTINE AGREEMENT 17.1 Validity Definition 17.3 (Any-Input Validity). The decision value must be the input value of any node. Chapter 17 Byzantine Agreement In order to make flying safer,

More information

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Why analysis? We want to predict how the algorithm will behave (e.g. running time) on arbitrary inputs, and how it will

More information

On the complexity of approximate multivariate integration

On the complexity of approximate multivariate integration On the complexity of approximate multivariate integration Ioannis Koutis Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 USA ioannis.koutis@cs.cmu.edu January 11, 2005 Abstract

More information

Deploying Wireless Networks with Beeps

Deploying Wireless Networks with Beeps Deploying Wireless Networks with Beeps Alejandro Cornejo 1 and Fabian Kuhn 2 1 Massachusetts Institute of Technology 2 University of Lugano Abstract. We present the discrete beeping communication model,

More information

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks

Today. Vector Clocks and Distributed Snapshots. Motivation: Distributed discussion board. Distributed discussion board. 1. Logical Time: Vector clocks Vector Clocks and Distributed Snapshots Today. Logical Time: Vector clocks 2. Distributed lobal Snapshots CS 48: Distributed Systems Lecture 5 Kyle Jamieson 2 Motivation: Distributed discussion board Distributed

More information

Slides for Chapter 14: Time and Global States

Slides for Chapter 14: Time and Global States Slides for Chapter 14: Time and Global States From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Clocks,

More information

Time, Clocks, and the Ordering of Events in a Distributed System

Time, Clocks, and the Ordering of Events in a Distributed System Time, Clocks, and the Ordering of Events in a Distributed System Motivating example: a distributed compilation service FTP server storing source files, object files, executable file stored files have timestamps,

More information

Combinatorial Auctions Do Need Modest Interaction

Combinatorial Auctions Do Need Modest Interaction Combinatorial Auctions Do Need Modest Interaction Sepehr Assadi University of Pennsylvania Motivation A fundamental question: How to determine efficient allocation of resources between individuals? Motivation

More information

Distributed Systems. Time, Clocks, and Ordering of Events

Distributed Systems. Time, Clocks, and Ordering of Events Distributed Systems Time, Clocks, and Ordering of Events Björn Franke University of Edinburgh 2016/2017 Today Last lecture: Basic Algorithms Today: Time, clocks, NTP Ref: CDK Causality, ordering, logical

More information

Interference in Cellular Networks: The Minimum Membership Set Cover Problem

Interference in Cellular Networks: The Minimum Membership Set Cover Problem Interference in Cellular Networks: The Minimum Membership Set Cover Problem Fabian Kuhn 1, Pascal von Rickenbach 1, Roger Wattenhofer 1, Emo Welzl 2, and Aaron Zollinger 1 kuhn@tikeeethzch, pascalv@tikeeethzch,

More information

How to beat a random walk with a clock?

How to beat a random walk with a clock? Introduction Moody walk analysis R/A Conclusion How to beat a random walk with a clock? Locating a Target With an Agent Guided by Unreliable Local Advice Nicolas Hanusse 1 David Ilcinkas 1 Adrian Kosowski

More information

Distributed Computing. Synchronization. Dr. Yingwu Zhu

Distributed Computing. Synchronization. Dr. Yingwu Zhu Distributed Computing Synchronization Dr. Yingwu Zhu Topics to Discuss Physical Clocks Logical Clocks: Lamport Clocks Classic paper: Time, Clocks, and the Ordering of Events in a Distributed System Lamport

More information

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem.

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem. Name: Matriculation Number: Mock Exam Künstliche Intelligenz-1 January 9., 2017 You have one hour(sharp) for the test; Write the solutions to the sheet. The estimated time for solving this exam is 53 minutes,

More information

Fast Random Projections

Fast Random Projections Fast Random Projections Edo Liberty 1 September 18, 2007 1 Yale University, New Haven CT, supported by AFOSR and NGA (www.edoliberty.com) Advised by Steven Zucker. About This talk will survey a few random

More information

6.852: Distributed Algorithms Fall, Class 10

6.852: Distributed Algorithms Fall, Class 10 6.852: Distributed Algorithms Fall, 2009 Class 10 Today s plan Simulating synchronous algorithms in asynchronous networks Synchronizers Lower bound for global synchronization Reading: Chapter 16 Next:

More information

Shared Memory vs Message Passing

Shared Memory vs Message Passing Shared Memory vs Message Passing Carole Delporte-Gallet Hugues Fauconnier Rachid Guerraoui Revised: 15 February 2004 Abstract This paper determines the computational strength of the shared memory abstraction

More information

Network Algorithms and Complexity (NTUA-MPLA) Reliable Broadcast. Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas

