Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Size: px
Start display at page:

Download "Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden"

Transcription

1 of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

2 Outline! Embedded systems " Example area: automotive electronics " Embedded systems design " Optimization problems " Fault-tolerant mapping and scheduling " Voltage scaling " Communication delay analysis " Assessment and message of /4 4

3 3 of 3/4 4 Embedded Systems General purpose systems Embedded systems Microprocessor market shares 99% %

4 4 of 4/4 4 Example Area: Automotive Electronics " What is automotive electronics? " Vehicle functions implemented with electronics " Body electronics " System electronics: chassis, engine " Information/entertainment

5 5 of 5/4 4 Automotive Electronics Market Size Cost of Electronics / Car ($) 6: 5% of the total cost of a car will be electronics Market ($billions) % of future innovations in vehicles: based on electronic embedded systems

6 Automotive Electronics Platform Example Source: Expanding automotive electronic systems, IEEE Computer, Jan. 6 of 6/4 4

7 Outline " Embedded systems " Example area: automotive electronics! Embedded systems design " Optimization problems " Fault-tolerant mapping and scheduling " Voltage scaling " Communication delay analysis " Assessment and message 7 of 7/4 4

8 Embedded Systems Design "Growing complexity "Constraints "Time, energy, size "Cost, time-to-market "Safety, reliability System model System platform Estimation: exec. time System-level design tasks " Mapping and scheduling " Voltage scaling "Heterogeneous "Hardware components "Comm. protocols Model of system implementation Analysis Software synthesis Hardware synthesis " Communication delay analysis 8 of 8/4 4

9 Embedded System Design, Cont. " Goal: automated design optimization techniques " Successfully manage the complexity of embedded systems " Meet the constraints imposed by the application domain " Shorten the time-to-market " Reduce development and manufacturing costs Optimization: the key to successful design 9 of 9/4 4

10 Outline " Embedded systems " Example area: automotive electronics " Embedded systems design! Optimization problems " Fault-tolerant mapping and scheduling " Voltage scaling " Communication delay analysis " Assessment and message of /4 4

11 Optimization Problems. Mapping and scheduling. Mapping to minimize communication. Mapping and scheduling.3 Fault-tolerant mapping and scheduling. Voltage scaling. Continuous voltage scaling. Discrete voltage scaling 3. Communication delay analysis of /4 4

12 of /4 4 Problem #.: Mapping #Given " Application: set of interacting processes " Platform: set of nodes P m m 3 m 4 Determine " Mapping of processes to nodes " Such that the communication is minimized N! Assessment " Optimal solutions even for large problem sizes

13 3 of 3/4 4 Problem #.: Mapping and Scheduling #Given " Application: set of interacting processes " Platform: set of nodes " Timing constraints: deadlines Determine " Mapping of processes and messages " Schedule tables for processes and messages " Such that the timing constraints are satisfied P m m 3 m 4 N Schedule table N Bus P S S m m 3 m 4 Deadline

14 4 of 4/4 Problem #.:!Assessment " Scheduling is NP-complete even in simpler context " D. Ullman, NP-Complete Scheduling Problems, Journal of Computer Systems Science, volume, pages , 975. " ILP formulation " Can t obtain optimal solutions for large problem sizes " Alternative: divide the problem " Scheduling " Heuristic: List scheduling " Mapping " Simulated annealing " Tabu-search " Problem-specific greedy algorithms

15 5 of 5/4 4 Fault-Tolerant Mapping and Scheduling Transient faults... Processes: Re-execution Schedule and tables replication TDMA bus: TTP Messages: Fault-tolerant Schedule tables protocol

16 6 of 6/4 4 Fault-Tolerance Techniques N P N P P N P P P P P N 3 P Re-execution Replication Re-executed replicas

17 7 of 7/4 4 #Given Problem #.3: Formulation " Application: set of interacting processes " Platform: set of nodes " Timing constraints: deadlines " Fault model: number of transient faults in the system period Determine Application: set of process graphs Fault-model: transient faults " Mapping of processes and messages... " Schedule tables for processes and messages " Fault-tolerance policy assignment " Such that the timing constraints are satisfied Architecture: time-triggered system