Network Algorithms and Complexity (NTUA-MPLA) Reliable Broadcast. Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Network Algorithms and Complexity (NTUA-MPLA) Reliable Broadcast Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Slides are partially based on the joint work of Christos Litsas, Aris Pagourtzis,

More information

arxiv: v1 [cs.dc] 17 May 2017

arxiv: v1 [cs.dc] 17 May 2017 Self-stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus Christoph Lenzen clenzen@mpi-inf.mpg.de Department of Algorithms and Complexity, Max Planck Institute for Informatics, Saarland

More information

Combinational Techniques for Reliability Modeling

Combinational Techniques for Reliability Modeling Combinational Techniques for Reliability Modeling Prof. Naga Kandasamy, ECE Department Drexel University, Philadelphia, PA 19104. January 24, 2009 The following material is derived from these text books.

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 20 Dr. Dave Parker Department of Computer Science University of Oxford Next few lectures Today: Discrete-time Markov chains (continued) Mon 2pm: Probabilistic

More information

TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical

TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical TTA and PALS: Formally Verified Design Patterns for Distributed Cyber-Physical DASC 2011, Oct/19 CoMMiCS Wilfried Steiner wilfried.steiner@tttech.com TTTech Computertechnik AG John Rushby rushby@csl.sri.com

More information

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 CS 61B More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 Here is a review of some formulas that you will find useful when doing asymptotic analysis. ˆ N i=1 i = 1 + 2 + 3 + 4 + + N = N(N+1)

More information

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden Outline! Embedded systems " Example area: automotive electronics " Embedded systems

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control

Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control Outline Background Preliminaries Consensus Numerical simulations Conclusions Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control Email: lzhx@nankai.edu.cn, chenzq@nankai.edu.cn

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Time in Distributed Systems: Clocks and Ordering of Events

Time in Distributed Systems: Clocks and Ordering of Events Time in Distributed Systems: Clocks and Ordering of Events Clocks in Distributed Systems Needed to Order two or more events happening at same or different nodes (Ex: Consistent ordering of updates at different

More information

Lecture 14 October 22

Lecture 14 October 22 EE 2: Coding for Digital Communication & Beyond Fall 203 Lecture 4 October 22 Lecturer: Prof. Anant Sahai Scribe: Jingyan Wang This lecture covers: LT Code Ideal Soliton Distribution 4. Introduction So

More information

CptS 464/564 Fall Prof. Dave Bakken. Cpt. S 464/564 Lecture January 26, 2014

CptS 464/564 Fall Prof. Dave Bakken. Cpt. S 464/564 Lecture January 26, 2014 Overview of Ordering and Logical Time Prof. Dave Bakken Cpt. S 464/564 Lecture January 26, 2014 Context This material is NOT in CDKB5 textbook Rather, from second text by Verissimo and Rodrigues, chapters

More information

Notes on Space-Bounded Complexity

Notes on Space-Bounded Complexity U.C. Berkeley CS172: Automata, Computability and Complexity Handout 6 Professor Luca Trevisan 4/13/2004 Notes on Space-Bounded Complexity These are notes for CS278, Computational Complexity, scribed by

More information

Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

Some Lower Bounds in Dynamic Networks with Oblivious Adversaries Some Lower Bounds in Dynamic Networks with Oblivious Adversaries Irvan Jahja 1, Haifeng Yu 2, and Yuda Zhao 3 1 National University of Singapore, Singapore irvan@comp.nus.edu.sg 2 National University of

More information

Notes on BAN Logic CSG 399. March 7, 2006

Notes on BAN Logic CSG 399. March 7, 2006 Notes on BAN Logic CSG 399 March 7, 2006 The wide-mouthed frog protocol, in a slightly different form, with only the first two messages, and time stamps: A S : A, {T a, B, K ab } Kas S B : {T s, A, K ab

More information

Clocks in Asynchronous Systems

Clocks in Asynchronous Systems Clocks in Asynchronous Systems The Internet Network Time Protocol (NTP) 8 Goals provide the ability to externally synchronize clients across internet to UTC provide reliable service tolerating lengthy

More information

SFM-11:CONNECT Summer School, Bertinoro, June 2011

SFM-11:CONNECT Summer School, Bertinoro, June 2011 SFM-:CONNECT Summer School, Bertinoro, June 20 EU-FP7: CONNECT LSCITS/PSS VERIWARE Part 3 Markov decision processes Overview Lectures and 2: Introduction 2 Discrete-time Markov chains 3 Markov decision

More information

Computational Complexity

Computational Complexity Computational Complexity S. V. N. Vishwanathan, Pinar Yanardag January 8, 016 1 Computational Complexity: What, Why, and How? Intuitively an algorithm is a well defined computational procedure that takes