18 8 of 8/4 4 Fault-Tolerance Policy Assignment Deadline N P No fault-tolerance: application crashes TTP S S N P Missed TTP S S P m 3 m P N N

19 9 of 9/4 4 Fault-Tolerance Policy Assignment Deadline N P No fault-tolerance: application crashes TTP S S N P Missed P Missed TTP S S m m m 3 m 3 P m 3 m P N N

20 of /4 4 Fault-Tolerance Policy Assignment Deadline N P No fault-tolerance: application crashes TTP S S N P P MetMissed Missed Optimization of fault-tolerance policy assignment TTP S S m m m 3 m 3 P m 3 m P N N

21 of /4 4 Tabu-Search: Policy Assignment & Mapping N P Tabu Wait P Current solution TTP S S S Design transformations P m 3 m P N N

22 of /4 4 Tabu-Search: Policy Assignment & Mapping N P Tabu Wait P Current solution TTP S S S Design transformations N P Tabu Wait P Tabu move & worse than best-so-far TTP S S S m P m 3 m P N N

23 3 of 3/4 4 Tabu-Search: Policy Assignment & Mapping N P Tabu Wait P Current solution TTP S S S Design transformations N P P Tabu Wait P Tabu move & worse better than best-so-far TTP S S m S m P m 3 m P N N

24 4 of 4/4 4 Tabu-Search: Policy Assignment & Mapping N P Tabu Wait P Current solution TTP S S S Design transformations N P P Tabu Wait P Tabu Non-tabu move & better worse than best-so-far TTP S S S m S m P m 3 m P N N

25 5 of 5/4 4 Tabu-Search: Policy Assignment & Mapping N P Tabu Wait P Current solution TTP S S S Design transformations N P P Tabu Wait P Non-tabu Tabu move & & worse better than best-so-far TTP S S S m S m P m 3 m P N N

26 6 of 6/4 4 Tabu-Search: Policy Assignment & Mapping N P P Tabu Wait P Current solution TTP S S S m Design transformations Design transformations N P P Tabu Wait P Non-tabu Tabu move & & worse better than best-so-far TTP S S S m S m P m 3 m P N N

27 Problem #: Voltage Scaling "GSM Phone: "Search "Radio link control "Talking "MP3 Player "Digital Camera: "Take photo "Restore photo Power constraints Battery power Chip power Timing constraints 7 of 7/4 4

28 8 of 8/4 4 Problem #: Voltage Scaling Different voltages: different frequencies Power CPU V dd V bs f τ τ τ 3 f f3 Slack deadline P t Energy/speed trade-offs: varying the voltages τ τ τ 3 deadline t Mapping and scheduling: given (fastest freq.)

29 9 of 9/4 4 Problem #.: Continuous Voltage Scaling #Given " Application: set of interacting processes " Platform: set of nodes, each having supply voltage (V dd ) and body bias voltage (V bs ) inputs " Mapping and schedule table (including timing constraints) Architecture and mapping Schedule table / processor V dd V bs CPU τ CPU τ τ τ 3 Bus τ 5 τ 4 CPU3 V dd V bs V dd V bs P τ τ τ 3 Slack t deadline

30 3 of 3/4 4 Problem #.: Continuous Voltage Scaling Determine " Voltage levels V dd and V bs for each process " Such that system energy is minimized and " Deadlines are satisfied P Height: voltage level Area: energy P Slack τ τ τ 3 deadline τ τ τ 3 deadline t t #Input Output

31 3 of 3/4 4 Problem #.: Continuous Voltage Scaling Determine " Voltage levels V dd and V bs for each process " Such that system energy is minimized and " Deadlines are satisfied! Assessment P " Convex nonlinear problem Height: voltage level τ τ τ 3 Area: energy P Slack τ τ τ 3 deadline t #Input " Polynomial time solvable with an arbitrary good precision " A. Andrei, Overhead-Conscious Voltage Selection for t Dynamic and Leakage Energy Reduction of Time-Constrained Systems, technical deadline report, Linköping University, 4 Output

32 Problem #.: Formulation " Minimize energy " E[τ ] + E[τ ] + E[τ ] + E_OH[τ -τ ] CPU BUS CPU τ Energy due to processes Overhead due to voltage changes τ τ " Such that " T start [τ ] + T exe [τ ] T start [τ ] " T start [τ ] + T exe [τ ] + T oh [τ -τ ] T start [τ ] Precedence relationships " T start [τ ] + T exe [τ ] DL[τ ] Deadlines 3 of 3/4 4

33 33 of 33/4 4 Problem #.: Discrete Voltage Scaling " Problem formulation #Given discrete execution frequencies Processors can operate using a frequency from a fixed discrete set Changing the frequency incurs a delay and an energy penalty Determine the set of frequencies for each task " Such that system energy is minimized and " Deadlines are satisfied P Discrete deadline f f 3 f 3 f f τ f τ τ 3 t

34 34 of 34/4 4 #Given " processor: f {5,, 5} MHz " 3 processes " τ : P={,, 3} mw, dl=ms, NC= cycles " τ : P={,, 3} mw, dl=.5ms, NC= cycles " τ 3: P={5, 5, 35} mw, dl=ms, NC= cycles " Schedule: execution order is τ, τ, τ 3 Determine " For each process, number of clock cycles to be executed at each frequency 3 3 ( c, c, c ),( c, c, c ),( c3, c3, c " such that the energy is minimized Problem #.: Example 3 3 )

35 35 of 35/4 4!Assessment: " Strongly NP-hard problem Problem #.: Example, Cont. " The frequencies are now a set of integers; identical to: " P. De, Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks, Operations Research, 45():3 36, March 997. " MILP formulation for the optimal solution 3 c i + ci + ci = NCi 3 ci ci ci + + = t 3 f f f starti + ti ti+ start t dl Each task has to execute the given number of cycles i i i i c 3 i ci ci Pi + Pi + P 3 3 i f i Task execution time Precedence constraints + Deadline constraints f f Minimize energy

36 36 of 36/4 4 Embedded Systems Design System model System platform Estimation: exec. time System-level design tasks "Communication protocols Mapped and scheduled model Analysis Software synthesis Hardware synthesis " Communication delay analysis

37 37 of 37/4 4 " FlexRay communication protocol Problem #3: FlexRay Analysis " Becoming de-facto standard in automotive electronics " BMW, DaimlerChrysler, General Motors, Volkswagen, Bosch, Motorola, Philips " Deterministic data transmission, fault-tolerant, high data-rate " Problem #Given Worst-case communication delay " Application: set of interacting processes " Platform: set of nodes connected by FlexRay " Implementation: S Mapping and... schedulingr Determine Communication protocol: FlexRay " Worst-case communication delays for messages

38 38 of 38/4 4 Problem #3: FlexRay Analysis, Cont. Bus cycle Static Dynamic Static Dynamic Generalized Time-division multiple access Statically assigned m m 3 Flexible Time-division multiple access Arrive dynamically m 7 m 4 m 5 m 6 Off-line: Schedule table Off-line: Worstcase analysis

39 39 of 39/4 4 Problem #3: Formulation and Example #Given " FlexRay bus " Length of the static phase " Length of the dynamic phase " Dynamically arriving messages " Priorities Determine for each message " Worst-case communication delay Priority m 4 m 7 m 5 m 6 Analyze this! Static Dynamic m Static Dynamic m Static Dynamic 7 6 m 4 m 5 Fixed size bin Bin covering: two bins

40 " Classic bin covering problem #Given " Set of bins of fixed integer size " Set of items of integer size Determine Problem #3:!Assessment " Maximum number of bins that can be filled with the items! Assessment " Asymptotic fully polynomial time approximation " FlexRay dynamic phase analysis classic bin covering " Bins have an upper limit: size of the dynamic phase " Assessment " Approximation algorithm does not exist Wanted: better solution " MILP formulation feasible up to 6 messages 4 of 4/4 4