More information

Radio Network Distributed Algorithms in the Unknown Neighborhood Model

Radio Network Distributed Algorithms in the Unknown Neighborhood Model Radio Network Distributed Algorithms in the Unknown Neighborhood Model Bilel Derbel and El-Ghazali Talbi Laboratoire d Informatique Fondamentale de Lille LIFL Université des Sciences et Technologies de

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden November 5, 2014 1 Preamble Previous lectures on smoothed analysis sought a better

More information

Chapter 11 Time and Global States

Chapter 11 Time and Global States CSD511 Distributed Systems 分散式系統 Chapter 11 Time and Global States 吳俊興 國立高雄大學資訊工程學系 Chapter 11 Time and Global States 11.1 Introduction 11.2 Clocks, events and process states 11.3 Synchronizing physical

More information

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 Computational complexity studies the amount of resources necessary to perform given computations.

More information

Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures

Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures Lower Bounds for Achieving Synchronous Early Stopping Consensus with Orderly Crash Failures Xianbing Wang 1, Yong-Meng Teo 1,2, and Jiannong Cao 3 1 Singapore-MIT Alliance, 2 Department of Computer Science,

More information

Dominating Set. Chapter 7

Dominating Set. Chapter 7 Chapter 7 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

New Lower Bounds for the CONGEST Model. Seri Khoury

New Lower Bounds for the CONGEST Model. Seri Khoury New Lower Bounds for the CONGEST Model Seri Khoury New Lower Bounds for the CONGEST Model Research Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer

More information

Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems

Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems Simple Bivalency Proofs of the Lower Bounds in Synchronous Consensus Problems Xianbing Wang, Yong-Meng Teo, and Jiannong Cao Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3, Singapore 117576 Abstract

More information

Lecture 9: Counting Matchings

Lecture 9: Counting Matchings Counting and Sampling Fall 207 Lecture 9: Counting Matchings Lecturer: Shayan Oveis Gharan October 20 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Cellular automata in noise, computing and self-organizing

Cellular automata in noise, computing and self-organizing Cellular automata in noise, computing and self-organizing Peter Gács Boston University Quantum Foundations workshop, August 2014 Goal: Outline some old results about reliable cellular automata. Why relevant:

More information

Building Finite State Machines

Building Finite State Machines E H U N I V E R S I T Y T O H F R G E D I N B U Murray Cole Designing FSMs Given some reactive system, how can build an FSM to model it? From scratch, by intuition, in one go. OK for small examples. Build

More information

Competitive Concurrent Distributed Queuing

Competitive Concurrent Distributed Queuing Competitive Concurrent Distributed Queuing Maurice Herlihy Srikanta Tirthapura Roger Wattenhofer Brown University Brown University Microsoft Research Providence RI 02912 Providence RI 02912 Redmond WA

More information

MTIE AND TDEV ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA AND ITS APPLICATION TO TELECOMMUNICATIONS SYNCHRONIZATION MEASUREMENTS

MTIE AND TDEV ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA AND ITS APPLICATION TO TELECOMMUNICATIONS SYNCHRONIZATION MEASUREMENTS MTIE AND TDEV ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA AND ITS APPLICATION TO TELECOMMUNICATIONS SYNCHRONIZATION MEASUREMENTS Mingfu Li, Hsin-Min Peng, and Chia-Shu Liao Telecommunication Labs., Chunghwa

More information

Lecture 20: Further graphing

Lecture 20: Further graphing Lecture 20: Further graphing Nathan Pflueger 25 October 2013 1 Introduction This lecture does not introduce any new material. We revisit the techniques from lecture 12, which give ways to determine the

More information

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE. Lenzen, Christoph.

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE. Lenzen, Christoph. https://helda.helsinki.fi EFFICIENT COUNTING WITH OPTIMAL RESILIENCE Lenzen, Christoph 2017 Lenzen, C, Rybicki, J & Suomela, J 2017, ' EFFICIENT COUNTING WITH OPTIMAL RESILIENCE ' SIAM Journal on Computing,

More information

CS505: Distributed Systems

CS505: Distributed Systems Department of Computer Science CS505: Distributed Systems Lecture 5: Time in Distributed Systems Overview Time and Synchronization Logical Clocks Vector Clocks Distributed Systems Asynchronous systems:

More information

What can be sampled locally?

What can be sampled locally? What can be sampled locally? Yitong Yin Nanjing University Joint work with: Weiming Feng, Yuxin Sun Local Computation Locality in distributed graph algorithms. [Linial, FOCS 87, SICOMP 92] the LOCAL model:

More information