41 Outline " Embedded systems " Example area: automotive electronics " Embedded systems design " Optimization problems " Fault-tolerant mapping and scheduling " Voltage scaling " Communication delay analysis! Assessment and message 4 of 4/4 4

42 Message " Optimization " Key to successful embedded systems design " Challenges " Classify the problems " Divide the problem into sub-problems " Formulate the problems " Solve the problems optimally " Fast and accurate heuristics for specific problems 4 of 4/4 4

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Tecniche di ottimizzazione per lo sviluppo di applicazioni embedded su piattatforme multiprocessore su singolo chip

Tecniche di ottimizzazione per lo sviluppo di applicazioni embedded su piattatforme multiprocessore su singolo chip Tecniche di ottimizzazione per lo sviluppo di applicazioni embedded su piattatforme multiprocessore su singolo chip Luca Benini Lbenini@deis.unibo.it DEIS Università di Bologna Embedded Systems General

More information

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Jian-Jia Chen *, Chuan Yue Yang, Tei-Wei Kuo, and Chi-Sheng Shih Embedded Systems and Wireless Networking Lab. Department of Computer

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

Resilient and energy-aware algorithms

Resilient and energy-aware algorithms Resilient and energy-aware algorithms Anne Benoit ENS Lyon Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit CR02-2016/2017 Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 1/

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm

Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm Yves MOUAFO Supervisors A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN OUTLINES 2 1. Context and Problematic 2. State of the art

More information

A New Task Model and Utilization Bound for Uniform Multiprocessors

A New Task Model and Utilization Bound for Uniform Multiprocessors A New Task Model and Utilization Bound for Uniform Multiprocessors Shelby Funk Department of Computer Science, The University of Georgia Email: shelby@cs.uga.edu Abstract This paper introduces a new model

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Real-time operating systems course 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Definitions Scheduling Scheduling is the activity of selecting which process/thread should

More information

Optimal Voltage Allocation Techniques for Dynamically Variable Voltage Processors

Optimal Voltage Allocation Techniques for Dynamically Variable Voltage Processors Optimal Allocation Techniques for Dynamically Variable Processors 9.2 Woo-Cheol Kwon CAE Center Samsung Electronics Co.,Ltd. San 24, Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyounggi-Do, Korea Taewhan Kim

More information

Scheduling of Frame-based Embedded Systems with Rechargeable Batteries

Scheduling of Frame-based Embedded Systems with Rechargeable Batteries Scheduling of Frame-based Embedded Systems with Rechargeable Batteries André Allavena Computer Science Department Cornell University Ithaca, NY 14853 andre@cs.cornell.edu Daniel Mossé Department of Computer

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators Sandeep D souza and Ragunathan (Raj) Rajkumar Carnegie Mellon University High (Energy) Cost of Accelerators Modern-day

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems

Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems Dongkun Shin School of Computer Science and Engineering Seoul National University sdk@davinci.snu.ac.kr Jihong Kim

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Tradeoff between Reliability and Power Management

Tradeoff between Reliability and Power Management Tradeoff between Reliability and Power Management 9/1/2005 FORGE Lee, Kyoungwoo Contents 1. Overview of relationship between reliability and power management 2. Dakai Zhu, Rami Melhem and Daniel Moss e,

More information

Evaluation and Validation

Evaluation and Validation Evaluation and Validation Jian-Jia Chen (Slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2016 年 01 月 05 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Modeling Fixed Priority Non-Preemptive Scheduling with Real-Time Calculus

Modeling Fixed Priority Non-Preemptive Scheduling with Real-Time Calculus Modeling Fixed Priority Non-Preemptive Scheduling with Real-Time Calculus Devesh B. Chokshi and Purandar Bhaduri Department of Computer Science and Engineering Indian Institute of Technology Guwahati,

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Fine Grain Quality Management

Fine Grain Quality Management Fine Grain Quality Management Jacques Combaz Jean-Claude Fernandez Mohamad Jaber Joseph Sifakis Loïc Strus Verimag Lab. Université Joseph Fourier Grenoble, France DCS seminar, 10 June 2008, Col de Porte

More information

Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems 1

Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems 1 Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems 1 Vishnu Swaminathan and Krishnendu Chakrabarty Department of Electrical and Computer Engineering Duke University 130 Hudson

More information

Optimal Integration of Inter-Task and Intra-Task Dynamic Voltage Scaling Techniques for Hard Real-Time Applications

Optimal Integration of Inter-Task and Intra-Task Dynamic Voltage Scaling Techniques for Hard Real-Time Applications Optimal Integration of Inter-Task and Intra-Task Dynamic Voltage Scaling Techniques for Hard Real-Time Applications Jaewon Seo KAIST, Daejeon, KOREA jwseo@jupiter.kaist.ac.kr Taewhan Kim Seoul National

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...!2

More information

A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware

A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware A Formal Model of Clock Domain Crossing and Automated Verification of Time-Triggered Hardware Julien Schmaltz Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands

More information

Task assignment in heterogeneous multiprocessor platforms

Task assignment in heterogeneous multiprocessor platforms Task assignment in heterogeneous multiprocessor platforms Sanjoy K. Baruah Shelby Funk The University of North Carolina Abstract In the partitioned approach to scheduling periodic tasks upon multiprocessors,

More information

Embedded Systems 23 BF - ES

Embedded Systems 23 BF - ES Embedded Systems 23-1 - Measurement vs. Analysis REVIEW Probability Best Case Execution Time Unsafe: Execution Time Measurement Worst Case Execution Time Upper bound Execution Time typically huge variations

More information

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Lecture Outline The rate monotonic algorithm (cont d) Maximum utilisation test The deadline monotonic algorithm The earliest

More information

Robust On-Chip Bus Architecture Synthesis for MPSoCs Under Random Tasks Arrival

Robust On-Chip Bus Architecture Synthesis for MPSoCs Under Random Tasks Arrival Robust On-Chip Bus Architecture Synthesis for MPSoCs Under Random Tasks Arrival Sujan Pandey NP Semiconductors Research Eindhoven, The Netherlands pandey@informatik.uni-bremen.de Rolf Drechsler Dept. of

More information

MICROPROCESSOR REPORT. THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE

MICROPROCESSOR REPORT.   THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE MICROPROCESSOR www.mpronline.com REPORT THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE ENERGY COROLLARIES TO AMDAHL S LAW Analyzing the Interactions Between Parallel Execution and Energy Consumption By

More information

Energy-efficient Mapping of Big Data Workflows under Deadline Constraints

Energy-efficient Mapping of Big Data Workflows under Deadline Constraints Energy-efficient Mapping of Big Data Workflows under Deadline Constraints Presenter: Tong Shu Authors: Tong Shu and Prof. Chase Q. Wu Big Data Center Department of Computer Science New Jersey Institute

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Energy-aware checkpointing of divisible tasks with soft or hard deadlines

Energy-aware checkpointing of divisible tasks with soft or hard deadlines Energy-aware checkpointing of divisible tasks with soft or hard deadlines Guillaume Aupy 1, Anne Benoit 1,2, Rami Melhem 3, Paul Renaud-Goud 1 and Yves Robert 1,2,4 1. Ecole Normale Supérieure de Lyon,

More information

On the Design and Application of Thermal Isolation Servers

On the Design and Application of Thermal Isolation Servers On the Design and Application of Thermal Isolation Servers Rehan Ahmed, Pengcheng Huang, Max Millen, Lothar Thiele EMSOFT 2017 October 16, 2017 1/25 2/25 The Temperature Problem 1 1 Extremetech: https://tinyurl.com/y8gmopks

More information

Timing Driven Power Gating in High-Level Synthesis

Timing Driven Power Gating in High-Level Synthesis Timing Driven Power Gating in High-Level Synthesis Shih-Hsu Huang and Chun-Hua Cheng Department of Electronic Engineering Chung Yuan Christian University, Taiwan Outline Introduction Motivation Our Approach

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling EECS 571 Principles of Real-Time Embedded Systems Lecture Note #7: More on Uniprocessor Scheduling Kang G. Shin EECS Department University of Michigan Precedence and Exclusion Constraints Thus far, we

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-011-45 011 Multi-core Real-Time

More information

ENERGY EFFICIENT TASK SCHEDULING OF SEND- RECEIVE TASK GRAPHS ON DISTRIBUTED MULTI- CORE PROCESSORS WITH SOFTWARE CONTROLLED DYNAMIC VOLTAGE SCALING

ENERGY EFFICIENT TASK SCHEDULING OF SEND- RECEIVE TASK GRAPHS ON DISTRIBUTED MULTI- CORE PROCESSORS WITH SOFTWARE CONTROLLED DYNAMIC VOLTAGE SCALING ENERGY EFFICIENT TASK SCHEDULING OF SEND- RECEIVE TASK GRAPHS ON DISTRIBUTED MULTI- CORE PROCESSORS WITH SOFTWARE CONTROLLED DYNAMIC VOLTAGE SCALING Abhishek Mishra and Anil Kumar Tripathi Department of

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Reducing power in using different technologies using FSM architecture

Reducing power in using different technologies using FSM architecture Reducing power in using different technologies using FSM architecture Himani Mitta l, Dinesh Chandra 2, Sampath Kumar 3,2,3 J.S.S.Academy of Technical Education,NOIDA,U.P,INDIA himanimit@yahoo.co.in, dinesshc@gmail.com,

More information

Generalized Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems

Generalized Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems Generalized Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems Vishnu Swaminathan and Krishnendu Chakrabarty Department of Electrical & Computer Engineering Duke University Durham,

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Noname manuscript No. (will be inserted by the editor) Multi-core Real-Time Scheduling for Generalized Parallel Task Models Abusayeed Saifullah Jing Li Kunal Agrawal Chenyang Lu Christopher Gill Received:

More information

Time and Schedulability Analysis of Stateflow Models

Time and Schedulability Analysis of Stateflow Models Time and Schedulability Analysis of Stateflow Models Marco Di Natale Scuola Superiore S. Anna Haibo Zeng Mc Gill University Outline Context: MBD of Embedded Systems Relationship with PBD An Introduction

More information

How to deal with uncertainties and dynamicity?

How to deal with uncertainties and dynamicity? How to deal with uncertainties and dynamicity? http://graal.ens-lyon.fr/ lmarchal/scheduling/ 19 novembre 2012 1/ 37 Outline 1 Sensitivity and Robustness 2 Analyzing the sensitivity : the case of Backfilling

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

Adaptive Scheduling and Voltage Scaling for Multiprocessor Real-time Applications with Non-deterministic Workload

Adaptive Scheduling and Voltage Scaling for Multiprocessor Real-time Applications with Non-deterministic Workload Scheduling and Voltage Scaling for Multiprocessor Real-time Applications with Non-deterministic Workload Parth Malani, Prakash Mukre, Qinru Qiu and Qing Wu Department of Electrical and Computer Engineering,

More information

Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems

Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems Yifeng Guo, Dakai Zhu The University of Texas at San Antonio Hakan Aydin George Mason University Outline Background and Motivation

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems Zhishan Guo and Sanjoy Baruah Department of Computer Science University of North Carolina at Chapel

More information

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Jan Reineke @ saarland university ACACES Summer School 2017 Fiuggi, Italy computer science Fixed-Priority

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Communication constraints and latency in Networked Control Systems

Communication constraints and latency in Networked Control Systems Communication constraints and latency in Networked Control Systems João P. Hespanha Center for Control Engineering and Computation University of California Santa Barbara In collaboration with Antonio Ortega

More information

Temperature-Aware Analysis and Scheduling

Temperature-Aware Analysis and Scheduling Temperature-Aware Analysis and Scheduling Lothar Thiele, Pratyush Kumar Overview! Introduction! Power and Temperature Models! Analysis Real-time Analysis Worst-case Temperature Analysis! Scheduling Stop-and-go

More information

Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing

Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing Prasanna Balaprakash, Leonardo A. Bautista Gomez, Slim Bouguerra, Stefan M. Wild, Franck Cappello, and Paul D. Hovland

More information

Iterative Schedule Optimisation for Voltage Scalable Distributed Embedded Systems

Iterative Schedule Optimisation for Voltage Scalable Distributed Embedded Systems Iterative Schedule Optimisation for Voltage Scalable Distributed Embedded Systems MARCUS T. SCHMITZ and BASHIR M. AL-HASHIMI University of Southampton and PETRU ELES Linköping University We present an

More information

Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems

Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems Zhe Wang, Sanjay Ranka and Prabhat Mishra Dept. of Computer and Information Science and Engineering University of Florida,

More information

Special Nodes for Interface

Special Nodes for Interface fi fi Special Nodes for Interface SW on processors Chip-level HW Board-level HW fi fi C code VHDL VHDL code retargetable compilation high-level synthesis SW costs HW costs partitioning (solve ILP) cluster

More information

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Dave Parker University of Birmingham (joint work with Bruno Lacerda, Nick Hawes) AIMS CDT, Oxford, May 2015 Overview Probabilistic

More information

Slack Reclamation for Real-Time Task Scheduling over Dynamic Voltage Scaling Multiprocessors

Slack Reclamation for Real-Time Task Scheduling over Dynamic Voltage Scaling Multiprocessors Slack Reclamation for Real-Time Task Scheduling over Dynamic Voltage Scaling Multiprocessors Jian-Jia Chen, Chuan-Yue Yang, and Tei-Wei Kuo Department of Computer Science and Information Engineering Graduate

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Continuous heat flow analysis. Time-variant heat sources. Embedded Systems Laboratory (ESL) Institute of EE, Faculty of Engineering

Continuous heat flow analysis. Time-variant heat sources. Embedded Systems Laboratory (ESL) Institute of EE, Faculty of Engineering Thermal Modeling, Analysis and Management of 2D Multi-Processor System-on-Chip Prof David Atienza Alonso Embedded Systems Laboratory (ESL) Institute of EE, Falty of Engineering Outline MPSoC thermal modeling

More information

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure Abdulla A. Hammad, Terence D. Todd, George Karakostas and Dongmei Zhao Department of Electrical and Computer Engineering McMaster

More information

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 1 EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 2 Topics Clocking Clock Parameters Latch Types Requirements for reliable clocking Pipelining Optimal pipelining

More information

Rate-monotonic scheduling on uniform multiprocessors

Rate-monotonic scheduling on uniform multiprocessors Rate-monotonic scheduling on uniform multiprocessors Sanjoy K. Baruah The University of North Carolina at Chapel Hill Email: baruah@cs.unc.edu Joël Goossens Université Libre de Bruxelles Email: joel.goossens@ulb.ac.be

More information

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1 Loop Scheduling and Software Pipelining 2008-04-24 \course\cpeg421-08s\topic-7.ppt 1 Reading List Slides: Topic 7 and 7a Other papers as assigned in class or homework: 2008-04-24 \course\cpeg421-08s\topic-7.ppt

More information

Power-Saving Scheduling for Weakly Dynamic Voltage Scaling Devices

Power-Saving Scheduling for Weakly Dynamic Voltage Scaling Devices Power-Saving Scheduling for Weakly Dynamic Voltage Scaling Devices Jian-Jia Chen 1, Tei-Wei Kuo 2, and Hsueh-I Lu 2 1 Department of Computer Science and Information Engineering National Taiwan University,

More information

Reliability-Aware Power Management for Real-Time Embedded Systems. 3 5 Real-Time Tasks... Dynamic Voltage and Frequency Scaling...

Reliability-Aware Power Management for Real-Time Embedded Systems. 3 5 Real-Time Tasks... Dynamic Voltage and Frequency Scaling... Chapter 1 Reliability-Aware Power Management for Real-Time Embedded Systems Dakai Zhu The University of Texas at San Antonio Hakan Aydin George Mason University 1.1 1.2 Introduction... Background and System

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks Krishnendu Chatterjee 1, Andreas Pavlogiannis 1, Alexander Kößler 2, Ulrich Schmid 2 1 IST Austria, 2 TU Wien

More information

System-Level Mitigation of WID Leakage Power Variability Using Body-Bias Islands

System-Level Mitigation of WID Leakage Power Variability Using Body-Bias Islands System-Level Mitigation of WID Leakage Power Variability Using Body-Bias Islands Siddharth Garg Diana Marculescu Dept. of Electrical and Computer Engineering Carnegie Mellon University {sgarg1,dianam}@ece.cmu.edu

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA)

Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Verification of clock synchronization algorithm (Original Welch-Lynch algorithm and adaptation to TTA) Christian Mueller November 25, 2005 1 Contents 1 Clock synchronization in general 3 1.1 Introduction............................

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Schedulability Analysis for the Dynamic Segment of FlexRay: A Generalization to Slot Multiplexing

Schedulability Analysis for the Dynamic Segment of FlexRay: A Generalization to Slot Multiplexing Schedulability Analysis for the Dynamic Segment of FlexRay: A Generalization to Slot Multiplexing Bogdan Tanasa Unmesh D. Bordoloi Stefanie Kosuch Petru Eles Zebo Peng Department of Computer Science, Linköpings

More information

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption Rohini Krishnapura, Steve Goddard, Ala Qadi Computer Science & Engineering University of Nebraska Lincoln Lincoln, NE 68588-0115

More information

Real-Time Calculus. LS 12, TU Dortmund

Real-Time Calculus. LS 12, TU Dortmund Real-Time Calculus Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 09, Dec., 2014 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 35 Arbitrary Deadlines The worst-case response time of τ i by only considering

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Lecture 1 Pipelining & Retiming ADSP Lecture1 - Pipelining & Retiming (cwliu@twins.ee.nctu.edu.tw) 1-1 Introduction DSP System Real time requirement Data driven synchronized by data

More information

Optimal Checkpoint Placement on Real-Time Tasks with Harmonic Periods

Optimal Checkpoint Placement on Real-Time Tasks with Harmonic Periods Kwak SW, Yang JM. Optimal checkpoint placement on real-time tasks with harmonic periods. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(1): 105 112 Jan. 2012. DOI 10.1007/s11390-012-1209-0 Optimal Checkpoint

More information

Divisible Load Scheduling

Divisible Load Scheduling Divisible Load Scheduling Henri Casanova 1,2 1 Associate Professor Department of Information and Computer Science University of Hawai i at Manoa, U.S.A. 2 Visiting Associate Professor National Institute

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors Technical Report No. 2009-7 Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors RISAT MAHMUD PATHAN JAN JONSSON Department of Computer Science and Engineering CHALMERS UNIVERSITY

More information

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Jan. 17 th : Homework 1 release (due on Jan.

More information

Workload-Ahead-Driven Online Energy Minimization Techniques for Battery-Powered Embedded Systems with Time-Constraints

Workload-Ahead-Driven Online Energy Minimization Techniques for Battery-Powered Embedded Systems with Time-Constraints Workload-Ahead-Driven Online Energy Minimization Techniques for Battery-Powered Embedded Systems with Time-Constraints YUAN CAI University of Iowa MARCUS T. SCHMITZ Robert Bosch GmbH BASHIR M. AL-HASHIMI

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

Micro-architecture Pipelining Optimization with Throughput- Aware Floorplanning

Micro-architecture Pipelining Optimization with Throughput- Aware Floorplanning Micro-architecture Pipelining Optimization with Throughput- Aware Floorplanning Yuchun Ma* Zhuoyuan Li* Jason Cong Xianlong Hong Glenn Reinman Sheqin Dong* Qiang Zhou *Department of Computer Science &

More information

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Jan Reineke Saarland University July 4, 2013 With thanks to Jian-Jia Chen! Jan Reineke July 4, 2013 1 / 58 Task Models and Scheduling

More information